
Discrete Mathematics and Theoretical Computer Science2, 1998, 35–47

Lower bounds for sparse matrix vector
multiplication on hypercubic networks

Giovanni Manzini

Dipartimento Scienze e Tecnologie Avanzate, I-15100 Alessandria, Italy and Istituto di Matematica Computazionale,
CNR, I-56126 Pisa, Italy.
E-mail: manzini@mfn.al.unipmn.it

In this paper we consider the problem of computing on a local memory machine the product�✂✁☎✄✝✆ , where ✄ is
a random✞✠✟✡✞ sparse matrix with☛✌☞✍✞✏✎ nonzero elements. To study the average case communication cost of this
problem, we introduce four different probability measures on the set of sparse matrices. We prove that on most local
memory machines with✑ processors, this computation requires✒✓☞✔☞✍✞✖✕✗✑✘✎✚✙✜✛✣✢✤✑✖✎ time on the average. We prove that
the same lower bound also holds, in the worst case, for matrices with only✥✦✞ or ✧★✞ nonzero elements.

Keywords: Sparse matrices, pseudo expanders, hypercubic networks, bisection width lower bounds

1 Introduction
In this paper we consider the problem of computing✩✫✪✭✬✯✮ , where✬ is a random✰✂✱✲✰ sparse matrix
with ✳✵✴✔✰✷✶ nonzero elements. We prove that, on most local memory machines with✸ processors, this com-
putation requires✹✺✴✻✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂❄✸✤✶ time in the average case. We also prove that this computation requires✹✺✴❅✴❆✰✷✼❇✸✤✶✘✾❈❀❉❂✷✸✤✶ time in the worst case for matrices with only❊❃✰ nonzero elements and, under additional
hypotheses, also for matrices with❋❃✰ nonzero elements. We prove these results by considering only the
communication cost, i.e. the time required for routing the components of✮ to their final destinations.

The average communication cost of computing✩●✪❍✬✯✮ has also been studied in [10] starting from
different assumptions. In [10] we restricted our analysis to the algorithms in which the components of✮
and ✩ are partitioned among the processors according to a fixed scheme not depending on the matrix✬ .
However, it is natural to try to reduce the cost of sparse matrix vector multiplication by finding a ‘good’
partition of the components of✮ and ✩ . Such a partition can be based on the nonzero structure of the
matrix ✬ which is assumed to be known in advance. This approach is justified if one has to compute
many products involving the same matrix, or involving matrices with the same nonzero structure. The
development of efficient partition schemes is a very active area of research; for some recent results see [3,
4, 5, 14, 15].

In this paper we prove lower bounds which also hold for algorithms which partition the components of✮ and ✩ on the basis of the nonzero structure of✬ . First, we introduce four probability measures on the
class of ✰■✱❏✰ sparse matrices with✳❑✴✍✰✷✶ nonzero elements. Then, we show that with high probability
the cost of computing✩▲✪▼✬✯✮ on a✸ -processor hypercube is✹✺✴❅✴✍✰✷✼✽✸✤✶✿✾❁❀❉❂◆✸✤✶ for everydistribution of the

1365–8050c
❖

1998 Maison de l’Informatique et des Mathématiques Discrètes (MIMD), Paris, France



36 Giovanni Manzini

components of✮ and ✩ among the processors. Since the hypercube can simulate with constant slowdown
any ✳✵✴P✸✤✶ -processor butterfly, CCC, mesh of trees and shuffle exchange network, the same bounds hold
for these communication networks as well (see [7] for descriptions and properties of the hypercube, and
of the other networks mentioned above).

Our results are based on the expansion properties of a bipartite graph associated with the matrix✬ .
Expansion properties, as well as the related concept of separators, have played a major role in the study of
the fill-in generated by Gaussian and Cholesky factorization of a random sparse matrix (see [1, 8, 11, 12]),
but to our knowledge, this is the first time they have been used for the analysis of parallel matrix vector
multiplication algorithms.

We establish lower bounds for the hypercube assuming the following model of computation. Processors
have only local memory and communicate with one another by sending packets of information through
the hypercube links. At each step, each processor is allowed to perform a bounded amount of local com-
putation, or to send one packet of bounded length to an adjacent processor (we are therefore considering
the so-called weak hypercube).

This paper is organized as follows. In section 2 we introduce four different probability measures on the
set of sparse matrices, and the notion of the pseudo-expander graph. We also prove that the dependency
graph associated with a random matrix is a pseudo-expander with high probability. In section 3 we
study the average cost of sparse matrix vector multiplication, and in section 4 we prove lower bounds for
matrices with❊❃✰ and ❋❉✰ nonzero elements. Section 5 contains some concluding remarks.

2 Preliminaries
Let ◗❘✪✭❙★❚❱❯✦❲✦❳✣❳✣❳✤❲❨❚✖❩❭❬ , and❪❫✪✭❙★❴❉❯✦❲✣❳✣❳✦❳❭❲❵❴✣❩❱❬ . Given an✰❛✱❑✰ matrix ✬ , we associate with✬ a directed
bipartite graph❜❛✴❝✬✺✶ , called thedependency graph. The vertex set of❜❛✴❝✬✺✶ is ◗❡❞✠❪ , and ✴✍❚✏❢❵❲❨❴❨❣❤✶ is an
edge of❜✐✴❝✬❥✶ if and only if ❦✣❣❇❢♠❧✪●♥ . In other words, the vertices of❜❛✴❝✬✺✶ represent the components of✮
and ✩ , and the edge✴✍❚✏❢❅❲❵❴❨❣❉✶♣♦✲❜❛✴q✬❥✶ if and only if the value❴❨❣ depends upon❚✏❢ .
Definition 2.1 Let ♥❛rts✉r❫✈ , ✇②①③✈ and s❄✇②r③✈ . We say that the graph❜✐✴❝✬❥✶ is an ✴❆s✝❲✻✇♣❲❨✰✷✶ -pseudo-
expanderif for each set④☎⑤⑥◗ the following property holds:✰✷s❋ ⑦✭⑧ ④ ⑧❉⑦ ✰✷s❘✪✷⑨ ⑧

Adj ✴✔④✺✶ ⑧ ①⑩✇ ⑧ ④ ⑧
Note that we must haves◆✇②r❫✈ , since each set ofs❶✰ vertices can be connected to at most✰ vertices.

The notion of a pseudo-expander graph is similar to the well known notion of an expander graph [2]. We
recall that a graph is an✴✍s✓❲❅✇♣❲❨✰✷✶ -expander if

⑧ ④ ⑧✿⑦ ✰✷s implies
⑧
Adj ✴✗④❥✶ ⑧ ①☎✇ ⑧ ④ ⑧ (hence, all expanders

are pseudo-expanders).
The average case complexity of sparse matrix vector multiplication will be obtained combining two

basic results: in this section, we prove that a random sparse matrix is a pseudo-expander with probability
very close to one, in the next section we prove that computing✩❡✪❷✬✌✮ on a ✸ -processor hypercube
requires✹✺✴✻✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂✷✸❭✶ time if ❜❛✴q✬❥✶ is a pseudo-expander.

To study the average cost of a sparse matrix vector multiplication, we introduce four probability mea-
sures on the set of✰②✱❸✰ sparse matrices. Each measure represents a different type of sparse matrix
with ✳❑✴❹✰✷✶ nonzero elements. Although the nonzero elements can be arbitrary real numbers, we assume
the behaviour of the multiplication algorithms does not depend upon their numerical values. Hence, all
measures are defined on the set of 0–1 matrices, where✈ represents a generic nonzero element.



Sparse matrix vector multiplication 37

1. Let ♥ ⑦❫❺ ❯ ⑦ ✰ such that
❺ ❯ ✰ is an integer. We denote by❻ ❯ the probability measure such that❼❶❽ ❙❇✬❾❬✂❧✪③♥ only if the matrix ✬ has exactly

❺ ❯❿✰ nonzero elements; moreover, all➀ ❩✿➁➂❇➃ ❩❤➄ matrices
with

❺ ❯❇✰ nonzero elements are equally likely.

2. Let ♥ ⑦➅❺✿➆✌⑦ ✰ , ✸➇✪ ❺✿➆ ✼❃✰ . We denote by❻ ➆
the probability measure such that for each entry❦❃❢➈❣❼❶❽ ❙✦❦ ❢ ❣ ❧✪☎♥✿❬✵✪☎✸ . Hence, we have

❼❶❽ ❙✣✬❾❬✵✪☎✸✖➉❭✴❅✈➋➊❏✸✤✶ ❩➌➁❨➍ ➉ , where➎ is the number of nonzero
elements of✬ .

3. Let
❺❉➏

be an integer♥ ⑦➅❺❉➏✺⑦ ✰ . We denote by❻ ➏
the probability measure such that

❼❶❽ ❙✣✬❾❬❛❧✪☎♥
only if each row of✬ contains exactly

❺❉➏
nonzero elements; moreover, all➀ ❩➂❨➐ ➄ ❩ matrices with

❺❉➏
nonzero elements per row are equally likely.

4. Let
❺❉➑

be an integer♥ ⑦➅❺❉➑✺⑦ ✰ . We denote by❻ ➑
the probability measure such that

❼❶❽ ❙✣✬❾❬❛❧✪☎♥
only if each column of✬ contains exactly

❺❉➑
nonzero elements; moreover, all➀ ❩➂❨➒ ➄ ❩ matrices with❺❉➑

nonzero elements per column are equally likely.

The above measures are clearly related since they all represent unstructured sparse matrices. We have
chosen these measures since they are quite natural, but of course, they do not cover the whole spectrum
of ‘interesting’ sparse matrices. In the following, the expression ‘random matrix’ will denote a matrix
chosen according to one of these probability measures.

Given a random matrix✬ we want to estimate the probability that the graph❜❛✴❝✬✺✶ is a pseudo-expander.
In this section we prove that for the measures❻ ❯ –❻ ➑

previously defined such probability is very close
to one (Theorem 2.6). In the following, we make use of some well known inequalities. For♥ ⑦ ➎ ⑦ ✰ ,➓ ✰ ➎✿➔ ⑦❡→✤➣ ✰➎✠↔ ➉ (1)

and, for any real number❚✠↕●✈ , ➓ ✈✓➊ ✈❚ ➔♠➙ r ➣ ➍◆❯ (2)

In addition, a straightforward computation shows that for any triplet of positive integers➛✲❲❨✰❶❲✍✸ such that➛●➜✂✸ ⑦ ✰ we have ➓ ✰➝➊➞✸➛ ➔➅➟ ➓ ✰➛➝➔ ➍◆❯ ⑦❍→ ✈✓➊ ➛ ✰ ↔➌➠ (3)

Lemma 2.2 Let ✬ be a random matrix chosen according to the probability measure❻❘❢ , ➡✓✪❍✈❃❲✣❳✦❳✣❳✖❲✻➢ .
If ④●⑤❸◗ , ➤●⑤⑥❪ we have ❼❶❽ ❙ Adj ✴✗④❥✶◆➥▲➤t✪t➦❄❬ ⑦ ➓ ✈✓➊ ❺ ❢✰❛➔✺➧ ➨❶➧✔➧ ➩➫➧ (4)

Proof. We consider only➡♣✪❍✈❃❲❨❊ , since the cases➡✓✪➭❋✖❲✻➢ are similar. Let➯➭✪❡❙❤❦✣❣❇❢ ⑧ ❚✏❢♠♦⑩④✝❲❵❴❨❣➝♦⑩➤❑❬ .
We have

⑧ ➯ ⑧ ✪ ⑧ ④ ⑧✣⑧ ➤ ⑧ and Adj ✴✔④❥✶❄➥➲➤✭✪➳➦ if and only if ❦✣❣❇❢❶✪❫♥ for all ❦✣❣❇❢➫♦✫➯ . For the probability
measure❻❷❯ , using (3) we get❼❶❽ ❙ Adj ✴✔④❥✶✷➥➲➤t✪☎➦❄❬➋✪ ➓ ✰ ➆ ➊ ⑧ ➯ ⑧❺ ❯ ✰ ➔ ➓ ✰ ➆❺ ❯ ✰❭➔ ➍◆❯ ⑦ ➓ ✈✓➊ ❺ ❯✰➝➔ ➧ ➨❶➧✔➧ ➩➵➧



38 Giovanni Manzini

For the probability measure❻ ➏
we have Adj✴✔④❥✶✷➥➲➤t✪☎➦ only if the

⑧ ➤ ⑧ rows corresponding to➤ do
not contain nonzero elements in the

⑧ ④ ⑧ columns corresponding to④ . By (3) we get❼❶❽ ❙ Adj ✴✔④❥✶✷➥➲➤t✪☎➦❄❬✯✪➺➸ ➓ ✰➝➊ ⑧ ④ ⑧❺❉➏ ➔ ➓ ✰❺❉➏ ➔ ➍❄❯❅➻ ➧ ➩❶➧ ⑦ ➓ ✈✓➊ ❺❉➏✰✠➔✺➧ ➨➵➧❅➧ ➩➵➧ ➼
Lemma 2.3 Let ④t⑤⑩◗ ,

⑧ ④ ⑧ ✪☎➎ , and assume(4) holds. If♥➽r✉➾▲rt✈❃❲ s❶✰❋ ⑦ ➎ ⑦ s❶✰❶❲ ❺ ❢❶↕ ❋s➚➾➲➪ ✈✓➊➶✾❁❀❃❂♠✴❅✈✓➊❸s❄✇◆✶❆➹ (5)

then ❼➵❽ ❙ ⑧Adj ✴✔④❥✶ ⑧➌⑦ ✇◆➎❭❬➽r ➓ ✈✓➊ ❺ ❢✰❑➔ ➉❉➘ ❩✏➍✤➴ ➉❤➷❆➘ ❯❨➍➮➬ ➷
Proof. First note that ❼➵❽ ❙ ⑧Adj ✴✔④❥✶ ⑧➌⑦ ✇◆➎❭❬✺✪ ❼❶❽ ❙ ⑧Adj ✴✻④❥✶ ⑧❉⑦➭➱ ✇◆➎✖✃✚❬
We have that

⑧
Adj ✴✗④❥✶ ⑧➋⑦❐➱ ✇◆➎✖✃ only if there exists a set❒➤❮⑤❘❪ , with

⑧ ❒➤ ⑧ ✪❰✰✫➊ ➱ ✇◆➎✖✃ , such that
Adj ✴✗④❥✶✷➥ ❒➤t✪t➦ . Since there are➀ ❩❩✖➍♣Ï➈➴ ➉✽Ð ➄ sets➤ of size ✰✐➊ ➱ ✇◆➎✖✃ , if (4) holds, we have❼❶❽ ❙ ⑧Adj ✴✗④❥✶ ⑧❉⑦ ✇◆➎❭❬ ⑦ ➓ ✰✰✐➊ ➱ ✇◆➎✖✃✽➔ ➓ ✈✓➊ ❺ ❢✰✐➔ ➉❃➘ ❩✏➍➵ÏÑ➴ ➉❇Ð❵➷
By (1) we have❼➵❽ ❙ ⑧Adj ✴✔④❥✶ ⑧➌⑦ ✇◆➎❭❬ ⑦ ➓ ➣ ✰✰✐➊ ➱ ✇◆➎✖✃✏➔ ❩✖➍♣Ï➈➴ ➉✽Ð ➓ ✈✓➊ ❺ ❢✰✐➔ ➉❃➘ ❩✖➍➵ÏÑ➴ ➉✽Ð❵➷ ➬ ➓ ✈✓➊ ❺ ❢✰❑➔ ➉❃➘ ❩✏➍➵ÏÑ➴ ➉❇Ð❵➷❹➘ ❯❨➍➮➬ ➷⑦ ➓ ➣ ✰✰✐➊➶✇◆➎ ➔ ❩✏➍➵ÏÑ➴ ➉❇Ð ➓ ✈✓➊ ❺ ❢✰ ➔ ➉❉➘ ❩✖➍♣Ï➈➴ ➉✽Ð❵➷ ➬ ➓ ✈✓➊ ❺ ❢✰ ➔ ➉❃➘ ❩✖➍✤➴ ➉❤➷❆➘ ❯❨➍✷➬ ➷
Hence, we need to show that ➣ ✰✰✐➊❏✇◆➎ ➓ ✈✓➊ ❺ ❢✰❑➔ ➉ ➬ r●✈
Since✰✷s➚✼❉❋ ⑦ ➎ ⑦ ✰✷s , using (2) we get➣ ✰✰❛➊✂✇◆➎ ➓ ✈✓➊ ❺ ❢✰❑➔ ➉ ➬ ⑦ ➣ ✰✰✐➊❸✰✷s❄✇ ➓ ✈✓➊ ❺ ❢✰❑➔✠Ò❤Ó❵Ô➁ r ➣ ❯❨➍ÖÕ✻× Ô❨Ò➁✈✓➊✫s❄✇
This completes the proof since the hypothesis (5) on

❺ ❢ implies that➣ ❯❨➍ Õ✻× Ô❨Ò➁ ⑦ ✈✓➊❸s❄✇ ➼



Sparse matrix vector multiplication 39

Lemma 2.4 Suppose that the hypotheses of Lemma 2.3 hold. If❺ ❢❶↕ ➓ ✈♣➜➶✾❁❀❃❂ ➢s ➔ ✈✴❅✈✓➊❸➾❭✶❇✴✻✈✓➊■s❄✇◆✶ (6)

then the probability that there exists a set④Ø⑤❫◗ with
⑧ ④ ⑧ ✪❡➎ such that

⑧
Adj ✴✔④❥✶ ⑧❄⑦ ✇◆➎ is less than❋ ➍ ➉ .

Proof. The probability that a set of size➎ is connected to less than✇◆➎ vertices is given in Lemma 2.3.
Since there exist➀ ❩ ➉ ➄ of such sets, we have❼❶❽ ❙★Ù❭④ such that

⑧
Adj ✴✗④❥✶ ⑧❉⑦ ✇◆➎❭❬ r ➓ ✰ ➎✏➔ ➓ ✈✓➊ ❺ ❢✰❑➔ ➉❉➘ ❩✏➍✤➴ ➉❤➷❆➘ ❯❨➍➮➬ ➷r → ➣ ✰➎➲↔ ➉ ➓ ✈♣➊ ❺ ❢✰ ➔ ➉❃➘ ❩✏➍✤➴ ➉❤➷❆➘ ❯❨➍➮➬ ➷

Therefore, we need to prove that ➣ ✰➎ ➓ ✈✓➊ ❺ ❢✰ ➔ ➘ ❩✖➍❭➴ ➉★➷❆➘ ❯❵➍✷➬ ➷ ⑦ ✈❋ (7)

Since ❩➌Ú➆ ⑦ ➎ ⑦ ✰✷s , we have➣ ✰➎ ➓ ✈✓➊ ❺ ❢✰❑➔ ➘ ❩✏➍✤➴ ➉❤➷❆➘ ❯❨➍➮➬ ➷ ⑦ ❋ ➣s ➓ ✈✓➊ ❺ ❢✰❑➔ ❩ ➘ ❯❵➍✷Ú❉➴ ➷❆➘ ❯❨➍➮➬ ➷⑦ ❋s ➣ ❯❨➍ ➂ × ➘ ❯❨➍➮Ú❉➴ ➷❆➘ ❯❨➍➮➬ ➷ (8)

From (6) we have ✾❁❀❉❂ ➢s ➜☎✈✓➊ ❺ ❢❵✴✻✈✓➊✫s❄✇◆✶❇✴✻✈♠➊➶➾✤✶ ⑦ ♥
hence ➢s ➣ ❯❨➍ ➂ × ➘ ❯❨➍➮Ú❉➴ ➷❆➘ ❯❨➍➮➬ ➷ ⑦ ✈
The Lemma follows by comparing this last inequality with (7) and (8).

➼
Note that Lemma 2.4 holds only if both (5) and (6) hold. That is,

❺ ❢ must satisfy❺ ❢❶↕②Û➞Ü❤Ý✯Þ ❋s❶➾✠➪ ✈✓➊❏✾❁❀❃❂✯✴✻✈✓➊❸s◆✇◆✶❹➹✘❲ ➓ ✈♣➜➶✾❁❀❉❂ ➢s♠➔ ✈✴✻✈✓➊✫➾❭✶❇✴✻✈♠➊✫s❄✇◆✶✷ß (9)

for some♥❑r⑩➾✠r●✈ . It is easy to verify that by takingà➾❛✪ áá ➜⑩s ➀ ✈♣➜❸✾❁❀❉❂ ➑Ú ➄ ❲ with á ✪☎❋✖✴❅✈✓➊➶s❄✇◆✶ ➪ ✈✓➊✫✾❁❀❉❂Ö✴✻✈✓➊❸s◆✇◆✶❹➹
the two arguments of theÛ➞Ü✚Ý function in (9) are equal. By substituting➾ with

à➾ , we obtain that (9) is
equivalent to ❺ ❢ ↕ ✈♣➜❸✾❁❀❉❂ ➑Ú✈✓➊✫s❄✇ ➜ ❋s ➪ ✈✓➊➶✾❁❀❃❂♠✴❨✈✓➊✫s❄✇➚✶❹➹



40 Giovanni Manzini

Lemma 2.5 Let ✬ be an ✰✲✱✲✰ random matrix for which(4) holds. If❺ ❢❶↕ ✈♣➜■✾❁❀❃❂ ➑Ú✈✓➊❸s❄✇ ➜ ❋s➶➪ ✈✓➊❏✾❁❀❉❂✯✴❅✈✓➊❸s❄✇◆✶❆➹ (10)

the graph❜❛✴❝✬✺✶ is an ✴❆s✝❲✻✇♣❲❨✰✷✶ -pseudo-expander with probability greater than✈✓➊✫❋ ❯❨➍ Ò❤Ó➁Proof. The graph❜❛✴q✬❥✶ is not an✴✍s✓❲✻✇♣❲❵✰✷✶ -pseudo-expander only if there exists a set④t⑤⑩◗ with ✰✷s❶✼❃❋ ⑦⑧ ④ ⑧✚⑦ ✰✷s such that
⑧
Adj ✴✔④✺✶ ⑧❉⑦ ✇ ⑧ ④ ⑧ . By Lemma 2.4, we know that❼❶❽ ❙✦❜❛✴❝✬✺✶ is not a pseudo-expander❬ ⑦ ÏP❩➌Ú Ðâ➉❤ã♣ä ❩➌Ú✿å ➆✔æ ❋ ➍ ➉

Therefore, ❼❶❽ ❙✦❜✐✴❝✬❥✶ is a pseudo-expander❬✺①●✈✓➊✫❋ ➍✓ç Ó❵Ò➁♠è✡é✲êâ ❢ ã✷ë ❋ ➍❭❢❝ì ↕t✈✓➊❸❋ ❯❨➍ Ó❵Ò➁ ➼
Theorem 2.6 Let ✬ be a random matrix chosen according to the probability measure❻ ❢ ➡➫✪➭✈❃❲✣❳✦❳✣❳✖❲✻➢ .
If ❺ ❢❶↕ ✈♣➜■✾❁❀❃❂ ➑Ú✈✓➊❸s❄✇ ➜ ❋s ➪ ✈✓➊❏✾❁❀❉❂✯✴❅✈✓➊❸s❄✇◆✶❆➹ (11)

the graph❜❛✴❝✬✺✶ is an ✴❆s✝❲✻✇♣❲❨✰✷✶ -pseudo-expander with probability greater than✈✓➊✫❋ ❯❨➍ Ò❤Ó➁Proof. The proof follows by Lemmas 2.2 and 2.5.

➼
As an example, fors✂✪ ❯➆ ❲✻✇❏✪ ❯❅í❯❅î inequality (11) becomes

❺ ❢ ↕●✈✦❊✏❳➈ï❃ð♠❳✣❳✦❳ . Theorem 2.6 tells us that,
under this assumption,❜❛✴q✬❥✶ is an ✴ ❯➆ ❲ ❯✗í❯✗î ❲❨✰✷✶ -pseudo-expander with probability✈✌➊⑥❋ ❯❨➍ Ó ➒ . Similarly, if❺ ❢◆↕●✈✦ð✏❳ ♥❉ñ♠❳✣❳✦❳❭❜❛✴❝✬✺✶ is a ✴ ➆î ❲ î➑ ❲❨✰✷✶ -pseudo-expander with probability greater than✈✓➊❸❋ ❯❵➍ Ó ò .If ❜❛✴q✬❥✶ is an ✴✍s✓❲❅✇♣❲❨✰✷✶ -pseudo-expander, then, given④❡⑤➳◗ such that✰✷s❶✼❃❋ ⑦ó⑧ ④ ⑧❭⑦ ✰✷s there are
more than✇ ⑧ ④ ⑧ values❴❨❣ that depend on the values❚✖❢✓♦➶④ . Similarly, if ❜✐✴❝✬♠ô♣✶ is an ✴❆s✝❲✻✇♣❲❨✰✷✶ -pseudo-
expander, given➤❫⑤➅❪ , s❶✼❃❋ ⑦③⑧ ➤ ⑧✘⑦ s , the values❴❨❣❑♦②➤ depend upon more than✇ ⑧ ➤ ⑧ values❚✖❢ . By
symmetry considerations we have the following corollary of Theorem 2.6.

Corollary 2.7 Let ✬ be a random matrix chosen according to the probability measure❻❘❢✷➡◆✪➳✈❃❲✣❳✦❳✣❳✖❲✻➢ .
If
❺ ❢ satisfies(11), then the graph❜❛✴❝✬➋ô➵✶ is an ✴✍s✓❲❅✇♣❲❨✰✷✶ -pseudo-expander with probability greater than✈♣➊❸❋ ❯❵➍ Ò✚Ó➁

➼
3 Study of the Average Case Communication Complexity
Let ✬ be an✰✂✱❏✰ sparse matrix, and let✸ ⑦ ✰ . In this section we prove a lower bound on the average
case complexity of computing the product✩✲✪➅✬✌✮ on a✸ -processor hypercube. Our analysis is based on
the cost of routing the components of✮ to their final destination. That is, we consider only the cost of



Sparse matrix vector multiplication 41

routing, to the processor that computes❴ ❣ , the values❚ ❢ ’s for all ➡ such that❦ ❣✽❢ ❧✪❫♥ . A major difficulty
for establishing a lower bound is that we can compute partial sums✸❃❣❾✪➳❦✣❣❇❢ ➃ ❚✖❢ ➃ ➜ ➟✣➟✦➟ ➜⑩❦✣❣❇❢❝õ❤❚✏❢öõ during
the routing process. In this case, by moving a single value✸❉❣ we can ‘move’ several❚✏❢ ’s. However, since
the ❦✣❣❇❢ ’s can be arbitrary, we assume that the partial sum✸❃❣✵✪●❦✣❣✽❢ ➃ ❚✏❢ ➃ ➜ ➟✦➟✣➟ ➜⑩❦✦❣✽❢❝õ✦❚✏❢❝õ can be used only
for computing the÷ -th component❴❨❣ .

In the previous section, we have shown that a random matrix is a pseudo-expander with high probability.
Therefore, to establish an average case result it suffices to obtain a lower bound for this class of matrices.
In the following, we assume that there exist two functionsø ➙ ❲❨ø❄ù mapping❙➌✈❉❲❵❋✏❲✦❳✣❳✦❳✏❲❵✰❄❬ into ❙❤♥✖❲✣❳✦❳✣❳✖❲❆✸♠➊✈❤❬ such that

1. for ➡◆✪➳✈❃❲✣❳✦❳✣❳✖❲❨✰ , the value❚ ❢ is initially containedonly in processor numberø ➙ ✴❆➡✍✶ ;2. for ÷■✪ú✈❉❲✦❳✣❳✣❳✖❲❵✰ , at the end of the computation the value❴❨❣ is contained in processor numberø ù ✴❁÷❃✶ .
In the following, ø ➍◆❯➙ ✴❆➎✖✶ will denote the set❙❤❚ ❢ ⑧ ø ➙ ✴✍➡❆✶❛✪û➎❭❬ , that is, the set of all components of✮
initially contained in processor➎ . Similarly, ø ➍◆❯ù ✴❆➎✖✶ will denote the components of✩ contained in pro-
cessor➎ .
Theorem 3.1 Let ✬ be a matrix such that❜❛✴❝✬✺✶ is an ✴✍s✓❲❅✇♣❲❨✰✷✶ -pseudo-expander withs✲✪➳✈✦✼❉❋ , ➑➏ r❸✇➶r❋ . If conditions 1–2 hold, and for♥ ⑦tü r➶✸ ,

⑧ ø ➍❄❯ù ✴ ü ✶ ⑧ ✪ ➱ ✰✷✼✽✸✤✃ or ç ✰✷✼❇✸ è , any algorithm for computing
the product✩❏✪⑩✬✌✮ on a ✸ -processor hypercube requires✹✺✴✻✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂✷✸❭✶ time.

Proof. The two functionsø ➙ ❲❨ø ù define a mapping of the vertices of❜❛✴q✬❥✶ into the processors of the
hypercube. If the edge✴❆❚✖❢✻❲❵❴❨❣❃✶ belongs to❜❛✴❝✬✺✶ (that is, ❦✣❣✽❢❥❧✪●♥ ) the value❴❨❣ depends upon❚✏❢ . Hence,
the value❚✖❢ has to be moved from processorø ➙ ✴❆➡✍✶ to processorø ù ✴❁÷❃✶ .

For ✈ ⑦ ➎ ⑦ ✾❁❀❃❂◆✸ we consider the set of dimension➎ links of the hypercube (that is, the links
connecting processors whose addresses differ in the➎ -th bit). If the dimension➎ links are removed,
the hypercube is bisected into two setsý➝❯✦❲❵ý ➆ with ✸✤✼❉❋ processors each. From the hypothesis onø ù it
follows that at the end of the computation each set contains at most✴✜✸❭✼❃❋❃✶ ç ✰✷✼❇✸ è ⑦ ❋❃✰✷✼❉❊ values❴❨❣ ’s.

We can assume thatý ❯ initially contains at least✰✷✼❉❋ values❚ ❢ ’s (if not, we exchange the roles ofý ❯
and ý ➆ ). A value ❚ ❢ ♦➅ý ❯ can reachý ➆ either by itself or inside a partial sumþ❘❦ ❣✦ÿ ❚ ÿ . Note that a
value ❚ ❢ that reachesý ➆ by itself can be utilized for the computation of several❴ ❣ ’s, but we assume that
each partial sum can be utilized for computing only one❴ ❣ .

Let ✰❄❯ denote the number of values❚✏❢❶♦▲ý➝❯ that traverse the dimension➎ links by themselves, and let✰ ➆ be the number of partial sums that traverse the dimension➎ links. We claim thatÛ➞Ü❤Ý❭✴✍✰❄❯✦❲❨✰ ➆ ✶ ① ✁ ✰
where✁ ✪ ➏ ➴✿➍ ➑í ➘ ➴✄✂❄❯ ➷ .

If ✰❄❯ ⑦ ✁ ✰ , we consider the set❒◗✡❯ of the values❚✏❢❶♦✲ý➝❯ thatdo nottraverse the dimension➎ links by
themselves. We have ⑧ ❒◗ ❯ ⑧ ↕ ✰ ❋ ➊❸✰ ❯ ↕ ✰ ❋ ➊ ✁ ✰✠✪ ☎ ✰ï✖✴❝✇✡➜▼✈✦✶ (12)

Since❜❛✴❝✬✺✶ is a pseudo-expander, and ✰ ➢ ⑦ ☎ ✰ï✏✴❝✇✡➜➅✈✣✶ ⑦ ✰ ❋



42 Giovanni Manzini

we have that more than
✆ ➴❤❩í ➘ ➴✄✂❄❯ ➷ ➊ ➆ ❩➏ values❴ ❣ ♦❏ý ➆ depend on the values❚ ❢ ♦ ❒◗ ❯ . We have

☎ ✇◆✰ï✖✴❝✇✡➜▼✈✦✶ ➊ ❋❃✰❊ ✪➅✰ ☎ ✇✠➊➶➢✤✴q✇➇➜☎✈✣✶ï✏✴❝✇✡➜▼✈✦✶ ✪ ✁ ✰
that is, more than✁ ✰ values❴❨❣❾♦✲ý ➆ depend upon the values❚✏❢❶♦ ❒◗✡❯ . Moreover, the values❚✏❢❶♦ ❒◗➝❯ can
reachý ➆ only inside the✰ ➆ partial sums that traverse the dimension➎ links. Since each partial sum can
be utilized for the computation of only one❴ ❣ , we have that✰ ➆ ① ✁ ✰ as claimed.

This proves that✹✺✴❆✰✷✶ items must traverse the dimension➎ links. Since the same result holds for all
dimensions, the sum of the lengths of the paths traversed by the data is✹✺✴❆✰✌✾❈❀❉❂◆✸✤✶ . Since at each step at
most✸ links can be traversed, the computation of✩✲✪▼✬✯✮ requires✹✺✴❅✴❆✰✷✼❇✸❭✶✿✾❁❀❃❂✷✸✤✶ time.

➼
Theorem 3.2 Let ✬ be a matrix such that❜❛✴q✬♠ô➵✶ is an ✴✍s✓❲❅✇♣❲❨✰✷✶ -pseudo-expander withs➅✪❍✈✦✼❉❋ , ➑➏ r✇●rØ❋ . If conditions 1–2 hold, and, for♥ ⑦óü r❫✸ ,

⑧ ø ➍◆❯➙ ✴ ü ✶ ⑧ ✪ ➱ ✰✷✼✽✸✤✃ or ç ✰✷✼❇✸ è , any algorithm for
computing the product✩✲✪▼✬✯✮ on a ✸ -processor hypercube requires✹✺✴✻✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂❄✸✤✶ time.

Proof. Let ý➝❯✦❲❨ý ➆ denote the sets obtained by removing the dimension➎ links of the hypercube. From
the hypothesis onø ➙ follows that initially each set contains at most✴✜✸✤✼❉❋❃✶ ç ✰✷✼❇✸ è ⑦ ❋❃✰✷✼❃❊ values❚✖❢ ’s. We
can assume that at the end of the computationý ➆ contains at least✰✷✼❉❋ values❴❨❣ ’s (if not we considerý➝❯ ).
Let ✰❄❯✦❲❨✰ ➆ be defined as in the proof of Theorem 3.1. Clearly, it suffices to prove thatÛ➞Ü❤Ý✖✴❆✰❄❯★❲❨✰ ➆ ✶✓① ✁ ✰
with ✁ ✪ ➏ ➴✿➍ ➑í ➘ ➴✄✂❄❯ ➷ .

If ✰ ➆ ⑦ ✁ ✰ , we consider the set❒❪ ➆ of the values❴ ❣ ♦✲ý ➆ that are computed entirely insideý ➆ . That is,❴❤ÿ❑♦ ❒❪ ➆ only if no partial sumþ ❦✿ÿ✽❢❹❚✏❢ traverses the dimension➎ links. We have⑧ ❒❪ ➆ ⑧ ↕ ✰ ❋ ➊➶✰ ➆ ↕ ✰ ❋ ➊ ✁ ✰✠✪ ☎ ✰ï✖✴❝✇❛➜☎✈✦✶
Since❜❛✴q✬♠ô♣✶ is a pseudo-expander, the values❴ ❣ ♦ ❒❪ ➆ depend on more than

✆ ➴❤❩í ➘ ➴✄✂❄❯ ➷ ➊ ➆ ❩➏ values❚ ❢ ♦▲ý ❯ .
By construction, these values❚ ❢ ’s must traverse the dimension➎ links by themselves. Hence✰❄❯♠① ☎ ✇◆✰ï✖✴q✇➇➜☎✈✣✶ ➊ ❋❃✰❊ ✪ ✁ ✰ ➼

By combining Theorems 3.1 and 3.2 with a result on the complexity of balancing on the hypercube,
it is possible to prove that the computation of✩❫✪❘✬✯✮ requires✹✺✴❅✴✍✰✷✼✽✸✤✶✿✾❁❀❉❂➮✸❭✶ time even if there are
processors containing✹✺✴❆✰✷✼❇✸✤✶ components of✮ or ✩ .

Lemma 3.3 Suppose that✰ items are distributed over the✸ processors of a hypercube, and let➛ be the
maximum number of items stored in a single processor. There exists an algorithmBALANCE that redis-
tributes the items so that each processor containsç ✰✷✼❇✸ è or

➱ ✰✷✼✽✸✤✃ items. The running time ofBALANCE

is ✝ → ➛⑩✾❁❀❃❂ ❯✗å ➆ ✸❾➜②✾❁❀❃❂ ➆ ✸ ↔ .

Proof. See [13, Theorem 5].

➼



Sparse matrix vector multiplication 43

We also need the converse of this lemma. Given a distribution of✰ items over✸ processors with no
more than➛ items per processor, there exists an algorithm UNBALANCE that constructs such distribution
starting from an initial setting in which each processor containsç ✰✷✼❇✸ è or

➱ ✰✷✼✽✸✤✃ items. The algorithm
UNBALANCE is obtained by executing the operations of the algorithm BALANCE in the opposite order,

hence its running time is again✝ → ➛⑩✾❁❀❉❂ ❯❅å ➆ ✸❾➜➶✾❁❀❃❂ ➆ ✸ ↔ .

In the following we use the notation✞◆✴❆✰✷✶✝✪✠✟✿✴☛✡➮✴✍✰✷✶✻✶ to denote that for any☞✌①t♥ , there exists✰ ë such
that ✞◆✴❆✰✷✶♠r✌☞✍✡➮✴✍✰✷✶ for all ✰✠↕➅✰ ë .
Theorem 3.4 Let ✬ be a matrix such that❜❛✴q✬❥✶ is an ✴❆s✓❲❅✇♣❲❨✰✷✶ -pseudo-expander withs●✪❷✈✣✼❃❋ , ➑➏ r✇❡r❰❋ . If conditions 1–2 hold, and, for♥ ⑦❰ü rØ✸ ,

⑧ ø ➍❄❯ù ✴ ü ✶ ⑧ ✪✎✝✐✴❅✴✍✰✷✼✽✸✤✶✿✾❁❀❉❂✑✏Ö✸❭✶ with ♥ ⑦✓✒ r✈✦✼❉❋✖❲✺✸♠✾❁❀❃❂✷✸t✪✔✟✿✴❆✰✷✶ , any algorithm for computing the product✩➭✪ ✬✯✮ on a ✸ -processor hypercube
requires ✹✺✴❅✴❆✰✷✼❇✸✤✶✘✾❈❀❉❂◆✸✤✶ time.

Proof. Assume by contradiction that there exists an algorithm SPARSEPROD for computing✩❏✪⑩✬✌✮ such
that:✴✍❦✿✶ the running time of SPARSEPROD is ✕✦✴✍✰❶❲❆✸✤✶ with ✕✦✴✍✰❶❲❆✸✤✶❶✪✠✟✿✴❨✴✍✰✷✼❇✸❭✶✿✾❁❀❃❂✷✸✤✶ ,✴✗✖❇✶ at the end of the computation each processor contains✝✐✴❅✴✍✰✷✼✽✸✤✶✿✾❁❀❉❂ ✏ ✸✤✶ components❴❨❣ ’s.

Clearly, using the procedure BALANCE, we can transform SPARSEPROD into an algorithm in which at
the end of the computation each processor containsç ✰✷✼✽✸ è or

➱ ✰✷✼❇✸✤✃ components of✩ . The running time
of this new algorithm is

✝ → ✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂ ✏ ✸♠✾❁❀❉❂ ❯✗å ➆ ✸❾➜②✾❁❀❃❂ ➆ ✸❾➜✘✕✦✴❆✰❶❲✍✸❭✶ ↔
that by hypothesis is✟✿✴❅✴❆✰✷✼❇✸✤✶✘✾❈❀❉❂✷✸✤✶ . This is impossible by Theorem 3.1.

➼
Using the procedure UNBALANCE and Theorem 3.2, it is straightforward to prove the following result.

Theorem 3.5 Let ✬ be a matrix such that❜❛✴q✬♠ô➵✶ is an ✴✍s✓❲❅✇♣❲❨✰✷✶ -pseudo-expander withs➅✪❍✈✦✼❉❋ , ➑➏ r✇❡r❰❋ . If conditions 1–2 hold, and, for♥ ⑦❰ü rØ✸ ,
⑧ ø ➍❄❯➙ ✴ ü ✶ ⑧ ✪✎✝✐✴❅✴✍✰✷✼✽✸✤✶✿✾❁❀❉❂ ✏ ✸❭✶ with ♥ ⑦✓✒ r✈✦✼❉❋✖❲✺✸♠✾❁❀❃❂✷✸t✪✔✟✿✴❆✰✷✶ , any algorithm for computing the product✩➭✪ ✬✯✮ on a ✸ -processor hypercube

requires ✹✺✴❅✴❆✰✷✼❇✸✤✶✘✾❈❀❉❂◆✸✤✶ time.

➼
We can summarize the results of this section as follows: if the components of one of the vectors✮ or ✩

are distributed ‘evenly’ (in the sense of Theorems 3.4 and 3.5) among the processors, the data movement
required for computing✩❏✪▼✬✯✮ takes✹✺✴✻✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂❄✸✤✶ time with high probability. The result holds for the
weak hypercube and,a fortiori , for the hypercubic networks that can be emulated with constant slowdown
by the hypercube.

Note that no hypothesis has been made on how the nonzero entries of✬ are stored. That is, all lower
bounds hold even if each processor contains in its local memory all nonzero elements of the matrix✬ .
Moreover, since these results hold for any pair of functionø ➙ ❲❨ø❄ù , we have that the knowledge of the
nonzero structure of✬ does not help to reduce the average cost of the computation.

4 Matrices with ✙✛✚ and ✜✢✚ Nonzero Elements
In the previous section we have shown that, if✬ has ✳❑✴❆✰✷✶ nonzero elements, computing✩❫✪❘✬✌✮ on
a ✸ -processor hypercube takes✹✺✴✻✴✍✰✷✼❇✸❭✶✿✾❁❀❃❂✷✸✤✶ time with high probability. It is interesting to investigate



44 Giovanni Manzini

what is the minimum number of nonzero elements of✬ for which this property holds. In this section we
give a partial answer to this question.

Definition 4.1 Let ✈❛r●✇➅r❫❋ . Given a matrix✬ , we say that the graph❜❛✴❝✬✺✶ is a ✇ -weak-expanderif
for each set④●⑤❸◗ the following property holds:⑧ ④ ⑧ ✪ ➱ ✰✷✼❃❋❃✃➶✪✷⑨ ⑧

Adj ✴✔④❥✶ ⑧ ①⑥✇ ⑧ ④ ⑧
Obviously, all ✴❆s✝❲✻✇♣❲❨✰✷✶ -pseudo-expanders withs✂↕●✈✦✼❃❋ are weak-expanders but the converse is not true.
As we will see, weak-expanders can be still used to get lower bounds for matrix vector multiplication. In
addition, the next lemma shows that there exist matrices with only❊❃✰ nonzero elements whose depen-
dency graph is a weak-expander.

Lemma 4.2 For all ✰➲↕⑥ð , there exists an✰➲✱➞✰ matrix ❒✬ such that

1. ❒✬t✪✠✣ ❯ ➜✤✣ ➆ ➜✤✣ ➏ , where✣ ❯ ❲✥✣ ➆ ❲✍✣ ➏ are permutation matrices,

2. both ❜❛✴❝✬✺✶ and ❜❛✴❝✬➋ô➵✶ are ✦✧ -weak-expanders.

Proof. The existence of matrix❒✬ is established in the proof of Theorem 4.3 in [11].

➼
Lemma 4.3 Let ✬ be a matrix with a constant number of nonzero elements per row, and such that❜❛✴q✬♠ô♣✶
is a ✇ -weak-expander. If conditions 1–2 of section 3 hold,✸ ⑧ ✰ , and, for ♥ ⑦➅ü r➶✸ ,

⑧ ø ➍❄❯ù ✴ ü ✶ ⑧ ✪t✰✷✼✽✸ , any
algorithm for computing the product✩▲✪▼✬✯✮ on a ✸ -processor hypercube requires✹✺✴❅✴✍✰✷✼✽✸✤✶✿✾❁❀❉❂◆✸✤✶ time.

Proof. As in the proof of Theorem 3.1, it suffices to prove that, for✈ ⑦ ➎ ⑦ ✾❁❀❃❂✷✸ , there are✹✺✴✔✰✷✶ items
that must traverse the dimension➎ links of the hypercube.

Let ý ❯ ❲❵ý ➆ denote the sets obtained by removing the dimension➎ links. As usual, we can assume thatý ❯ contains at least✰✷✼❃❋ values❚ ❢ ’s. Clearly, the✰✷✼❃❋ values❴ ❣ ♦▲ý ➆ depend upon at least✴❝✇✠➊⑩✈✦✶❇✴❆✰✷✼❃❋❉✶
values❚✏❢✓♦✫ý➝❯ . These values can traverse the dimension➎ links either by themselves or inside a partial
sum. However, each partial sum can contain only a constant number of values❚✖❢ , hence,✹✺✴❆✰✷✶ items must
traverse the dimension➎ links.

➼
An analogous proof yields the following result.

Lemma 4.4 Let ✬ be a matrix with a constant number of nonzero elements per column, and such that❜❛✴❝✬✺✶ is a ✇ -weak-expander. If conditions 1–2 of Section 3 hold,✸ ⑧ ✰ , and, for ♥ ⑦❫ü r➅✸ ,
⑧ ø ➍◆❯➙ ✴ ü ✶ ⑧ ✪✰✷✼❇✸ , any algorithm for computing✩✲✪▼✬✯✮ on a ✸ -processor hypercube requires✹✺✴❅✴❆✰✷✼❇✸✤✶✘✾❈❀❉❂◆✸✤✶ time.

➼
Using Lemmas 4.2-4.4, we can easily prove that, in the worst case, the computation of✩✲✪➅✬✌✮ requires✹✺✴❅✴❆✰✷✼❇✸✤✶✘✾❈❀❉❂✷✸✤✶ time also for matrices with only❊❉✰ nonzero elements.

Theorem 4.5 For all ✰▲↕✉ð , there exists an✰✲✱✠✰ matrix ❒✬ with at most❊❃✰ nonzero elements, such that,
if the components of one of the vectors✮ or ✩ are evenly distributed among the processors, any algorithm
for computing✩✲✪ ❒✬✯✮ on a ✸ -processor hypercube requires✹✺✴✻✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂❄✸✤✶ time.

➼
The case of matrices with three nonzero elements per row appears to be the boundary between easy and

difficult problems. In fact, if a matrix★ contains at most two nonzero elements in each row and in each
column, we can arrange the components of✮ and ✩ so that the product✩➶✪☎✬✯✮ can be computed on the
hypercube in✝❛✴❝✰✷✼✽✸✤✶ time. To see this, it suffices to notice that each vertex of❜❛✴✗★❾✶ has degree at most



Sparse matrix vector multiplication 45

two. Hence, the connected components of❜❛✴✗★➽✶ can only be chains or rings and can be embedded in the
hypercube with constant dilation and congestion.

We conclude this section by studying the complexity of sparse matrix vector multiplication when we
require that, for➡✷✪➳✈❃❲✣❳✦❳✣❳✤❲❨✰ , the value❴✣❢ is stored in the same processor containing❚✏❢ . A typical situation
in which this requirement must be met, is when the multiplication algorithm is utilized for computing the
sequence✮❶➘P➉ ✂❄❯ ➷✯✪ ✬✯✮❶➘✜➉❤➷ generated by an iterative method. Note that, using the notation of section 3,
this requirement is equivalent to assuming thatø ➙ ✩ ø ù .
Theorem 4.6 Let ✪ be the class of matrix vector multiplication algorithms such that, for➡✓✪❡✈❃❲✣❳✣❳✦❳✖❲❨✰ ,
the value❴ ❢ is stored in the same processor containing❚ ❢ . For all ✰✂↕➅ð , there exists an✰✂✱✲✰ matrix ❒★
such that

1. each row and each column of❒★ contains at most two nonzero elements,

2. if the component of✮ are evenly distributed, any algorithm in✪ for computing✩③✪ ❒★✺✮ on a✸ -processor hypercube requires✹✺✴❅✴❆✰✷✼❇✸❭✶✿✾❁❀❃❂✷✸✤✶ time.

Proof. By Lemmas 4.2 and 4.4, we know that there exists a matrix❒✬ such that the communication cost
of computing✩➅✪ ❒✬✌✮ is ✹✺✴❨✴❆✰✷✼❇✸✤✶✘✾❈❀❉❂✷✸✤✶ time (note that this bound holds for the algorithms not in✪ ).
Moreover, we know that❒✬t✪✠✣ ❯ ➜✫✣ ➆ ➜✫✣ ➏ , where✣ ❯ ❲✥✣ ➆ ❲✥✣ ➏ are permutation matrices. Now consider the
matrix ✬✭✬✤✪✠✣ ➍◆❯❯ ❒✬ . Since the multiplication by a permutation matrix does not require any communication
(for the algorithms not in✪ !), the communication cost of computing✩❸✪●✬✮✬❁✮ is ✹✺✴✻✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂✷✸❭✶ . Since✬✭✬P✮t✪❍✮✲➜✯★✺✮ , any algorithm in✪ for computing ★✺✮ can be used for computing✬✮✬❈✮ with no extra
communication cost. It follows that any algorithm in✪ for computing★ ✮ requires✹✺✴❨✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂✷✸❭✶ time.
This completes the proof, since★ is equal to the sum of two permutation matrices.

➼
5 Concluding Remarks
One of the most challenging problems in the field of distributed computing is to find good data distribu-
tions for irregular problems. In this paper we have analysed the issue of data distribution for the problem
of sparse matrix vector multiplication. We have performed an average case analysis by introducing four
different probability measures on the set of✰➲✱▲✰ matrices with✳❑✴✔✰✷✶ nonzero elements. We have shown
that, on average, computing✩●✪❍✬✯✮ on many ✳❑✴❈✸❭✶ -processor networks requires✹✺✴✻✴✍✰✷✼❇✸❭✶✿✾❁❀❃❂✷✸✤✶ time.
The result holds for any balanced distribution of the components of✮ and ✩ among the processors.

A parallel algorithm for computing the product✩✲✪➅✬✌✮ , where✬ is a ✰➝✱➇✰ matrix with ✝❛✴✍✰✷✶ nonzero
elements, has been given in [9]. The algorithm runs in✝❛✴❅✴❆✰✷✼❇✸✤✶✘✾❈❀❉❂✷✸✤✶ time on a✸ -processor hypercubic
network. The results of this paper establish the ‘average case’ optimality of the algorithm in [9] for the
class of unstructured matrices. However, our results do not rule out the possibility that the product✩❏✪▼✬✯✮
can be computed in✟✿✴❵✴❆✰✷✼❇✸❭✶✿✾❁❀❃❂✷✸✤✶ time for important classes of matrices which are not pseudo-expanders.
Typical examples are the matrices arising in finite elements and finite difference discretization of partial
differential equations for which✝❛✴❆✰✷✼❇✸✤✶ multiplication algorithms exist (see for example [6, Ch. 11]).

There are several possible extensions of our results which deserve further investigation. In our analysis
we have considered only the cost of routing each value❚ ❢ to the processors in charge of computing the
values❴ ❣ ’s which depend upon❚ ❢ . It is natural to ask if one could get more general results by taking into
account also the computation cost, which, as the number of nonzero elements grows, may well exceed the
cost of communication. Another interesting open problem is whether we can break the✹✺✴✻✴✍✰✷✼✽✸✤✶✿✾❁❀❃❂✷✸❭✶



46 Giovanni Manzini

lower bound by allowing processors to contain multiple copies of the components of✮ . To be fair, our
algorithm should produce multiple copies of the components of✩ so that it can be used to compute
sequences of the kind✮❶➘✜➉ ✂❄❯ ➷➚✪✉✬✯✮❶➘✜➉❤➷ .
References
[1] A. Agrawal, P. Klein and R. Ravi. Cutting down on fill using nested dissection: Provably good

elimination orderings. In A. George, R. Gilbert and J. Liu, editors,Graph Theory and Sparse Matrix
Computation, 31–55. Springer-Verlag, 1993.

[2] B. Bollobás.Random Graphs. Academic Press, 1985.

[3] U. Catalyuerek and C. Aykanat. Decomposing irregularly sparse matrices for parallel matrix-
vector multiplication.Parallel Algorithms for Irregulary Structured Problems (IRREGULAR ’96),
LNCS 1117, 75–86. Springer-Verlag, 1996.

[4] T. Dehn, M. Eiermann, K. Giebermann and V. Sperling. Structured sparse matrix-vector multiplica-
tion on massively parallel SIMD architectures.Parallel Computing21:1867–1894, 1995.

[5] P. Fernandes and P. Girdinio. A new storage scheme for an efficient implementation of the sparse
matrix-vector product.Parallel Computing12:327–333, 1989.

[6] V. Kumar, A. Grama, A. Gupta and G. Karypis.Introduction to Parallel Computing: Design and
Analysis of Algorithms. Benjamin/Cummings, Redwood City, CA, 1994.

[7] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.
Morgan Kaufmann, San Mateo, CA, 1991.

[8] R. Lipton, D. Rose and R. Tarjan. Generalized nested dissection.SIAM J. Numer. Anal.16:346–358,
1979.

[9] G. Manzini. Sparse matrix computations on the hypercube and related networks.Journal of Parallel
and Distributed Computing21:169–183, 1994.

[10] G. Manzini. Sparse matrix vector multiplication on distributed architectures: Lower bound and
average complexity results.Information Processing Letters50:231–238, 1994.

[11] G. Manzini. On the ordering of sparse linear systems.Theoretical Computer Science156(1–2):301–
313, 1996.

[12] V. Pan. Parallel solution of sparse linear and path systems. In J. H. Reif, editor,Synthesis of Parallel
Algorithms, 621–678. Morgan Kaufmann, 1993.

[13] C. G. Plaxton. Load balancing, selection and sorting on the hypercube.Proc. of the 1st Annual ACM
Symposium on Parallel Algorithms and Architectures, 64–73, 1989.

[14] L. Romero and E. Zapata. Data distributions for sparse matrix vector multiplication.Parallel Com-
puting21:583–605, 1995.



Sparse matrix vector multiplication 47

[15] L. Ziantz, C. Oezturan and B. Szymanski. Run-time optimization of sparse matrix-vector multiplica-
tion on SIMD machines. InParallel Architectures and Languages Europe (PARLE ’94), LNCS 817,
313–322. Springer-Verlag, 1994.


