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The freeness of Ish arrangements
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Abstract. The Ish arrangement was introduced by Armstrong to give a new interpretation of the q, t-Catalan numbers
of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi
arrangement and the Ish arrangement and posed some problems. One of them is whether the Ish arrangement is a free
arrangement or not. In this paper, we verify that the Ish arrangement is supersolvable and hence free. Moreover, we
give a necessary and sufficient condition for the deleted Ish arrangement to be free.

Résumé. L’arrangement Ish a été introduit par Armstrong pour donner une nouvelle interprétation des nombres q, t-
Catalan de Garsia et Haiman. Armstrong et Rhoades ont montré qu’il y avait des ressemblances frappantes entre
l’arrangement Shi et l’arrangement Ish et ont posé des conjectures. L’une d’elles est de savoir si l’arrangement Ish
est un arrangement libre ou pas. Dans cet article, nous vérifions que l’arrangement Ish est supersoluble et donc libre.
De plus, on donne une condition nécessaire et suffisante pour que l’arrangement Ish réduit soit libre.

Keywords: Hyperplane arrangement, Ish arrangement, Shi arrangement, Coxeter arrangement, Supersolvable ar-
rangement

1 Introduction
Let K be a field of characteristic 0 and {x1, . . . , x`} a basis for the dual space (K`)∗ of the `-dimensional
vector space K`. The Coxeter arrangement Cox(`) of type A`−1 (also called the braid arrangement)
is

Cox(`) := {{xi − xj = 0} | 1 ≤ i < j ≤ `} ,

where {x = k} (x ∈ (K`)∗, k ∈ K) is the affine hyperplane {v ∈ K` | x(v) = k}. Then the Shi
arrangement Shi(`) and the Ish arrangement Ish(`) are defined by

Shi(`) := Cox(`) ∪ {{xi − xj = 1} | 1 ≤ i < j ≤ `} ,
Ish(`) := Cox(`) ∪ {{x1 − xj = i} | 1 ≤ i < j ≤ `} .

The Shi arrangement originally defined over R was introduced by J.Y. Shi [Shi (1986)] in the study of
the Kazhdan-Lusztig representation theory of the affine Weyl groups. The Ish arrangement also originally
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defined over R was introduced by Armstrong in [Armstrong (2013)]. He gave a new interpretation of the
q, t-Catalan numbers of Garsia and Haiman by using these two arrangements. Armstrong and Rhoades
showed that there are some striking similarities between the Shi arrangement and the Ish arrangement in
[Armstrong (2013); Armstrong and Rhoades (2012)].

Let A be an arrangement in K`. Let L(A) be the set of nonempty intersections of hyperplanes in A,
which is partially ordered by the reverse inclusion of subspaces. Define the Möbius function µ : L(A)→
Z as follows:

µ(K`) = 1,

µ(X) = −
∑

K`≤Y <X

µ(Y ) (X 6= K`).

Then the characteristic polynomial χ(A, t) ∈ Z[t] of A is defined by

χ(A, t) =
∑

X∈L(A)

µ(X)tdimX .

The following theorem is one of the similarities pointed out by Armstrong.

Theorem 1.1 ([Armstrong (2013); Headley (1997)]) The characteristic polynomial of the Shi arrange-
ment and the Ish arrangement are given by

χ(Shi(`), t) = χ(Ish(`), t) = t(t− `)`−1.

Let {x1, . . . , x`, z} be a basis for V ∗ of V := K`+1. Then, as in [(Orlik and Terao, 1992, Definition
1.15)], we have the cone c(Ish(`)) over the Ish arrangement which is a central arrangement (Namely, an
arrangement whose hyperplanes pass through the origin) in V defined by

Q (c(Ish(`))) = z
∏

1≤i<j≤`

(xi − xj)(x1 − xj − iz) = 0.

Let S be the symmetric algebra of the dual space V ∗. S can be identified with the polynomial ring
K[x1, . . . , x`, z]. Let Der(S) be the module of derivations of S

Der(S) := {θ : S → S | θ is K-linear, θ(fg) = fθ(g) + θ(f)g for any f, g ∈ S}.

Then, for a central arrangement A in V , the module of logarithmic derivations D(A) of A is defined to
be

D(A) := {θ ∈ Der(S) | θ(Q(A)) ∈ Q(A)S}
= {θ ∈ Der(S) | θ(αH) ∈ αHS for any H ∈ A},

where Q(A) is the defining polynomial of A and αH is a linear form such that ker(αH) = H . We say
that A is free if D(A) is a free S-module. Then D(A) has a homogeneous basis {θ0, . . . , θ`} and the
tuple of degrees expA = (deg θ0, . . . ,deg θ`) is called the exponents of A.

The main purpose of this paper is to settle a problem of whether the Ish arrangements are free or not,
which was posed by Armstrong and Rhoades in [(Armstrong and Rhoades, 2012, p. 1527, (3))]. We define
a new class of arrangements which is a generalization of the Ish arrangements and will characterize free
arrangements in this class.
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Definition 1.2 Let N = (N2, N3, . . . , N`) be a tuple of finite subsets Nj in K. Define the N -Ish ar-
rangement Ish(N) by

Ish(N) := {{x1 − xj = a} | 2 ≤ j ≤ `, a ∈ Nj}
∪ {{xi − xj = 0} | 2 ≤ i < j ≤ `} .

We say that N is a nest if there exists a permutation w of {2, . . . , `} such that

Nw(2) ⊆ Nw(3) ⊆ · · · ⊆ Nw(`).

In particular, when Nj = {0, 1, . . . , j − 1} for each j, the N -Ish arrangement Ish(N) is the Ish
arrangement Ish(`). We denote the cone over the N -Ish arrangement c(Ish(N)) by I = IN . The
defining polynomial of I can be expressed as

Q(I) = z

∏̀
j=2

∏
a∈Nj

(x1 − xj − az)

 ∏
2≤i<j≤`

(xi − xj)

 .

Our main results are as follows:

Theorem 1.3 The following four conditions are equivalent:

(1) N is a nest.

(2) IN is supersolvable.

(3) IN is inductively free.

(4) IN is free.

The definitions of supersolvable and inductively free arrangements will be mentioned in Section 2. Note
that the implications (2) ⇒ (3) ⇒ (4) are general properties for arrangements [Orlik and Terao (1992)].
This theorem asserts that there are no differences among these properties for N -Ish arrangements.

Theorem 1.4 Let N = (N2, N3, . . . , Nj) with N2 ⊆ N3 ⊆ · · · ⊆ Nj . Define homogeneous derivations
θ0, θ1, . . . , θ` by

θ0 :=
∑̀
i=1

∂

∂xi
, θ1 =

∑̀
i=1

xi
∂

∂xi
+ z

∂

∂z
,

θk :=

k∑
s=2

( ∏
a∈Nk

(x1 − xs − az)
∏̀

t=k+1

(xs − xt)

)
∂

∂xs
(2 ≤ k ≤ `).

Then θ0, θ1, . . . , θ` form a basis for D(IN ). In particular, the exponents are given by

exp IN = (0, 1, |N2|+ `− 2, |N3|+ `− 3, . . . , |N`|),

where |Nj | denotes the cardinality of Nj .
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Corollary 1.5 The cone over the Ish arrangement c(Ish(`)) is free with exponents exp(c(Ish(`))) =
(0, 1, `, `, . . . , `︸ ︷︷ ︸

(`−1) times

). Moreover the homogeneous derivations

θ0 =
∑̀
i=1

∂

∂xi
, θ1 =

∑̀
i=1

xi
∂

∂xi
+ z

∂

∂z
,

θk =

k∑
s=2

(
k−1∏
i=0

(x1 − xs − iz)
∏̀

t=k+1

(xs − xt)

)
∂

∂xs
(2 ≤ k ≤ `)

form a basis for D(c(Ish(`))).

If an arrangementA is a free arrangement, then the characteristic polynomial ofA can be expressed by
using its exponents:

Theorem 1.6 ([Terao (1981)]) If an arrangement A is free with exponents (d1, . . . , d`), then the charac-
teristic polynomial of A splits as

χ(A, t) =
∏̀
i=1

(t− di).

Since we have the relation between the characteristic polynomials of A and cA

χ(cA, t) = (t− 1)χ(A, t),

we obtain a new proof of Theorem 1.1 from Corollary 1.5 and Theorem 1.6.
The complement M(A) := K` \ ∪H∈AH of a supersolvable arrangement A has very interesting

properties: If K = C, the complement M(A) is fiber type [Terao (1986)]. In particular, M(A) is a
K(π, 1) space, i.e., the homotopy groups πi(M(A)) = 0 for i ≥ 2. When K = R, the complement
M(A) is a disjoint union of chambers. For chambersC,C ′, define d(C,C ′) by the number of hyperplanes
in A separating C from C ′. Björner, Edelman, and Ziegler [Björner et al. (1990)] gave the wall-crossing
formula as follows: There exists a base chamber B of A such that∑

C∈Ch(A)

td(B,C) =
∏̀
i=1

(1 + t+ · · ·+ tdi),

where (d1, . . . , d`) is the exponents of A and Ch(A) denotes the set of all chambers of A. Therefore, we
derive the following corollary from our main theorems 1.3 and 1.4.

Corollary 1.7 Let N = (N2, N3, . . . , Nj) with N2 ⊆ N3 ⊆ · · · ⊆ Nj .

(1) If K = C, then the complement M(IN ) of the cone over the N -Ish arrangement IN is K(π, 1).

(2) If K = R, then there exists a base chamber B ∈ Ch(IN ) such that

∑
C∈Ch(IN )

td(B,C) = t
∏̀
i=2

(1 + t+ · · ·+ t|Ni|+`−i).
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The organization of this paper is as follows. In Section 2, we review the theory of supersolvable
arrangements and prove Theorem 1.3. In Section 3, we verify Theorem 1.4 applying Saito’s criterion. In
Section 4, we recall the deleted arrangement Shi(G) and Ish(G) defined by Armstrong and Rhoades in
[Armstrong and Rhoades (2012)] and prove that Shi(G) and Ish(G) share the freeness.

2 Supersolvability and freeness of I
For an arrangementA, let L(A) be the set of nonempty intersections of hyperplanes in A. IfA is central,
then L(A) is a geometric lattice with the order by reverse inclusion: X ≤ Y ⇔ Y ⊆ X . In the rest
of this section, “arrangement” means “central arrangement”. The rank of an arrangement A, denoted by
rank(A), is the codimension of ∩H∈AH . We say that A is essential if rank(A) is equal to the dimension
of the ambient space of A.

An arrangement A is supersolvable if the intersection lattice L(A) is supersolvable as defined by Stan-
ley [Stanley (1972)]. The following lemma is widely known.

Lemma 2.1 ([Terao (1986)]) An arrangement A is supersolvable if and only if there exists a filtration

A = A` ⊇ A`−1 ⊇ · · · ⊇ A1

such that

(1) rank(Ai) = i (i = 1, 2, . . . , `).

(2) For any H,H ′ ∈ Ai with H 6= H ′, there exists some H ′′ ∈ Ai−1 such that H ∩H ′ ⊆ H ′′.

Let A be an arrangement. For a hyperplane H ∈ A, define arrangements

A′ := A \ {H} and A′′ := {H ′ ∩H | H ′ ∈ A′} .

The tuple (A,A′,A′′) is called the triple of arrangements with respect to H . For a triple (A,A′,A′′), the
Addition Theorem [Terao (1980a,b)] asserts that if A′ and A′′ are free and expA′′ ⊂ expA′, then A is
free.

Definition 2.2 Define the inductive freeness by the following:

(1) The empty arrangement is inductively free.

(2) A is inductively free if there exists H ∈ A such that A′ and A′′ are inductively free and expA′′ ⊂
expA′.

Thanks to the Addition Theorem, the inductive freeness implies the freeness. Moreover, it is also known
that the the supersolvability implies the inductive freeness (see [(Orlik and Terao, 1992, Theorem 4.58)]
for example).

We will use the following lemma which is a part of the Addition-Deletion Theorem:

Lemma 2.3 ([(Orlik and Terao, 1992, Theorem 4.46)]) Let (A,A′,A′′) be a triple. Suppose thatA is an
essential arrangement of rank 3 and that arrangements A′ and A′′ are free with exp(A′) = (1, a, b) and
exp(A′′) = (1, c). If c 6∈ {a, b} then A is not free.
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We are now prepared to prove Theorem 1.3.

Proof of Theorem 1.3: (1)⇒ (2) Without loss of generality, we may assume thatN2 ⊇ N3 ⊇ · · · ⊇ N`.
For each i ∈ {1, 2, . . . , `}, define Xi ∈ L(I) by

Xi := {z = x1 − x2 = · · · = x1 − xi = 0} .

Then the rank of the localization Ii := IXi = {H ∈ I | H ⊇ X} is equal to i and we have

Ii = {{x1 − xj = az} | 1 < j ≤ i and a ∈ Nj}
∪ {{xj − xk = 0} | 2 ≤ j < k ≤ i} ∪ {{z = 0}}

Hence there exists a filtration

I = I` ⊇ I`−1 ⊇ · · · ⊇ I1.

By Lemma 2.1, we have only to verify that for anyH,H ′ ∈ Ii withH 6= H ′ there exists someH ′′ ∈ Ii−1
such that H ∩H ′ ⊆ H ′′ for each i ∈ {2, . . . , `}. We may assume that both H and H ′ do not belong to
Ii−1. Then H and H ′ belong to

Ii \ Ii−1 = {{x1 − xi = az} | a ∈ Ni} ∪ {{xj − xi = 0} | 2 ≤ j < i} .

First, let a and b be distinct elements inNi. Suppose thatH = {x1−xi = az} andH ′ = {x1−xi = bz}.
Then H ∩ H ′ ⊆ {z = 0} ∈ Ii−1. Second, let j and k be distinct integers in {2, . . . , i − 1}. Assume
that H = {xj − xi = 0} and H ′ = {xk − xi = 0}. Then H ∩ H ′ ⊆ {xj − xk = 0} ∈ Ii−1.
Finally, let H = {x1 − xi = az} and H ′ = {xj − xi = 0} with a ∈ Ni and 2 ≤ j < i. Then
H ∩ H ′ ⊆ {x1 − xj = az} ∈ Ii−1 by the assumption a ∈ Ni ⊆ Nj . Thus the cone over the N -Ish
arrangement I is supersolvable.

(2)⇒ (3)⇒ (4) We have nothing to prove as mentioned before.
(4) ⇒ (1) When ` = 2, the tuple N = (N2) is a nest. For ` ≥ 3, we will prove that if N is not a

nest then I is not free by induction on `. First, let ` = 3. Then we have N = (N2, N3). Let H ∈ I be
the hyperplane {x2 − x3 = 0} and (I, I ′, I ′′) the triple with respect to H . One can verify easily that the
homogeneous derivations

3∑
i=1

xi
∂

∂xi
+ z

∂

∂z
,

∏
a∈N2

(x1 − x2 − az)
∂

∂x2
,

∏
a∈N3

(x1 − x3 − az)
∂

∂x3

form a basis for D(I ′) (with the non-essential derivation
∑3

i=1
∂

∂xi
+ ∂

∂z ). Hence the arrangement I ′ is
free with exponents (1, |N2|, |N3|). The arrangement I ′′ is also free with exponents (1, |N2 ∪N3|) since
rank(I ′′) = 2 and |I ′′| = 1+|N2∪N3|. By the assumption,N is not a nest, i.e.,N2 6⊆ N3 andN2 6⊇ N3,
hence we have that |N2 ∪N3| is strictly larger than both of |N2| and |N3|. Therefore, by Lemma 2.3, we
have concluded that I is not free.

Now suppose that ` > 3. SinceN is not a nest, there exist integers i, j such thatNi 6⊆ Nj andNi 6⊇ Nj .
Define X ∈ L(I) by

X := {z = x1 − xi = x1 − xj = 0} .
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Then we have

IX = {{x1 − xk = az} | k ∈ {i, j} and a ∈ Nk} ∪ {{xi − xj = 0}, {z = 0}} .

Hence IX is equivalent to c(Ish(Ni, Nj)) discussed in the above paragraph. Therefore the localization
IX is not free, neither is I. 2

3 A basis for D(I)
In this section, we will prove Theorem 1.4. First, we verify that θ0, θ1, . . . , θ` belong to D(I).

Lemma 3.1 Let N = (N2, N3, . . . , Nj) with N2 ⊆ N3 ⊆ · · · ⊆ Nj . Then

θ0 =
∑̀
i=1

∂

∂xi
, θ1 =

(∑̀
i=1

xi
∂

∂xi

)
+ z

∂

∂z
,

θk =

k∑
s=2

( ∏
a∈Nk

(x1 − xs − az)
∏̀

t=k+1

(xs − xt)

)
∂

∂xs
(2 ≤ k ≤ `)

belong to D(I).

Proof: Since θ0(αH) = 0 for any H ∈ I, it belongs to D(I). The Euler derivation θ1 belongs to D(A)
for any central arrangement A, thus θ1 ∈ D(I). We will show that θk ∈ D(I) for 2 ≤ k ≤ `. It is
obvious that θk(z) = 0 ∈ zS.

Let 2 ≤ i < j ≤ `.
Case 1. If i < j ≤ k, then

θk(xi − xj) =

( ∏
a∈Nk

(x1 − xi − az)
∏̀

t=k+1

(xi − xt)

)

−

( ∏
a∈Nk

(x1 − xj − az)
∏̀

t=k+1

(xj − xt)

)

≡

( ∏
a∈Nk

(x1 − xi − az)
∏̀

t=k+1

(xi − xt)

)

−

( ∏
a∈Nk

(x1 − xi − az)
∏̀

t=k+1

(xi − xt)

)
(mod xi − xj)

= 0,

thus θk(xi − xj) ∈ (xi − xj)S.
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Case 2. If i ≤ k < j, then

θk(xi − xj) =
∏

a∈Nk

(x1 − xi − az)
∏̀

t=k+1

(xi − xt) ∈ (xi − xj)S.

Case 3. If k < i < j, then

θk(xi − xj) = 0 ∈ (xi − xj)S.

Hence θk(xi − xj) ∈ (xi − xj)S for 2 ≤ i < j ≤ `.
Let 2 ≤ j ≤ ` and b ∈ Nj .

Case 1. If j ≤ k, then b ∈ Nj ⊆ Nk, thus

θk(x1 − xj − bz) =
∏

a∈Nk

(x1 − xj − az)
∏̀

t=k+1

(xj − xt)

∈ (x1 − xj − bz)S.

Case 2. If k < j, then

θk(x1 − xj − bz) = 0 ∈ (x1 − xj − bz)S.

Hence θk(x1 − xj − bz) ∈ (x1 − xj − bz)S for 2 ≤ j ≤ ` and b ∈ Nj . Therefore we obtain that
θk ∈ D(I). 2

Proof of Theorem 1.4.

First, note that if s = 1, k ≥ 2 then

θk(xs) = θk(x1) = 0,

and if 2 ≤ k < s then

θk(xs) = 0.

Thus the determinant of the coefficient matrix of θ0, θ1, . . . , θ` can be calculated as follows:
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∣∣∣∣∣∣∣∣∣
θ0(x1) θ1(x1) · · · θ`(x1)

...
... · · ·

...
θ0(x`) θ1(x`) · · · θ`(x`)
θ0(z) θ1(z) · · · θ`(z)

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 0 · · · 0
1 x2 θ2(x2) · · · θ`(x2)
...

... 0
. . .

...

1 x`
...

. . . θ`(x`)
0 z 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣
.
= z

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
1 θ2(x2) θ3(x2) · · · θ`(x2)
1 θ3(x3) · · · θ`(x3)
...

. . .
...

1 0 θ`(x`)

∣∣∣∣∣∣∣∣∣∣∣
= z

∏̀
k=2

θk(xk)

= z
∏̀
k=2

( ∏
a∈Nk

(x1 − xk − az)
∏̀

t=k+1

(xk − xt)

)

= z

(∏̀
k=2

∏
a∈Nk

(x1 − xk − az)

)(∏̀
k=2

∏̀
t=k+1

(xk − xt)

)

= z

(∏̀
k=2

∏
a∈Nk

(x1 − xk − az)

) ∏
2≤k<t≤`

(xk − xt)


= Q(I),

where .
= denotes that they are equal up to a nonzero constant multiple. Combining this calculation and

Lemma 3.1, we can apply Saito’s criterion [Saito (1980)] and see that θ0, θ1, . . . , θ` form a basis forD(I).

4 Freeness of the deleted Ish arrangements
Let K` be the complete graph on ` vertices. We can regard K` as the set of directed edges (i, j) (i < j),
namelyK` = {(i, j) | 1 ≤ i < j ≤ `}. For a subgraphG ⊆ K`, Armstrong and Rhoades [Armstrong and
Rhoades (2012)] defined the deleted arrangements Shi(G) and Ish(G) and showed that they share many
properties. In particular, it was proven that Shi(G) and Ish(G) have the same characteristic polynomials
by their explicit expressions. The deleted Shi and Ish arrangements are defined by

Shi(G) := Cox(`) ∪ {{xi − xj = 1} | (i, j) ∈ G} ⊆ Shi(`),

Ish(G) := Cox(`) ∪ {{x1 − xj = i} | (i, j) ∈ G} ⊆ Ish(`).

Athanasiadis gave a necessary and sufficient condition for the freeness of c(Shi(G)).



282 Takuro Abe and Daisuke Suyama and Shuhei Tsujie

Theorem 4.1 (Athanasiadis (1998) Theorem 4.1) LetG ⊆ K` be a subgraph. The cone over the deleted
Shi arrangement c(Shi(G)) is free if and only if there exists a permutationw of {1, . . . , `} such thatw−1G
is contained in K`, i.e., (i, j) ∈ w−1G implies i < j, and has the following property:

If 1 ≤ i < j < k ≤ ` and (i, j) ∈ w−1G then (i, k) ∈ w−1G.

In this section, we will prove that the property ofG in the Theorem 4.1 is also a necessary and sufficient
condition for the freeness of c(Ish(G)) by making use of the terminology of theN -Ish arrangements. The
problem of whether the cone of the deleted Ish arrangement c(Ish(G)) is free or not is posed by Armstrong
and Rhoades in [(Armstrong and Rhoades, 2012, p. 1517)] together with the problem for c(Ish(`)).

For a subgraph G ⊆ K`, define a tuple of sets NG = (N2, . . . , N`) by

Nj := {0} ∪ {i | (i, j) ∈ G} ⊆ {0, 1, . . . , j − 1}.

It is easy to show that Ish(NG) = Ish(G).

Theorem 4.2 Let G ⊆ K` be a subgraph. Then the following are equivalent:

(1) c(Ish(G)) is free.

(2) NG is a nest.

(3) G has the property in Theorem 4.1.

(4) For any j, k ∈ {2, . . . , `}, either of the following two conditions holds:

(i) If (i, j) ∈ G then (i, k) ∈ G for any i ≤ min{j, k}.
(ii) If (i, k) ∈ G then (i, j) ∈ G for any i ≤ min{j, k}.

Proof: (1)⇔ (2) It is obvious from Theorem 1.3.
(2) ⇒ (3) Assume that NG is a nest. Then there exists a permutation w of {1, . . . , `} with w(1) = 1

such that

Nw(2) ⊆ Nw(3) ⊆ · · · ⊆ Nw(`).

Now, we will prove that w−1G ⊆ K` i.e., (i, j) ∈ w−1G implies i < j. For any (i, j) ∈ w−1G, we
have (w(i), w(j)) ∈ G. Hence w(i) ∈ Nw(j). Then Nw(j) 6⊆ Nw(i) since w(i) 6∈ Nw(i). Since NG

is a nest, we have Nw(i) ⊆ Nw(j). Therefore i < j, namely (i, j) ∈ K`. Thus we have showed that
w−1G ⊆ K`.

Suppose that 1 ≤ i < j < k ≤ `. Then we have a chain of implications:

(i, j) ∈ w−1G⇒ (w(i), w(j)) ∈ G⇒ w(i) ∈ Nw(j)

⇒ w(i) ∈ Nw(k) ⇒ (w(i), w(k)) ∈ G⇒ (i, k) ∈ w−1G.

This proves that G satisfies the second condition.
(3) ⇒ (4) Fix elements j, k ∈ {2, . . . , `} and assume that w−1(j) < w−1(k). For any (i, j) ∈ G,

we have that (w−1(i), w−1(j)) ∈ w−1G. Since w−1G ⊆ K`, we have w−1(i) < w−1(j). Then the
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second property of (3) implies (w−1(i), w−1(k)) ∈ w−1G, i.e., (i, k) ∈ G. Hence (i) holds. Similarly, if
w−1(j) > w−1(k) then (ii) holds.
(4) ⇒ (2) For any j, k ∈ {2, . . . , `}, it is clear that (i) holds if and only if Nj ⊆ Nk and (ii) holds if

and only if Nk ⊆ Nj . Therefore every element in NG is comparable. Thus NG is a nest. 2

Combining Theorem 4.1 and Theorem 4.2, we can prove that the following corollary:

Corollary 4.3 The deleted arrangements Shi(G) and Ish(G) share the freeness.
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