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Subwords and Plane Partitions
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Abstract. Using the powerful machinery available for reduced words of type B, we demonstrate a bijection between
centrally symmetric k-triangulations of a 2(n + k)-gon and plane partitions of height at most k in a square of size
n. This bijection can be viewed as the type B analogue of a bijection for k-triangulations due to L. Serrano and
C. Stump.

Résumé. En utilisant la machinerie puissante pour mots réduits de type B, nous démontrons une bijection entre les
k-triangulations centralement symétriques d’un 2(n+ k)-gon et les partitions de plans d’hauteur inférieure ou égale
à k dans un carré de taille n. Cette bijection peut être considérée comme l’analogue de type B d’une bijection de
k-triangulations due à L. Serrano et C. Stump.

Keywords: centrally symmetric k-triangulation, subword complex, plane partition, reduced word, linear extension,
insertion, Little bump

1 Introduction
A k-triangulation of a regular convex n-gon is a maximal set of edges of the n-gon such that no k+1
of them mutually cross. J. Jonsson showed non-bijectively that the number of k-triangulations of an
(n+2k+1)-gon was equal to the number of plane partitions of height at most k in a staircase in [12].
L. Serrano and C. Stump proved this result bijectively in [26], synthesizing work in [4, 8, 21, 34].

Theorem 1 ([26]) There is an explicit bijection between k-triangulations of an (n+2k+1)-gon and plane
partitions of height at most k in a staircase of size n.

D. Soll and V. Welker introduced centrally symmetric k-triangulations of a 2n-gon as a typeB analogue
of k-triangulations [27]. They conjectured that the number of centrally symmetric k-triangulations of a
2(n+k)-gon was equal to the number of plane partitions in an n × n × k box (and proved it as a lower
bound). Their formula was subsequently proven non-bijectively by M. Rubey and C. Stump [25]. The
main result of this abstract may be interpreted as a bijective proof of this fact.

Theorem 2 There is an explicit bijection between centrally symmetric k-triangulations of a 2(n+k)-gon
and plane partitions of height at most k in a square of size n.
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Theorem 2

Fig. 1: An example of the bijection in Theorem 2 for n = 3 and k = 2. On the left is a 2-triangulation of a 10-gon;
on the right is the corresponding plane partition of height 2 in a square of size 3.

Examples of Theorems 1 and 2 are given in Figures 2, 3, and 4.
To explain our approach to the bijection, we provide some additional context. V. Pilaud and M. Poc-

chiola introduced a duality between the k-stars in a k-triangulation and pseudolines, and showed that
k-triangulations may be interpreted as certain pseudoline arrangements [21]. C. Stump rephrased this
bijection in Coxeter-theoretic language [30], and a generalization of k-triangulations to all finite Cox-
eter groups was subsequently defined by C. Ceballos, J.-P. Labbé, and C. Stump [6]. Their construction
recovers k-triangulations in type An and centrally symmetric k-triangulations in type Bn.

Following [6], define Sc(W,k) to be the set of subwords for w◦ in the (non-reduced) word ckw◦(c),
where c is a Coxeter element and w◦(c) is the c-sorting word for w◦ (see the discussion before Defini-
tion 7). In crystallographic type, let J (W,k) := J (Φ+(W )× [k]) be the set of plane partitions of height
k in the positive root poset Φ+(W ) (see Definition 15). In types H3 and I2(m), we use D. Armstrong’s
surrogate “root posets” [1].

Theorem 3 ([6, 32]) For W = An, Bn, H3, or I2(m) and k > 0, | Sc(W,k)| = | J (W,k)|.

For W a finite Coxeter group, let R(W ) be the set of reduced words for the longest element w◦, and
if W is additionally a Weyl group then let L(W ) be the set of linear extensions of the positive root
poset Φ+(W ). P. Edelman and C. Greene found a bijection between R(W ) and L(W ) in type An,
and M. Haiman proved the corresponding result in type Bn (confirming a conjecture of R. Proctor) [7,
10]. In the noncrystallographic types H3 and I2(m), it was observed in [32] that linear extensions of
D. Armstrong’s “root posets” also satisfy a similar bijection withR(W ).

Theorem 4 ([7, 10, 28, 32]) For W = An, Bn, H3, or I2(m), there is a bijection between R(W ) and
L(W ).

Ignoring redundancies like D3
∼= A3, neither Theorem 4 nor Theorem 3 holds in other finite types (for

this reason the types An, Bn, H3, and I2(m) are called “coincidental” in [32]). Since An, Bn, H3, and
I2(m) each have a linear Coxeter diagram, we may permanently fix c to be a product of simple reflections
from left to right in the diagram and write S(W,k) := Sc(W,k).

In this language, we now explain the bijection of Theorem 1 to motivate our bijection in Theorem 2.
In type An and for k = 1, A. Woo used an observation of [4] to induce P. Edelman and C. Greene’s
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bijective proof of Theorem 4 into a bijective proof of Theorem 3 [34]. L. Serrano and C. Stump sub-
sequently extended A. Woo’s construction to all k, explicitly connecting V. Pilaud and M. Pocchiola’s
pseudoline arrangements with E. Miller and A. Knutson’s subword complex [13, 26]. This theorem may
be summarized as saying that in type An, there is a “combinatorial lift” of Theorem 4 to Theorem 3:

S(An, k)
Theorem 3 ,,// R(An) Theorem 4 // L(An) // J (An, k) . (1)

Surprisingly, the analogous procedure in the remaining types—types Bn, H3, and I2m—does not quite
work. In this paper, we propose a similar result in type Bn, proving a conjecture from [32]. Our bijection
is most easily explained using the cube of Figure 2, which displays the relationships between reduced
words R, linear extensions L, subwords S, and plane partitions J of both type Bn and for the parabolic
quotient An2n−1 := A

{sn}
2n−1 (see Definition 11 for the definitions ofR,L,S, and J for An2n−1).

R(An2n−1)
Fully commutative

(CLR : Corollary 12)

Little map
(LR : Theorem 18)

L(An2n−1)

Rectification
(RL : Theorem 16)

R(Bn) Kraśkiewicz Insertion
(K : Theorem 4) L(Bn)

S(Bn, k) No known
bijection

Theorem 2

J (Bn, k)

S(An2n−1, k)
Fully commutative

(CJS : Corollary 14)

Little map
(LS : Proposition 21)

J (An2n−1, k)

No known
bijection

Fig. 2: The bijections between R, L, S, and J for Bn and An
2n−1.

In this cube, two vertices are connected by a solid line iff they are equinumerous. The dotted lines
represent where a “combinatorial lift” may take place—for example, linear extensions are maximal chains
of order ideals and reduced words are maximal chains in the weak order. Note that one can draw similar
cubes in types An, H3, and I2(m) [32].

Our bijection between centrally symmetric k-triangulations and plane partitions may be interpreted as

KR : S(Bn, k) // R(Bn) K // L(Bn) RL // L(An2n−1) // J (An2n−1, k) , (2)

which—as with L. Serrano and C. Stump’s type An result [26]—is again a “combinatorial lift” of The-
orem 4, but now combined with a necessary extra step to the parabolic quotient. Figure 2 suggests the
second, more direct, path

LC : S(Bn, k) LS // S(An2n−1, k) CJS
// J (An2n−1, k) , (3)

which is based on the type Bn Little map. We prove Theorem 2 by showing that LC is a bijection and
also show that LC = KR.
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It is clear that Theorem 1 is a bijective version of Theorem 3 in type An, but this is not immediately the
case for Theorem 2. Indeed, although R. Proctor proved that | J (Bn, k)| = | J (An2n−1, k)| by interpreting
each side as a representation of Lie algebras and then equating them with a branching rule [23], we do
not know of a bijection between plane partitions of height k in a trapezoid and in a square. Without such
a correspondence, Theorem 2 fails to provide a bijection between S(Bn, k) and J (Bn, k).

The remainder of this abstract is structured as follows. In Section 2, we recall the correspondence
between k-triangulations and centrally symmetric k-triangulations and certain subwords of types A and
B. In Section 3, we give the bijections for fully commutative elements, explaining the outer square of
Figure 2. In Section 4, we relate reduced words and linear extensions of types An2n−1 and Bn, explain-
ing the top square of Figure 2. In Section 5, we recall Theorem 1 in greater detail. In Section 6, we
state and prove our bijection between centrally symmetric k-triangulations and plane partitions in a box,
establishing Theorem 2. Finally, in Section 7, we discuss generalizations and future directions of research.

2 k-Triangulations and Subwords
In this section, we introduce k-triangulations and we recall the bijection between k-triangulations of an
(n+2k+1)-gon and S(An, k) and centrally symmetric k-triangulations of an 2(n+k)-gon and S(Bn, k).

Definition 5 A k-triangulation T of a regular convex n-gon is a maximal set of diagonals of the n-gon
such that no k+1 of them are mutually crossing. We write TriA(n, k) for the set of all such T . A centrally
symmetric k-triangulation T of a 2n-gon is k-triangulation that is invariant under rotation of the 2n-gon
by π radians. We write TriB(2n, k) for the set of all such T .

The simplicial complex generated by all subsets of elements of TriA(n, k) generalizes the type An
associahedron, which is obtained for TriA(n+3, 1). In [12], J. Jonsson enumerated TriA(n, k). The
centrally symmetric k-triangulations were introduced to generalize R. Simion’s type Bn associahedron;
|TriB(2n, k)| was conjectured in [27] and proven non-bijectively in [25].

Theorem 6 ([12, 25]) The number of k-triangulations and centrally symmetric k-triangulations are given
by

|TriA(n+2k+1, k)| =
∏

1≤i≤j≤n

i+ j + 2k

i+ j
and |TriB(2(n+k), k)| =

k∏
h=1

n∏
i=1

n∏
j=1

h+ i+ j − 1

h+ i+ j − 2
.

Our main theorem, Theorem 2, is therefore a bijective proof of this enumeration for TriB(2(n+k), k).
An edge is called k-relevant if it has at least k vertices on either side (not including its end points). The

k-relevant edges are exactly those that could be involved in a (k+1)-crossing, so that every k-triangulation
contains all non-k-relevant edges. A k-star is a set of edges of the form {vjvj+k : j ∈ Z2k+1}, for some
set of vertices v0, v1, . . . , v2k that are in order clockwise about the n-gon. By extending properties of tri-
angles to k-stars, V. Pilaud and P. Santos defined an analogue of the Tamari lattice on k-triangulations [22].
Drawing on the structure given by the k-stars and a duality—which we do not explain here, although see
the remark after Theorem 8—between k-stars and pseudolines, V. Pilaud and M. Pocchiola discovered
an elegant bijection between multitriangulations and certain pseudoline arrangements [21]. It is most ef-
ficient for our purposes to describe these pseudoline arrangements using a restatement of this bijection
due to C. Stump in type An and due to C. Ceballos, J. P. Labbé, and C. Stump for all finite Coxeter
groups [6, 30].
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Let (W,S) be a finite Coxeter system. A Coxeter element c = sπ1
sπ2
· · · sπn

is a product of the simple
reflections S in any order. Since we will only consider typesAn, Bn, H3, and I2(m), we now permanently
fix a reduced word c—and hence a Coxeter element c—in each type to be the product from left to right of
the following labelings of the Coxeter diagrams by simple reflections:

An Bn H3 I2(m)
s1 s2 · · · sn−1 sn s0 4 s1 · · · sn−2 sn−1 s1 5 s2 s3 s1 m s2

For w ∈W , a subword for w in a (possibly infinite) word a = a1a2a3 · · · with ai ∈ S is a reduced word
ai1ai2 · · · ai` for w such that i1 < i2 < · · · i`. The c-sorting word w(c) of w is the lexicographically first
(in position) reduced subword for w of the word c∞ [24].

Definition 7 Given w ∈ W and a possibly non-reduced word a = a1 · · · ar with ai ∈ S, let S(a, w) be
the set of subwords for w in a. Define S(W,k) := S(ckw◦(c), w◦).

Theorem 8 [6,21] There are bijections between S(An, k) and TriA(n+2k+1, k), and between S(Bn, k)
and TriB(2(n+k), k).

In type An, the bijection of Theorem 8 associates k-relevant edges with letters of ckw◦(c). In type
Bn, the bijection associates k-relevant symmetric pairs of edges with letters. For example, see Figures 3
and 4. For more details, see the excellent examples in [6].

3 Correspondences for Fully Commutative Elements
This section briefly describes the square of Figure 2 containing the objectsR(An2n−1),L(An2n−1),
S(An2n−1, k), and J (An2n−1, k).

Let (W,S) be a finite Coxeter system and for w ∈ W let R(w) be the set of reduced words in the
simple generators S for w. Any two reduced words w,w′ ∈ R(w) may be transformed to each other
using only braid moves—that is, the graph on R(w) with edges given by braid moves is connected. We
say that w and w′ lie in the same commutation class if one may be transformed into the other using only
commutations.

Definition 9 An element w ∈W is fully commutative iff all reduced words for w lie in the same commu-
tation class.

Forw fully commutative, the interval in the weak order [e, w] is a distributive lattice (and coincides with
corresponding interval in the Bruhat order) [29]. To see this, we construct its poset of join-irreducibles.

Fix w ∈ W and let w = w1 · · ·w` be a reduced word for w, so that wi ∈ S and ` = `(w) is the
length of w. Define a partial order ≺w on [`] by the transitive closure of the relations i ≺w j if i < j
and wiwj 6= wjwi. This partial ordering defines a “root poset” Φ+(w) on [`] called a heap [29, 31]. We
may label the elements of Φ+(w) by replacing i by ai. If w,w′ are any two reduced words for a fully
commutative element w, then it is not difficult to see that Φ+(w) and Φ+(w′) are isomorphic. We may
therefore refer to the heap Φ+(w) of a fully commutative w ∈W .

Recall that a linear extension of a finite poset P with ` elements is a bijection L : P → [`] such that if
p ≺P p′ ∈ P , then L(p) < L(p′). The weak order interval [e, w] is now described by Φ+(w).
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Theorem 10 ([29]) For w fully commutative, there is a bijection between L(Φ+(w)) and R(w). This
induces a bijection between J (Φ+(w)) and the elements in the interval [e, w].

Proof: The first statement is clear from the definitions: a linear extension L : Φ+(w) → [`] corresponds
to the reduced word

∏`
i=1 wL−1(i). For the second statement, fix an order ideal I of Φ+(w), choose any

linear extension L of Φ+(w) with initial part in I—that is, such that L(j) ≤ |I| for j ∈ I . The element
in [e, w] corresponding to I is then

∏|I|
i=1 wL−1(i). 2

We remark that Theorem 10 already gives us the flavor of a “combinatorial lift,” since it uses the
correspondence between L(Φ+(w)) andR(w) to induce a bijection between J (Φ+(w)) and [e, w].

Let J ⊆ S be a subset of the simple generators and let WJ be the corresponding parabolic subgroup of
W generated by J . The parabolic quotient W J is the set of minimal coset representatives for W/WJ [5].
For finite W , the parabolic quotient W J has a longest element wJ◦ and W J is the interval [e, wJ◦ ].

Definition 11 Letw{sn}◦ be the longest element ofAn2n−1 := A
{sn}
2n−1. We writeR(An2n−1) := R(w

{sn}
◦ ),

L(An2n−1) := L(Φ+(w
{sn}
◦ )), S(An2n−1, k) := S(ck+n, w

{sn}
◦ ), J (An2n−1, k) := J (Φ+(w

{sn}
◦ )× [k]).

It is easy to check that Φ+(w
{sn}
◦ ) is an n×n square—the inversions of w{sn}◦ are the order filter in the

root poset Φ+(A2n−1) generated by the simple root αn. Since the element w{sn}◦ is fully commutative,
Theorem 10 implies the following corollary [29].

Corollary 12 There is a bijection CLR betweenR(An2n−1) and L(An2n−1).

We now explain the map between S(An2n−1, k) and J (An2n−1, k). Let w ∈ W be a fully commu-
tative element, and fix a reduced word w = w1w2 · · ·w` with wi ∈ S. For such a w, let tw,i =
w1 · · ·wi−1wiwi−1 · · ·w1. Let a = a1a2 · · · ar with ai ∈ S be a (possibly non-reduced) word in the
simple reflections. For each letter wi of w, let

a(i) := {j : j = it for some 1 ≤ t ≤ ` in some w′ = ai1 · · · ai` ∈ S(a, w) such that tw,i = tw′,j}

be the set of letters of a corresponding to the letter wi of w in some subword of S(a, w). Since w is fully
commutative, the set {a(i) : 1 ≤ i ≤ `} does not depend on the initial choice w. Define the set of triples

Φ+(a, w) := {(i, a, b) : 1 ≤ i ≤ `, a < b ∈ a(i) with no c ∈ a(i) for which a < c < b}.

We now endow Φ+(a, w) with a partial order given by the transitive closure of the relations (i, a, b) �a

(i, b, c) and (j, c, d) �a (i, a, b) if i < j, wi and wj don’t commute, and a < c. We call this partial
ordering the subword heap for w with respect to a, and denote it by Φ+(a, w) [32].

Theorem 13 ([32]) Forw ∈W fully commutative, there is a bijection betweenJ (Φ+(a, w)) and S(a, w).

Proof: An order ideal I ∈ J (Φ+(a, w)) corresponds to the subword ai1 · · · ai` of S(a, w), where for
1 ≤ j ≤ `, we set ij := min ({a : (j, a, b) ∈ I} ∪ {max{b : (j, a, b) ∈ Φ+(a, w)}}) . 2

Since c = s1s2 · · · s2n−1, w{sn}◦ is fully commutative, and w{sn}◦ has the explicit reduced word
(sn · · · s2n−1)(sn−1 · · · s2n−2) · · · (s1 · · · sn), Theorem 13 implies the following corollary.

Corollary 14 There is a bijection CJS between S(An2n−1, k) and J (An2n−1, k).
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4 Reduced Words, Linear Extensions, and Little Bumps
This section describes the square of Figure 2 containingR(Bn),L(Bn),R(An2n−1), and L(An2n−1).

4.1 Reduced Words and Linear Extensions
This section provides more detail on the highly nontrivial Theorem 4. In particular, we describe the
bijections betweenR(Bn) and L(Bn) and betweenR(An) and L(An).

When w is not fully commutative, R(w) becomes a connected graph only when we are allowed both
commutations and the longer braid moves of W (see Theorem 3.3.1 in [5]). The theory of the previous
section therefore cannot be applied to general reduced words. Remarkably, there is a poset that often
behaves like a heap for the longest element w◦ of W . Recall that a general Coxeter group has a corre-
spondence between its reflections T := {wsw−1 : s ∈ S} and its positive roots [5].

Definition 15 The root poset Φ+(W ) is the partial order on the positive roots of W defined by α < β iff
α− β is a nonnegative linear combination of positive roots.

This relationship between the root poset and the longest element is examined in more detail in [32,33],
where it is related to Catalan combinatorics (we note that Conjecture 4.4 of [33] is still open).

Theorem 4 ([7, 10, 14, 32]) When W is of type An, Bn, H3, or I2(m), there is a bijection between L(W )
and R(W ). Under this bijection, the initial segments L−1 ({1, 2, . . . , i}) of a linear extension L and
w◦ = a1a2 · · · ai of a reduced word w◦ determine each other (this may be interpreted as the existence of
explicit insertion procedures that take reduced words to linear extensions).

Note that Theorem 4 does not continue to hold in other types—for example, | L(D4)| = 2400, but
|R(D4)| = 2316. Kraśkiewicz insertion is the insertion procedure K : R(Bn) → L(Bn), due to
W. Kraśkiewicz [14, 16].

In [10], M. Haiman introduced a bijection called rectification between L(An2n−1) and L(Bn). Given a
square tableau, which we prefer to think of as an element of L(An2n−1), one performs jeu-de-taquin slides
until arriving at a tableau of trapezoidal shape, which we see as an element of L(Bn).

Theorem 16 ([9]) There is a promotion-equivariant bijection RL : L(An2n−1)→ L(Bn).

4.2 Little Bumps
D. Little introduced Little bumps in [19]. These are a bijective realization of algebraic identities on Stan-
ley symmetric functions derived from Monk’s rule for Schubert polynomials, particularly the transition
equations introduced by A. Lascoux and M.-P. Schützenberger [17]. Little bumps act at the level of re-
duced words by successively incrementing or decrementing the simple reflections in the word until a new
reduced word (of the same length) is obtained. T. Lam conjectured that two reduced words have the
same Edelman-Greene recording tableau iff they differ by a sequence of Little bumps. Z. Hamaker and
B. Young proved this conjecture in [11], and showed that Little bumps preserve the Q-tableau.

In [2], S. Billey demonstrated transition equations for type C Stanley symmetric functions. The type
B Little bumps, introduced by S. Billey, Z. Hamaker, A. Roberts and B. Young in [3], are a bijective
realization of these, and other, equations. As the following theorem shows, the type B Little bumps relate
to Kraśkiewicz insertion in the same way that Little bumps relate to Edelman-Greene insertion.
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Theorem 17 ( [3]) Type B Little bumps preserve the Kraśkiewicz recording tableau Q′, and two reduced
words have the same Kraśkiewicz recording tableau iff they differ by a sequence of type B Little bumps.

We now recall type B Little bumps. Using the usual (signed) permutation realization of the Coxeter
group Bn, reflections may be specified as pairs (i, j) such that i ∈ [−n] ∪ [n], j ∈ [n] and |i| ≤ j.

Forw ∈ Bn let sb1 · · · sb` ∈ R(w) with corresponding word b = b1 · · · b` with bi ∈ {0, 1, . . . , n−1}—
we abuse notation by associating b with sb1 · · · sb` . Let w(m) = sb1 · · · sbm with w(0) the identity. The
wiring diagram of b is the diagram on {0, 1, . . . , `} × Z \ {0} where (i, j) is labeled by (w(i))−1(j)
and entries with the same label are connected from left to right. The trajectory of i in b is the sequence
{(w(j))−1(i)}`j=0, and corresponds to the entries of the wiring diagram labeled i.

A type B Little bump Bδ(i,j) on the reduced word b is specified by a covered reflection t(i,j) of w—an
inversion of w such that `(w · t(i,j)) + 1 = `(w)—and a direction δ ∈ {±1}. Given (i, j), identify the
index p in which the inversion (i, j) is introduced in b. Set a = Pδ′(b, p), where the push Pδ′ fixes bj
for j 6= p and adds δ′ to bp. Here δ′ = δ if {w(p−1)(bp), w

(p−1)(bp + 1)} ∩ {i, j} 6= ∅ and δ′ = −δ
otherwise. This condition ensures that the intersection of the trajectories of i and j in the wiring diagram
is moved in the direction δ. Here, a may not be reduced, in which case there is a unique index p′ 6= p such
that the word sa1 . . . ŝap′ . . . sa` is reduced (this follows from the assumption that t(i,j) was a covered
reflection and Lemma 21 of [15]). Then ap′ and ap interchange the same values—up to sign—and we set
ap′ := Pδ′(a, p′), iterating until we obtain a word a that is reduced. This algorithm is guaranteed to finish
in finite time by [3, Lemma 3.5], and we set Bδ(i,j)(b) = a.

As observed in Section 4.1, for a ∈ R(An2n−1), the mixed insertion recording tableau LR(a) is in
L(Bn), and coincides with its Kraśkiewicz recording tableau. Similarly, for b ∈ R(Bn), Theorem 4
implies that its Kraśkiewicz recording tableau also gives Q′(b) ∈ L(Bn). Since these insertions are
invertible, we obtain a bijection

LR : R(An2n−1)→ R(Bn) by setting LR(a) = b when Q′(a) = Q′(b).

Theorem 17 tells us that the two reduced words a and b must be connected by a sequence of Little bumps.
We now use the type B Little bumps to explicitly construct the bijection LR

−1 : R(Bn)→ R(An2n−1).

Proposition 18 Define the sequences Jk := (−1, 1), (1, 2), . . . , (k − 1, k) with J1 := (−1, 1), and let J
be the concatenation J := Jn, Jn−1, . . . , J1.

Then for b ∈ R(Bn),

 ∏
(i,j)∈J

B+1
(i,j)

b = a, where a ∈ R(An2n−1) and LR(a) = b.

Using techniques from [3], this proposition can be reduced to showing the map works as described for
a single element ofR(Bn), which can then be readily verified for the word cn. For example,

R(B2) 3 0101
B+1

(−1,1) // 1201
B+1

(1,2) // 2301
B+1

(−1,1) // 2312 ∈ R(A2
3).

This Little map characterization provides more precise control over the relationship between a ∈
R(An2n−1) and LR(a) ∈ R(Bn). Recall that the peak set of a word a = a1 · · · ar is the set Peak(a) :=
{i : ai−1 < ai > ai+1}, while its descent set is Des(a) := {i : ai > ai+1}. T-K. Lam showed that while
a and Q′(a) have the same peak set, in general they need not have the same descent set [16].
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1 2 1 2 1

1 2 1 2 1

1 2 1 2 1

1 2 1 2 1

1 2 1 2 1

Fig. 3: From left to right, we have TriA(5, 1),S(A2, 1), and J (An, 1). The graph structure is given by flips. With
the proper orientation, the graph at the left recovers the Tamari lattice on Dyck paths.

Lemma 19 Let a ∈ R(An2n−1). Then Des(a) = Des(LR(a)).

Proof: As observed in the proof of [3, Lemma 3.6], the only way the descent set can change is when the
letter corresponding to the 1 in a consecutive 01 or 10 pattern is pushed to become a 0. The boundary
of the (wj , wi)-crossing introduced by the mth inversion in the word a is the union of the trajectory of i
from 0 to m and the trajectory of j from m to `. The boundary of (wi, wj) provides a lower bound for
the possible locations of inversions in the Little bump B+1

(i,j) (see e.g. [3, Lemma 3.5]). Observe that the
boundary of any bump (i, i+ 1) is bounded below by the trajectory of i, which is in the upper half of the
corresponding wiring diagram. The value 1 can only be decremented when the boundary is in the lower
half of the wiring diagram. Since this never occurs, the descent set does not change under LR. 2

5 Subwords and Plane Partitions in Type A
We use the background of the previous sections to summarize Theorem 1. The core of L. Serrano and
C. Stump’s paper [26] is a bijective proof of an observation of S. Fomin and A. Kirillov [8], generalizing
work of A. Woo [34]. See also [4, 18].

Theorem 1 ([26, 34]) There is an explicit bijection between TriA(n+ 2k + 1, k) and J (An, k).

This bijection proceeds as follows. Let N := n·(n+1)
2 = `(w◦), a = a1a2 · · · ak·n+N := ckw◦(c),

and let desa(i) be the number of descents in the word a1a2 · · · ai. First, TriA(n+2k+1, k) is encoded
as S(An, k) using Theorem 8. Next, using Theorem 4, we apply Edelman-Greene insertion to a subword
ai1ai2 · · · aiN of S(An, k) to produce a linear extension in L(An). We modify this linear extension by
replacing the letter j by desa(ij) + 1, and—thinking of Φ+(An) as a tableau of staircase shape—subtract
r from the rth row to obtain a plane partition of height at most k of staircase shape.

The construction above may be summarized as the “combinatorial lift” of Equation 1.

Remark 20 A recent result of J. Morse and A. Schilling may be phrased to state that for c = s1s2 · · · sn
the fixed Coxeter element of type An and w ∈ An, the subwords S(ck, w) may be given a crystal
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graph structure of type Ak−1 [20]. For example, in type An with fundamental weights λ1, λ2, . . . , λn,
S(cn+1, w◦) has a structure isomorphic to the crystal An(λ1 + λ2 + · · ·+ λn).

To connect these two stories, note that the subwords S(ckw◦(c), w◦) in type An are naturally a subset
of the subwords S(cn+k, w◦). The bijection that J. Morse and A. Schilling provide between S(cn+k, w◦)
and semistandard Young tableaux specializes to the bijection of Theorem 1 when restricted to this subset.

This crystal interpretation gives a second way (different from the theory of brick polytopes) to provide
geometric embeddings of certain subword complexes.

6 Subwords and Plane Partitions for Type Bn

Rather than proceed as in Theorem 1, we follow the more direct path of Equation 3 to prove Theorem 2.

Theorem 2 There is an explicit bijection between TriB(2(n+k), k) and J (An2n−1, k).

To define the lifting of the map LR : R(An2n−1) → R(Bn) to a map LS : S(An2n−1, k) → S(Bn, k),
we will find it helpful to refer to a subword of S(An2n−1, k) = S((s1s2 · · · s2n−1)n+k, w

{sn}
◦ ) by

ai = ai11 a
i2
2 · · · a

in2

n2 ,

where ij ∈ [n+k] records from which copy of (s1s2 · · · s2n−1) the simple reflection ai ∈ {s1, s2, · · · , s2n−1}
was taken. We use the same notation for subwords of S(Bn, k) = S((s0s1 · · · sn−1)n+k, w◦)—a sub-
word is written bi = bi11 b

i2
2 · · · b

in2

n2 , where ij ∈ [n+k] records from which copy of (s0s1 · · · sn−1) the
simple reflection bi ∈ {s0, s1, · · · , sn−1} was taken.

Proposition 21 Then the map LS : S(An2n−1, k)→ S(Bn, k), defined by

LS(ai11 a
i2
2 · · · a

in2

n2 ) = bi11 b
i2
2 . . . b

in2

n2 ,

where LR(a1a2 · · · an2) = b1b2 · · · bn2 , is a bijection.

Proof: This follows from Lemma 19—the descent sets of a1a2 · · · an2 and b1b2 · · · bn2 agree, so that
increasing sequences in one are taken to increasing sequences in the other. Since the number of copies of
c are the same in S(An2n−1, k) and S(Bn, k), the map is well-defined. 2

The proof of Theorem 2 now follows from Corollary 14 and Proposition 21. We now phrase this
bijection similarly to the bijection given in Section 5. Let N := n2 = `(w◦) and a = a1a2 · · · ak·n+N :=
ck+n. First, TriB(2(n+k), k) is encoded as S(Bn, k) using Theorem 8. Next, using Theorem 4, we
apply Kraśkiewicz insertion K to a subword ai1ai2 · · · aiN of S(Bn, k) to produce a linear extension in
L(Bn). At this point, rather than modify the linear extension of L(Bn), we next apply rectification RL to
produce a linear extension in L(An2n−1), and only then do we modify the linear extension of L(An2n−1)
by replacing the letter j by desa(ij) + 1. Thinking of Φ+(An2n) as a tableau of square shape, we subtract
r from the rth row to obtain a plane partition of height at most k of square shape.

As in type An, the construction above may be summarized as the “combinatorial lift” of Theorem 4 to
Theorem 3 given in Equation 2. We can prove that KR = LC using the maps discussed in Section 4.1.

Remark 22 The verbatim analogue of the map in type An given in Equation 1 does not work as before.
Although we may lift a subword to a linear extension and then modify the linear extension of L(Bn) by
replacing the letter j by desa(ij) + 1, we do not have a bijection from the resulting tableaux to J (Bn, k).



Subwords and Plane Partitions 251

� � � � � � � � � � � �

� � � � � �

� � � � � �� � � � � �

� � � � � �

Fig. 4: From left to right, we have TriB(6, 1),S(B2, 1), and J (An
2n−1, 1). The graph structure is given by flips.

7 Extensions
We close with some extensions and future directions. First, Proposition 21 can be adapted to give a bijec-
tion between S((s0s1 · · · sn−1)m+k, (s0s1 · · · sn−1)m) in type Bn and S((s1 · · · sm+n−1)m+k, w

{sm}
◦ )

in type Am+n−1, from which we can then easily pass to plane partitions in an n ×m × k box. Second,
using the natural flip structure on S(Bn, k) and our main theorem, we obtain a poset structure on plane
partitions. It would be interesting to describe the flips directly on the plane partitions—this is open (and
accessible) even for k = 1 (see also Figure 3 for a remark about this in type A, where the Tamari lattice
on Dyck paths is recovered). Third, we do not have a good understanding of why the exact analogue of
L. Serrano and C. Stump’s type An bijection does not work in type Bn. Fourth, one can draw similar
cubes to the one in Figure 2 in type An, H3, and I2(m)—it would be interesting to provide analogues of
all the edges of Figure 2 in those types. Fifth, the most obvious open problem is to complete either of the
two edges in Figure 2 marked “No known bijection” (note that for k = 1 we know of several bijections
and that some work has been done for k = 2). One approach towards this would be to extend the crys-
tal structure of J. Morse and A. Schilling to subword complexes of other types as a first step towards a
bijectivization of R. Proctor’s proof that | J (Bn, k)| = | J (An2n−1, k)|.
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