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Enumerating some symmetry classes of
rhombus tilings of holey hexagons

Tomack Gilmore†

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

Abstract. This extended abstract presents some recent (exact and asymptotic) enumerative results concerning rhom-
bus tilings of hexagons that have had symmetrically distributed inward pointing triangles of side length 2 removed
from their interiors. These results form part of a larger article that is currently available online (arXiv:1501.05772).

Résumé. Ce résumé détaillé présente quelques résultats énumératifs récents (exacts et asymptotiques) sur les pavages
par losanges d’hexagones dont on a enlevé des triangles de côté 2 placés symétriquement et pointant vers l’intérieur.
Ces résultats sont extraits d’un article plus développé disponible actuellement en ligne (arXiv:1501.05772).
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1 Introduction
Consider the triangular lattice T , that is, the lattice consisting of unit equilateral triangles drawn so that
one of the sets of lattice lines is vertical. Then a unit rhombus on T corresponds to the pairing of two
unit triangles of T that share exactly one edge. LetHa,b,c denote the hexagonal sub-region of T , centred
at some origin O, with side lengths a, b, c, a, b, c (going counter-clockwise from southwest edge, see
Figure 1 (left)). Then a rhombus tiling of Ha,b,c corresponds to a perfect matching between all unit
triangles contained within the interior of Ha,b,c. A holey hexagon, Ha,b,c \ T , is a hexagon Ha,b,c that
has had a set of triangles, T , removed from its interior. See Figure 1 (middle) for an example of a holey
hexagon.

One important motivation for considering rhombus tilings of holey hexagons, as evidenced by Mihai
Ciucu in his 2008 PNAS survey paper [2], is the apparent link between tilings of these regions and two-
dimensional electrostatics. Denote by Hn = Hn,n,n the regular hexagon on T . Suppose T is a set of unit
triangles contained in the interior of Hn. Then the correlation function (sometimes also referred to as the
interaction) of the holes is defined to be

ω = lim
n→∞

M(Hn \ T )

M(Hn)
,
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where M(H) denotes the total number of tilings of H . Note that in order for this definition to make
sense, any collection of holes must consist of an equal number of left and right pointing unit triangles,
otherwise the number of rhombus tilings of Hn \ T is 0 (i) . It was conjectured by Ciucu [2] that as
the distance between the set of holes in T and the origin (that is, the centre of Hn) becomes very large,
the asymptotics captured by the correlation function are governed by Coulomb’s laws of electrostatics.
More precisely, the asymptotics of the rhombus-mediated interaction of holes captured by this correlation
function is given, up to a multiplicative constant, by the exponential of the negative of the electrostatic
energy of the two-dimensional system of physical charges obtained by viewing each hole as a point charge
of magnitude and sign. This magnitude and sign is specified by a statistic for each hole, namely the
difference between the left and right pointing unit triangles that comprise each hole(ii) . More recent work
concerning the interaction of a hole with a free boundary by Ciucu and Krattenthaler [5] draws further
parallels between vertically symmetric tilings of holey hexagons and physical phenomena. Theorem 2.1
presented in Section 2 below is an analogue of the enumerative result found in [5]. The remainder of this
section is dedicated to stating some known enumeration results for tilings of hexagons that contain no
holes followed by a more explicit definition of the holey hexagons that are of particular interest.

The enumeration of rhombus tilings of hexagons (in equivalent forms and guises) has a relatively long
history. The story begins with MacMahon [10] in the early twentieth century. At the time MacMahon was
concerned with enumerating the number of plane partitions that fit inside an a× b× c box, however there
is a straightforward bijection between the three-dimensional representation of such plane partitions (as
cubes stacked into the corner of a box) and two-dimensional hexagons covered in unit rhombi. MacMahon
successfully proved the following theorem.

Theorem 1.1 (MacMahon) The total number of rhombus tilings of the hexagon Ha,b,c is given by

T (a, b, c) =

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
.

MacMahon also conjectured a formula for the number of symmetric plane partitions that fit inside an
a× a× b box. This was later proved by Andrews [1], and simultaneously (in an equivalent form, though
published much later) by Gordon [8]. Under the same bijection as before, such symmetric plane partitions
correspond to rhombus tilings of Ha,a,b (from now on denoted simply by Ha,b) that are symmetric with
respect to its vertical symmetry axis, that is, the vertical line that intersects the origin of Ha,b.

Theorem 1.2 (Andrews/Gordon) The number of vertically symmetric tilings of Ha,b is

ST (a, b) =

a∏
i=1

2i+ b− 1

2i− 1

∏
1≤i<j≤a

i+ j + b− 1

i+ j − 1
.

One other symmetry class of plane partitions that is of particular interest is the set of transpose-
complementary plane partitions. These correspond to rhombus tilings of the hexagon Ha,2b that are
symmetric with respect to the horizontal symmetry axis, that is, the axis that intersects the mid-points of
the vertical sides of Ha,2b. The following formula is due to Proctor [13].

(i) Ciucu has provided further methods for determining the interaction between holes that do not fit this criteria, however for the
purpose of this article the given definition will suffice.

(ii) Observe that for our definition of the correlation function to make sense, the sum of the point charges of the holes must be 0.
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Fig. 1: Left: the hexagonal region H6,6,8 on the triangular lattice T . Middle: the holey hexagon H6,8 \ (.4 ∪ /4).
Right: (above) the weighted region H+

6,8 \ (.4 ∪ /4), where the shaded rhombi have a weight of 2; (below) the lower
half region H−6,8 \ (.4 ∪ /4).

Theorem 1.3 (Proctor) The number of horizontally symmetric tilings of Ha,2b is

TC(a, 2b) =

(
a+ b− 1

a− 1

) a−2∏
i=1

a−2∏
j=i

2b+ i+ j + 1

i+ j + 1
.

The above three theorems concern hexagons that contain no holes, so the enumeration of various sym-
metry classes of rhombus tilings of holey hexagons may then be viewed as generalisations of these plane
partition problems. An explicit definition of the holey hexagons of interest follows.

Suppose we have a hexagon Hn,2m centred at some origin O. Let .k denote the right pointing triangle
of side length 2 positioned symmetrically about the horizontal symmetry axis of Hn,2m such that its
vertical edge is at lattice distance k to the left of O. Define the left pointing triangle /k analogously.
Then Hn,2m \ (.k ∪ /k) denotes the hexagon Hn,2m from which two inward pointing triangles of side
length 2 have been removed with their vertical edges at lattice distance k either side of the origin (see
Figure 1(middle)).

Remark 1 Note that in any such hexagon, k must have the same parity as n.

From now on assume that n, m and k are positive integers, and also that n and k have the same
parity. The results presented in this paper enumerate (exactly and asymptotically) vertically symmetric
and horizontally symmetric rhombus tilings of Hn,2m \ (.k ∪ /k) (see Figure 2 and Figure 3) as well as
enumerating tilings of the complete region Hn,2m \ (.k ∪ /k).

The next section states the main results of this abstract. Section 3 discusses the representation of
rhombus tilings of holey hexagons as families of non-intersecting lattice paths, leading to the expression
of numbers of sets of tilings as determinants of particular matrices. In Section 4 these determinants are
evaluated by explicitly stating the unique LU -decomposition of the matrices from Section 3 . In the final
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section some asymptotic formulas for the interaction of these holes are briefly stated and discussed and
compared with those of [5] .

Note that while the results presented here pertain to holey hexagons that have vertical edges of even
length, analogous results for hexagons with vertical edges of odd length have also been discovered and
may be found in [7] alongside full proofs of the theorems presented below.

2 Main Results
Let l denote the free boundary that coincides with the vertical symmetry axis of the hexagon Hn,2m \
(.k ∪ /k). The line l is “free” in the sense that unit rhombi are permitted to protrude across it. Let
Vn,2m \ .k denote the region to the left of l (see Figure 2). Then enumerating vertically symmetric tilings
of Hn,2m \ (.k ∪ /k) corresponds to enumerating rhombus tilings of Vn,2m \ .k (see Figure 2 (left and
middle-left)).

Theorem 2.1 The number of rhombus tilings of Vn,2m \ .k, denoted M(Vn,2m \ .k), is[
m∑
s=1

Bn,k(s) ·Dn,k(s)

]
× ST (n, 2m),

where

Bn,k(s) =
(−1)s+1(−k + n+ 1)!(n+ s− 1)!(n+ 2s− 1)!

(
k
2 + n

2 + s− 2
)
!

(s− 1)!
(
n
2 −

k
2

)
!
(
k
2 + n

2 − 1
)
!(2n+ 2s− 1)!

(
−k2 + n

2 + s
)
!

,

Dn,k(s) =
(−1)s+1(2s− 2)!(n− k)!(n+ s− 1)!

(
k
2 + n

2 + s− 2
)
!

(s− 1)!
(
n
2 −

k
2

)
!
(
k
2 + n

2 − 1
)
!(n+ 2s− 2)!

(
−k2 + n

2 + s
)
!

+
2(−1)s+1(2s− 2)!(n− k)!(n+ s)!

(
k
2 + n

2 + s− 2
)
!

(s− 2)!
(
n
2 −

k
2

)
!
(
k
2 + n

2

)
!(n+ 2s− 2)!

(
−k2 + n

2 + s
)
!
.

Remark 2 The above result is analogous to that of Ciucu and Krattenthaler [5] in the sense the hole in
Vn,2m has been “flipped” and points towards the centre.

Now let H−n,2m \ (.k ∪ /k) denote the lower half of Hn,2m \ (.k ∪ /k), that is, the region lying beneath
the zig-zag line that proceeds just below the horizontal symmetry axis of Hn,2m \ (.k ∪ /k) (see Figure 1
(right-lower)). Then the number of rhombus tilings of H−n,2m \ (.k ∪ /k) corresponds to the number of
horizontally symmetric tilings of Hn,2m \ (.k ∪ /k) (see Figure 3).

Theorem 2.2 The number of rhombus tilings of H−n,2m \ (.k ∪ /k), is[
m∑
s=1

B′n,k(s) ·D′n,k(s)

]
· TC(n, 2m),

where

B′n,k(t) =
(−1)t−1(t+ n− 2)!(2t+ n− 1)!(n− k)!

(
t+ k

2 + n
2 − 2

)
!

2(t− 1)!(2t+ 2n− 3)!
(
n
2 −

k
2

)
!
(
k
2 + n

2 − 1
)
!
(
t− k

2 + n
2

)
!
,

D′n,k(s) =
(−1)s+1(2s)!(s+ n− 1)!(n− k)!

(
s+ k

2 + n
2 − 2

)
!

2(s!)(2s+ n− 2)!
(
k
2 + n

2 − 1
)
!n−k2 !

(
s− k

2 + n
2

)
!
.
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Denote by H+
n,2m \ (.k ∪ /k) the upper half of Hn,2m \ (.k ∪ /k), that is, the region lying above

H−n,2m \ (.k ∪ /k), and suppose that the unit rhombi lying along the bottom edge of H+
n,2m \ (.k ∪ /k)

have weight 2 (see Figure 1 (right-upper)). By Ciucu’s Matchings Factorization Theorem [3] it follows
that

M(Hn,2m \ (.k ∪ /k)) = M(H−n,2m \ (.k ∪ /k)) ·Mw(H+
n,2m \ (.k ∪ /k)), (2.1)

where Mw(H+
n,2m \ (.k ∪ /k)) denotes the number of weighted tilings of the region H+

n,2m \ (.k ∪ /k).
An argument as to why (2.1) holds may be found in [4]. Hence enumerating the total number of tilings of
the region Hn,2m \ (.k ∪ /k) reduces to enumerating tilings of the region H+

n,2m \ (.k ∪ /k) which may
then be combined via (2.1) with the previous result for horizontally symmetric tilings.

Theorem 2.3 The number of weighted rhombus tilings of H+
n,2m \ (.k ∪ /k) is[

m∑
s=1

Bn,k(s) · En,k(s)

]
· ST (n, 2m),

where Bn,k(s) is defined as in Theorem 2.1 and

En,k(s) =
(−1)s+1(2s− 2)!(−k + n+ 1)!(n+ s− 1)!

(
k
2 + n

2 + s− 2
)
!

(s− 1)!
(
n
2 −

k
2

)
!
(
k
2 + n

2 − 1
)
!(n+ 2s− 2)!

(
−k2 + n

2 + s
)
!
.

The next corollary follows immediately.

Corollary 2.4 The total number of rhombus tilings of the region Hn,2m \ (.k ∪ /k) is[
m∑
s=1

B′n,k(s) ·D′n,k(s)

]
×

[
m∑
t=1

Bn,k(t) · En,k(t)

]
× T (n, 2m,n).

The following section describes a standard translation of rhombus tilings of hexagons into families
of non-intersecting paths on the square lattice, which may be counted by taking determinants of certain
matrices.

3 From Rhombus Tilings to Non-intersecting Lattice Paths
Any rhombus tiling of Hn,2m \ (.k ∪ /k) (and consequently any tiling of the half-hexagons defined in
the previous section) may be represented as unique sets of lattice paths across dimers. Since these paths
across dimers consist of steps in one of two directions they may in turn be translated into families of non-
intersecting lattice paths consisting of north and east steps on the square lattice, Z2. Then enumerating
rhombus tilings of Hn,2m \ (.k ∪ /k) reduces to enumerating families of non-intersecting lattice paths,
for which there already exist many well-known methods.

Under this bijection, tilings of the region Vn,2m\.k correspond precisely to families of non-intersecting
paths that begin at the set of start points A =

⋃2m
i=1Ai, where Ai = (−i, i), and end at a set of points

I = {(x, y) ∈ Z2 : x+y = n}∪{t1, t2}, with the requirement that t1 = ((n−k)/2−m, (n−k)/2+m)
and t2 = ((n − k)/2 − m − 1, (n − k)/2 + m + 1) must be included as end points (see Figure 2).
According to Stembridge [14, Theorem 3.2] (and also Okada [11]), the number of families of such paths
may be expressed in terms of a Pfaffian.
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l l

Fig. 2: From left to right: a vertically symmetric tiling of H6,8 \ (.4 ∪ /4); the corresponding tiling of the region
V6,8 \ .4; the set of lattice paths across dimers corresponding to this tiling of V6,8 \ .4; and the family of non-
intersecting lattice paths representing this tiling of V6,8 \ .4 in Z2.

Proposition 3.1 The number of vertically symmetric tilings of the hexagon Hn,2m \ (.k ∪ /k) is the
Pfaffian of the (2m+ 2)× (2m+ 2) skew-symmetric matrix F with (i, j)-entries given by

Fi,j =



∑j−i
r=i−j+1

(
2n
n+r

)
, 1 ≤ i < j ≤ 2m,(

n−k
(n−k)/2−m+i

)
, i ∈ {1, ..., 2m}, j = 2m+ 1,(

n−k
(n−k)/2−m−1+i

)
, i ∈ {1, ..., 2m}, j = 2m+ 2,

0, 2m+ 1 ≤ i < j ≤ 2m+ 2.

In a similar way it is possible to express the number of tilings ofH−n,2m\(.k∪/k) andH+
n,2m\(.k∪/k)

as families of non-intersecting paths which may in turn be expressed as a determinant. These cases
are more straightforward since tilings of such regions correspond to families of non-intersecting paths
between a set of start points and a set of fixed end points.

Consider first the region H−n,2m \ (.k ∪ /k). By applying the classic theorem of Lindström, Gessel and
Viennot [6] it is possible to deduce the following.

Proposition 3.2 The number of horizontally symmetric tilings of Hn,2m \ (.k ∪/k) is (− det(G)), where
G is the (m+ 1)× (m+ 1) matrix with (i, j)-entries given by

Gi,j =



(
2n

n+j−i
)
−
(

2n
n−j−i+1

)
, 1 ≤ i, j ≤ m,(

n−k
(n−k)/2+1−i

)
−
(

n−k
(n−k)/2−i

)
, j = m+ 1, 1 ≤ i ≤ m,(

n−k
(n−k)/2+1−j

)
−
(

n−k
(n−k)/2−j

)
, i = m+ 1, 1 ≤ j ≤ m,

0, otherwise.
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Fig. 3: Left: a horizontally symmetric tiling of H6,8 \ (.4 ∪ /4). Middle (upper): the corresponding tiling of
H−6,8 \ (.4 ∪ /4). Middle (lower): the corresponding set of lattice paths across dimers, where forced dimers are
denoted by the thick black lines on the vertical sides. Right: the corresponding family of lattice paths in Z2, here
forced dimers correspond to forced east and north steps in black.

The number of tilings of H+
n,2m \ (.k ∪ /k) may be calculated in almost exactly the same way, with the

exception that any path P that intersects the line y = x at t(P )-many points is treated with a weight of
2t(P ) (see [4]). Again by applying Lindström, Gessel and Viennot’s theorem it is possible to derive the
following proposition:

Proposition 3.3 The number of weighted tilings of the regionH+
n,2m \(.k∪/k) is given by (− det(G+)),

where G+ is the (m+ 1)× (m+ 1) matrix with (i, j)-entries given by

G+
i,j =



(
2n

n−i−j+1

)
+
(

2n
n+i−j

)
, 1 ≤ i, j ≤ m,(

n−k+1
(n−k)/2+i

)
, j = m+ 1, 1 ≤ i ≤ m,(

n−k+1
(n−k)/2+j

)
, i = m+ 1, 1 ≤ j ≤ m,

0, otherwise.

Theorem 2.2 and Theorem 2.3 are derived by finding the unique LU -decomposition of the correspond-
ing matrices defined above. In the case of vertically symmetric tilings it is convenient to first reduce the
matrix F to a much smaller matrix F ∗ by way of an extension of Gordon’s Lemma [9]. Then Theorem 2.1
is obtained by finding the unique LU -decomposition of the matrix F ∗.

4 Evaluation of Determinants
Consider the (2m + 2) × (2m + 2) matrix F from Proposition 3.1 in the previous section. This matrix
satisfies the conditions of the following lemma, which is an extension of that of Gordon [9].

Lemma 4.1 For a positive integer m and a non-negative integer l, let A be a (2m + 2l) × (2m + 2l)
skew-symmetric matrix of the form
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A =

(
X Y
−Y t Z

)
,

for which the following properties hold:
1. X is a 2m× 2m matrix such that X = (xj−i)1≤i,j≤2m and xj,i = −xi,j;
2. Z is a 2l × 2l matrix satisfying zi,j + zi+l,j + zi,j+l = 0 for 1 ≤ i, j ≤ l, and zj,i = −zi,j;
3. Y is a 2m× 2l matrix such that:

yi,j =

{
y2m−i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ l,
y2m+1−i,j−l, 1 ≤ i ≤ 2m, l + 1 ≤ j ≤ 2l.

Then
Pf(A) = (−1)((

m+l
2 )+(m

2 ))det(B),

where B is an (m+ l)× (m+ l) matrix of the form(
X̂ Ŷ1
Ŷ2 Ẑ

)
,

the block matrices of which are defined by

(X̂)i,j =xi+j−1 + xi+j−3 + · · ·+ x|i−j|+1 for 1 ≤ i, j ≤ m,

(Ŷ1)i,j =

i−1∑
r=0

(ym+1−i+2r,j − ym+i−2r,j) for 1 ≤ i ≤ m and 1 ≤ j ≤ l,

(Ŷ2)i,j =

j−1∑
r=0

(yj+m−2r,i + ym+1−j+2r,i) for 1 ≤ i ≤ l and 1 ≤ j ≤ m,

(Ẑ)i,j =zi,j+l + zi+l,j+l for 1 ≤ i, j ≤ l.

Applying this lemma directly to the matrix F defined in Proposition 3.1 results in the following expression
for the signed Pfaffian of F ,

Pf(F ) = (−1)((
m+l

2 )+(m
2 )) det(F̄ ),

where F̄ is the (m+ 1)× (m+ 1) matrix with (i, j)-entries given by

F̄i,j =


Fi+j−1 + Fi+j−3 + · · ·+ F|i−j|+1, 1 ≤ i, j ≤ m∑i−1
r=0(Fm+1−i+2r,2m+1 − Fm+i−2r,2m+1), 1 ≤ i ≤ m, j = m+ 1,∑j−1
r=0(Fj+m−2r,2m+1 + Fm+1−j+2r,2m+1), i = m+ 1, 1 ≤ j ≤ m,

0, otherwise.

.

Subtracting row (m−i) from row (m+1−i) for i ∈ {1, . . . ,m−1} (and performing the same operations
on the columns) of F̄ and then reversing the order of rows 1 to m to construct a new matrix F ∗, one sees
that

M(Vn,2m \ .k) = |det(F ∗)|, (4.1)
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where F ∗ is the (m+ 1)× (m+ 1) matrix with (i, j)-entry given by

F ∗i,j =



(
2n

n−i−j+1

)
+
(

2n
n+i−j

)
, 1 ≤ i, j ≤ m,(

4(i−1)
k−n + 2i−1

i+(n−k)/2

) (
n−k

(n−k)/2−i+1

)
, j = m+ 1, 1 ≤ i ≤ m,(

n−k+1
(n−k)/2+j

)
, i = m+ 1, 1 ≤ j ≤ m,

0, otherwise.

Note that the positive part of det(F ∗) is taken in (4.1) since we are counting families of paths.

Theorem 4.2 The (m+ 1)× (m+ 1) matrix F ∗ described above has LU -decomposition

F ∗ = L∗ · U∗,

where L∗ has the form

L∗i,j =


An(i, j), 1 ≤ j ≤ i ≤ m,
Bn,k(j), i = m+ 1, 1 ≤ j ≤ m
1, i = j = m+ 1

0, otherwise.

and U∗ has the form

U∗i,j =


Cn(i, j), 1 ≤ i ≤ j ≤ m,
Dn,k(i), j = m+ 1, 1 ≤ i ≤ m
−
∑m
s=1Bn,k(s) ·Dn,k(s), i = j = m+ 1

0, otherwise.

where

An(i, j) =
(n)!(i+ j − 2)!(2j + n− 1)!

(2j − 2)!(i− j)!(−i+ j + n)!(i+ j + n− 1)!
,

Bn,k(j) =
(−1)j+1(j + n− 1)!(2j + n− 1)!(n− k + 1)!(j + (k + n)/2− 2)!

(j − 1)!(2j + 2n− 1)!((n− k)/2)!((k + n)/2− 1)!(j + (n− k)/2)!
,

Cn(i, j) =
(n)!(i+ j − 2)!(2i+ 2n− 1)!

(j − i)!(2i+ n− 2)!(i− j + n)!(i+ j + n− 1)!
,

Dn,k(i) =
(−1)i+1(2i− 2)!(i+ n− 1)!(n− k)!(i+ (k + n)/2− 2)!

(i− 1)!(2i+ n− 2)!((n− k)/2)!((k + n)/2− 1)!(i+ (n− k)/2)!

+
2(−1)i+1(2i− 2)!(i+ n)!(n− k)!(i+ (k + n)/2− 2)!

(i− 2)!(2i+ n− 2)!((n− k)/2)!((k + n)/2)!(i+ (n− k)/2)!
.

The proof of the above theorem reduces to showing that a number of hypergeometric identities hold.
These can be verified by using your favourite implementation of the Gosper-Zeilberger algorithm (see for
example [12]).
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It is easy to see that An,k(i, i) = 1 for i ∈ {1, . . . ,m}, so the LU -decomposition of F ∗ above is
unique. Theorem 2.1 then follows from taking the positive product of the diagonal entries of U∗.

Since F ∗i,j = G+
i,j for i ∈ {1, . . . ,m + 1}, j ∈ {1, . . . ,m} and i = j = m + 1, a little further work

yields the following:

Lemma 4.3 The (m+ 1)× (m+ 1) matrix G+ has LU -decomposition

G+ = L∗ · U+,

where L∗ is as before and

U+
i,j =


U∗i,j , 1 ≤ i ≤ j ≤ m,
En,k(i), 1 ≤ i ≤ m, j = m+ 1,

−
∑m
s=1Bn,k(s) · En,k(s), i = j = m+ 1.

,

where En,k(s) is defined to be

En,k(s) =
(−1)s+1(2s− 2)!(n− k + 1)!(n+ s− 1)!((k + n)/2 + s− 2)!

(s− 1)!((n− k)/2)!((k + n)/2− 1)!(n+ 2s− 2)!((n− k)/2 + s)!
.

Again, since L∗ contains 1s along its diagonal, Theorem 2.3 follows immediately by taking the positive
product of the diagonal entries of U+.

Remark 3 Observe that in Proposition 3.3, the holes inH+
n,2m \ (.k∪/k) correspond to the last row and

column of G+. Hence the determinant of the m×m sub-matrix G′, where G′i,j = G+
i,j for 1 ≤ i, j ≤ m,

counts the number of tilings of H+
n,2m, the same weighted region that contains no holes. It is not hard to

convince oneself that G′ = L′ · U ′ where L′ = L∗i,j and U ′ = U∗i,j for 1 ≤ i, j ≤ m. Hence it follows
that Mw(H+

n,2m) = ST (n, 2m) = M(Vn,2m) and so by (2.1), M(Hn,2m) = M(Vn,2m) ·M(H−n,2m),
which is a special case of the results found in [4]. No bijective proof of this appealing factorisation exists,
however the relation observed between ST (n, 2m) and TC(n, 2m), namely,(

n+m− 1

m− 1

)
·M(Vn,2m) =

(
2n+ 2m− 1

2m− 1

)
·M(H−n,2m),

might shed new light on the inner workings of such a bijection.

In order to derive an expression for the total number of tilings of Hn,2m \ (.k ∪ /k) it suffices to
determine the LU -decomposition of the matrix G. Then by applying (2.1) we may construct a formula
for M(Hn,2m \ (.k ∪ /k)).

Theorem 4.4 The matrix G whose determinant counts the number of horizontally symmetric tilings of
Hn,2m \ (.k ∪ /k) has LU -decomposition

G = L · U,

where

Li,j =


A′n(i, j), 1 ≤ j ≤ i ≤ m,
B′n,k(j), i = m+ 1, 1 ≤ j ≤ m,
1, i = j = m+ 1

0, otherwise.
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and U is given by

Ui,j =


C ′n(i, j), 1 ≤ i ≤ j ≤ m,
D′n,k(i), j = m+ 1, 1 ≤ i ≤ m,
−
∑m
s=1B

′
n,k(s) ·D′n,k(s), i = j = m+ 1

0, otherwise.

where

A′n(s, t) =
n!(s+ t− 2)!(2t+ n− 1)!(2s− 1)

(2t− 1)!(s− t)!(t− s+ n)!(s+ t+ n− 1)!
,

B′n,k(t) =
(−1)t−1(t+ n− 2)!(2t+ n− 1)!(n− k)!

(
t+ k

2 + n
2 − 2

)
!

2(t− 1)!(2t+ 2n− 3)!
(
n
2 −

k
2

)
!
(
k
2 + n

2 − 1
)
!
(
t− k

2 + n
2

)
!
,

C ′n(s, t) =
(2t− 1)n!(s+ t− 2)!(2s+ 2n− 2)!

(t− s)!(2s+ n− 2)!(s− t+ n)!(s+ t+ n− 1)!
,

D′n,k(s) =
(−1)s+1(2s)!(s+ n− 1)!(n− k)!

(
s+ k

2 + n
2 − 2

)
!

2(s!)(2s+ n− 2)!
(
k
2 + n

2 − 1
)
!n−k2 !

(
s− k

2 + n
2

)
!
.

Once again a straightforward calculation shows that A′n(i, i) = 1 for i ∈ {1, . . . ,m} and hence The-
orem 2.2 follows immediately from taking the positive product of the diagonal entries of U . Combining
the above formula with Theorem 2.2 by way of (2.1) gives Corollary 2.4 .

5 Asymptotics
Denote by ωH(k) the correlation function

ωH(k) = lim
n→∞

M(Hn,n \ (.k ∪ /k))

M(Hn,n)
. (5.1)

Let ωV (k) and ωH−(k) denote the analogous correlation functions obtained by replacingHn,2m\(.k∪/k)
in (5.1) with Vn,n \ .k and H−n,n \ (.k ∪ /k) respectively.

Theorem 5.1 As k →∞ the correlation functions ωH , ωV and ωH− are asymptotically

1. ωH(k) ∼
( √

3
2π d(.k,/k)

)2
,

2. ωV (k) ∼ 3
4π d(.k,l)

,

3. ωH−(k) ∼ 3
2π d(.k,/k)

,
where d(a, b) denotes the Euclidean distance between a and b.

Remark 4 The first correlation result above is in keeping with the conjecture of Ciucu [2]. The second,
concerning the interaction of a right pointing hole with the free boundary l, is particularly surprising.
The correlation function for the same region but with the hole “flipped” and pointing away from l was
determined asymptotically by Ciucu and Krattenthaler [5] to be 1/(4π d(/k, l)). As can be seen above,
flipping the hole so that it points in the opposite direction amounts to multiplying the (asymptotic) corre-
lation function by a factor of 3. Any reason as to why such a discrepancy should occur remains a complete
mystery.
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