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A uniform realization of the combinatorial
R-matrix

Cristian Lenart† and Arthur Lubovsky‡

Department of Mathematics and Statistics, State University of New York at Albany, Albany, NY 12222, USA

Abstract. Kirillov-Reshetikhin (KR) crystals are colored directed graphs encoding the structure of certain finite-
dimensional representations of affine Lie algebras. A tensor product of column shape KR crystals has recently been
realized in a uniform way, for all untwisted affine types, in terms of the quantum alcove model. We enhance this
model by using it to give a uniform realization of the combinatorial R-matrix, i.e., the unique affine crystal isomor-
phism permuting factors in a tensor product of KR crystals. In other words, we are generalizing to all Lie types
Schützenberger’s sliding game (jeu de taquin) for Young tableaux, which realizes the combinatorial R-matrix in type
A. We also show that the quantum alcove model does not depend on the choice of a sequence of alcoves.

Résumé. Les cristaux de Kirillov–Reshetikhin (KR) sont des graphes orientés avec des arêtes étiquetées qui encodent
certaines représentations de dimension finie des algèbres de Lie affines. Les produits tensoriels des cristaux KR de
type colonne ont été récemment réalisés de manière uniforme, pour tous les types affines symétriques, en termes du
modèle des alcôves quantique. Nous enrichons ce modèle en l’utilisant pour donner une réalisation uniforme de la
R-matrice combinatoire, c’est à dire, l’isomorphisme des cristaux affines unique quit permute les facteurs dans un
produit tensoriel des cristaux KR. En d’autres termes, nous généralisons pour tous les types de Lie le jeu de taquin
de Schützenberger sur les tableaux de Young, qui réalise la R-matrice combinatoire dans le type A. Nous montrons
aussi que le modèle des alcôves quantique ne dépend pas du choix d’une suite d’alcôves.

Keywords: Kirillov-Reshetikhin crystals, energy function, combinatorial R-matrix, quantum alcove model.

1 Introduction
Kashiwara’s crystals [Kas91] are colored directed graphs encoding the structure of certain bases (called
crystal bases) of some representations of quantum groups Uq(g) as q goes to zero (where g is a symmetriz-
able Kac-Moody Lie algebra). All highest weight representations have crystal bases/graphs. Beside them,
an important class of crystals is represented by the Kirillov-Reshetikhin (KR) crystals [KR90]. They cor-
respond to certain finite-dimensional modules for affine Lie algebras which are not of highest weight. A
KR crystal is denoted Br,s, being labeled by an r × s rectangle, where the height r indexes a simple root
of the corresponding finite root system and the width s is any positive integer. The importance of KR
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crystals stems from the fact that they are building blocks for the corresponding (infinite) highest weight
crystals; indeed, the latter are realized as infinite tensor products of the former in the Kyoto path model,
see, e.g., [HK00]. Tensor products of KR crystals are endowed with a grading known as the energy func-
tion, which originates in the theory of solvable lattice models [HKO+99]. There is a unique affine crystal
isomorphism between two tensor products of KR crystals differing by a permutation of the tensor factors;
it is called the combinatorial R-matrix.

The first author and Postnikov [LP07, LP08] defined the so-called alcove model for highest weight
crystals associated to a symmetrizable Kac-Moody algebra. This model is a discrete counterpart of the
celebrated Littelmann path model [Lit95]. In [LL14] the authors generalize the alcove model. This
generalization, called the quantum alcove model, has been shown in [LNS+13b] to uniformly describe
tensor products of column shape KR crystals for all untwisted affine types. By contrast, all the existing
combinatorial models for KR crystals are type-specific; most of them correspond to the classical types,
and are based on diagram fillings, i.e., on tableau models [FOS09]. As far as the energy function is
concerned, in the quantum alcove model it is computed uniformly and efficiently by a statistic called
height [LNS+13b], whereas an efficient computation based on the tableau models is only available in
types A and C [Len12, LS13].

In this paper we enhance the quantum alcove model by using it to give a uniform realization of the
combinatorial R-matrix. The construction is based on certain combinatorial moves called quantum Yang-
Baxter moves, which generalize their alcove model versions defined in [Len07]. Note that, as far as exist-
ing realizations of the combinatorial R-matrix are concerned, they are limited in scope and type-specific.
For instance, in terms of the tableau models, there is a construction in type A based on Schützenberger’s
jeu de taquin (sliding algorithm) on two columns [Ful97], whereas the extensions of this procedure to
types B and C are involved and not transparent, see [Lec02, Lec03]. By contrast, our construction is easy
to formulate, and is related to more general concepts.

We also show that, like the alcove model, its quantum generalization does not depend on the choice
of a sequence of roots called a λ-chain (or, equivalently, on the choice of a sequence of alcoves joining
the fundamental one to a translation of it). Note that the similar statement for the Littelmann path model
was proved in [Lit95] based on subtle continuous arguments, whereas the alcove model and its quantum
generalization are discrete, so they are amenable to the use of the mentioned combinatorial methods. Due
to space constraints we were unable to include any proofs in this extended abstract and instead refer the
interested reader to [LL15].

2 Background
2.1 Root systems
Let g be a complex simple Lie algebra, and h a Cartan subalgebra, of rank r. Let Φ ⊂ h∗ be the cor-
responding irreducible root system, h∗R ⊂ h∗ the real span of the roots, and Φ+ ⊂ Φ the set of positive
roots. We denote, as usual, the reflection corresponding to the root α by sα. Let α1, . . . , αr ∈ Φ+ be the
simple roots, and si := sαi

the simple reflections; the latter generate the Weyl group W . We denote 〈·, ·〉
the non-degenerate scalar product on h∗R induced by the Killing form. Given a root α, the corresponding
coroot is α∨ := 2α/〈α, α〉. If α =

∑
i ciαi, then the height of α is given by ht(α) :=

∑
i ci.

The weight lattice Λ consists of λ ∈ h∗R with 〈λ, α∨〉 ∈ Z for any α ∈ Φ. The weight lattice Λ is
generated by the fundamental weights ω1, . . . ωr, which form the dual basis to the basis of simple coroots,
i.e., 〈ωi, α∨j 〉 = δij . The set Λ+ of dominant weights consists of λ ∈ Λ with 〈λ, α∨〉 ≥ 0 for any α ∈ Φ+.
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Given α ∈ Φ and k ∈ Z, we denote by sα,k the reflection in the affine hyperplane

Hα,k := {λ ∈ h∗R : 〈λ, α∨〉 = k} . (1)

These reflections generate the affine Weyl group Waff for the dual root system Φ∨ := {α∨ |α ∈ Φ}. The
hyperplanes Hα,k divide the real vector space h∗R into open regions, called alcoves. The fundamental
alcove A◦ is given by

A◦ :=
{
λ ∈ h∗R | 0 < 〈λ, α∨〉 < 1 for all α ∈ Φ+

}
. (2)

2.2 Weyl groups
Let W be the Weyl group of the root system Φ discussed above. The length function on W is denoted
by `(·). The Bruhat order on W is defined by its covers w l wsα, for α ∈ Φ+, if `(wsα) = `(w) + 1.
Define w � wsα, for α ∈ Φ+, if `(wsα) = `(w)− 2ht(α∨) + 1. The quantum Bruhat graph [BFP99] is
the directed graph on W with edges labeled by positive roots

w
α−→ wsα for w l wsα or w � wsα. (3)

We denote this graph by QB(W ). We will sometimes refer to edges in QB(W ) where w l wsα as up
steps, and edges where w � wsα as down steps. See Figure 1 for an example.

We recall an important topological property of QB(W ), called shellability, which was proved in
[BFP99]. This is defined with respect to a reflection ordering on the positive roots [D93].

Theorem 2.1. [BFP99] Fix a reflection ordering on Φ+. For any pair of elements v, w ∈ W , there is a
unique path from v to w in the quantum Bruhat graph QB(W ) such that its sequence of edge labels is
strictly increasing (resp., decreasing) with respect to the reflection ordering.

2.3 Kirillov-Reshetikhin (KR) crystals
Given a symmetrizable Kac-Moody algebra g, a g-crystal is a non-empty set B together with maps
ei, fi : B → B∪{0} for i ∈ I (where I indexes the simple roots corresponding to g, as usual, and 0 6∈ B),
and wt : B → Λ. We require b′ = fi(b) if and only if b = ei(b

′), and wt(fi(b)) = wt(b)− αi. The maps
ei and fi are called crystal operators and are represented as arrows b → b′ = fi(b) colored i; thus they
endow B with the structure of a colored directed graph. For b ∈ B, we set εi(b) := max{k | eki (b) 6= 0},
and ϕi(b) := max{k | fki (b) 6= 0}. Given two g-crystals B1 and B2, we define their tensor product
B1⊗B2 as follows. As a set,B1⊗B2 is the Cartesian product of the two sets. For b = b1⊗b2 ∈ B1⊗B2,
the weight function is simply wt(b) := wt(b1) + wt(b2). The crystal operators are given by

fi(b1 ⊗ b2) :=

{
fi(b1)⊗ b2 if εi(b1) ≥ ϕi(b2)

b1 ⊗ fi(b2) otherwise,
(4)

and similarly for ei. The highest weight crystal B(λ) of highest weight λ ∈ Λ+ is a certain crystal with
a unique element uλ such that ei(uλ) = 0 for all i ∈ I and wt(uλ) = λ. It encodes the structure of the
crystal basis of the Uq(g)-irreducible representation with highest weight λ as q goes to 0.

A Kirillov-Reshetikhin (KR) crystal [KR90] is a finite crystal Br,s for an affine algebra, labeled by a
rectangle of height r and width s, where r ∈ I \ {0} and s is any positive integer. We refer, throughout,
to the untwisted affine types A(1)

n−1 −G
(1)
2 , and only consider column shape KR crystals Br,1.
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As an example, consider the KR crystal Br,1 of type A(1)
n−1 with r ∈ {1, 2, . . . , n − 1}, for which we

have a simple tableau model. As a classical type An−1 crystal, Br,1 is isomorphic to the corresponding
crystal B(ωr). Recall that an element b ∈ B(ωr) is represented by a strictly increasing filling of a height
r column, with entries in [n] := {1, . . . , n}. There is a simple construction of the crystal operators on a
tensor product of (column shape) KR crystals of type A(1)

n−1, which is based on (4).
We refer again to (column shape) KR crystals of arbitrary (untwisted) type. Let λ = (λ1 ≥ λ2 ≥ . . .)

be a partition, and λ′ the conjugate partition. We define B⊗λ :=
⊗λ1

i=1B
λ′i,1. More generally, given

a composition p = (p1, . . . , pk), we define B⊗p :=
⊗k

i=1B
pi,1. (In both cases, we assume that the

corresponding column shape KR crystals exist.) We denote such a tensor product generically by B.
Remarks 2.2. (1) It is known that B is connected as an affine crystal, but disconnected as a classical
crystal (i.e., with the 0-arrows removed).

(2) Let p′ be a composition obtained from p by permuting its parts. There is an affine crystal isomor-
phism between B⊗p and B⊗p

′
, unique by the previous remark, called the combinatorial R-matrix.

We need to distinguish certain arrows in B, related to affine Demazure crystals, as we shall explain.

Definition 2.3. An arrow b → fi(b) in B is called a Demazure arrow if i 6= 0, or i = 0 and ε0(b) ≥ 1.
An arrow b→ fi(b) in B is called a dual Demazure arrow if i 6= 0, or i = 0 and ϕi(b) ≥ 2.

Remarks 2.4. (1) By Fourier-Littelmann [FL06], in simply-laced types, the tensor product of KR crystals
B is isomorphic, as a classical crystal (discard the affine 0-arrows) with a certain Demazure crystal for
the corresponding affine algebra. (Demazure modules are submodules of highest weight ones determined
by a Borel subalgebra acting on an extremal weight vector.) Moreover, by [FSS07], the 0-arrows in the
latter correspond precisely to the Demazure arrows in B.

(2) In the case when all of the tensor factors in B are perfect crystals [HK00], B remains connected
upon removal of the non-Demazure (resp. non-dual Demazure) 0-arrows.

(3) In the classical types, Bk,1 is perfect as follows: in types A(1)
n−1 and D(1)

n for all k, in type B(1)
n only

for k 6= n, and in type C(1)
n only for k = n (using the standard indexing of the Dynkin diagram); in other

words, for all the Dynkin nodes in simply-laced types, and only for the nodes corresponding to the long
roots in non-simply-laced types. It was conjectured in [HKO+99] that the same is true in the exceptional
types. In type G(1)

2 this was confirmed in [Yam98], while for types E(1)
6,7,8 and F (1)

4 it was checked by
computer, based on a model closely related to the quantum alcove model [LNS+13b].

2.4 The quantum alcove model
In this section we recall the quantum alcove model, which is a model for KR crystals corresponding to a
fixed untwisted affine Lie algebra ĝ. This model is based on the combinatorics of the root system of the
corresponding finite-dimensional Lie algebra g, so we use freely the notation in Section 2.1.

We say that two alcoves are adjacent if they are distinct and have a common wall. Given a pair of

adjacent alcoves A and B, we write A
β−→ B if the common wall is of the form Hβ,k and the root β ∈ Φ

points in the direction from A to B.

Definition 2.5. An alcove path is a sequence of alcoves (A0, A1, . . . , Am) such that Aj−1 and Aj are
adjacent, for j = 1, . . . ,m. We say that an alcove path is reduced if it has minimal length among all
alcove paths from A0 to Am.

Let Aλ = A◦ + λ be the translation of the fundamental alcove A◦ by the weight λ.
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Definition 2.6. The sequence of roots (β1, β2, . . . , βm) is called a λ-chain if

A0 = A◦
−β1−→ A1

−β2−→ · · · −βm−→ Am = A−λ (5)

is a reduced alcove path.

We now fix a dominant weight λ and an alcove path Π = (A0, . . . , Am) from A0 = A◦ to Am =
A−λ. Note that Π is determined by the corresponding λ-chain Γ := (β1, . . . , βm), which consists of
positive roots. A specific choice of a λ-chain, called a lex λ-chain and denoted Γlex, is given in [LP08,
Proposition 4.2]; this choice depends on a total order on the simple roots.

Given the λ-chain Γ above, we let ri := sβi
, and let r̂i be the affine reflection in the hyperplane contain-

ing the common face ofAi−1 andAi, for i = 1, . . . ,m; so r̂i := sβi,−li , where li := | {j < i ; βj = βi} |.
We define l̃i := 〈λ, β∨i 〉 − li = | {j ≥ i ; βj = βi} |. Let J = {j1 < j2 < · · · < js} ⊆ [m], whose el-
ements are called folding positions. We say that ji is a positive folding position if rj1rj2 . . . rji−1

<
rj1rj2 . . . rji , and a negative folding position otherwise. We denote the positive folding positions by J+,
and the negative ones by J−. We define the weight µ(J) and the height statistic by

µ = µ(J) := −r̂j1 r̂j2 . . . r̂js(−λ) , height(J) :=
∑
j∈J−

l̃j . (6)

Definition 2.7. A subset J = {j1 < j2 < · · · < js} ⊆ [m] (possibly empty) is admissible if we have the
following path in QB(W ):

1
βj1−→ rj1

βj2−→ rj1rj2
βj3−→ · · · βjs−→ rj1rj2 · · · rjs . (7)

We letA(Γ) be the collection of admissible subsets corresponding to the λ-chain Γ. When Γ is clear from
the context, we may use the notation A(λ) instead.

Remark 2.8. If we restrict to admissible subsets for which the path (7) has no down steps, we recover the
classical alcove model in [LP07, LP08].

Combinatorial crystal operators fi and ei (where i indexes the simple roots corresponding to ĝ) were
constructed on A(Γ) and their properties were studied in [LL14]. In particular, the crystal operator fi
applied to an admissible subset J adds a folding position to J , while at the same time possibly removing
a folding position from J .

We summarize the results in [LNS+13b, LNS+12] about the applications of the quantum alcove model.

Theorem 2.9. [LNS+13b] Consider a composition p = (p1, . . . , pk) and the corresponding KR crystal
B :=

⊗k
i=1B

pi,1. Let λ := ωp1 + . . .+ ωpk , and let Γlex be a corresponding lex λ-chain.
(1) The (combinatorial) crystal A(Γlex) is isomorphic to the subgraph of B consisting of the dual

Demazure arrows, via a specific bijection which preserves the weights of the vertices.
(2) If the vertex b ofB corresponds to J under the isomorphism in part (1), then the energy at b is given,

up to a global constant, by −height(J).

Remark 2.10. The isomorphism in Theorem 2.9 (1) is canonical, so we identify the two crystals.
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2.5 Specializing the quantum alcove model to type A

We start with the basic facts about the root system of type An−1. We can identify the space h∗R with the
quotient V := Rn/R(1, . . . , 1), where R(1, . . . , 1) denotes the subspace in Rn spanned by the vector
(1, . . . , 1). Let ε1, . . . , εn ∈ V be the images of the coordinate vectors in Rn. The root system is Φ =
{αij := εi−εj : i 6= j, 1 ≤ i, j ≤ n}. The simple roots are αi = αi,i+1, for i = 1, . . . , n−1. The weight
lattice is Λ = Zn/Z(1, . . . , 1). The fundamental weights are ωi = ε1 + . . .+ εi, for i = 1, . . . , n− 1. A
dominant weight λ = λ1ε1 + . . .+ λn−1εn−1 is identified with the partition (λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥
λn = 0) having at most n − 1 parts. Considering the Young diagram of the dominant weight λ as a
concatenation of columns, whose heights are λ′1, λ

′
2, . . ., corresponds to expressing λ as ωλ′1 + ωλ′2 + . . .

(as usual, λ′ is the conjugate partition to λ).
The Weyl groupW is the symmetric group Sn, which acts on V by permuting the coordinates ε1, . . . , εn.

Permutations w ∈ Sn are written in one-line notation w = w(1) . . . w(n). For simplicity, we use the same
notation (i, j) with 1 ≤ i < j ≤ n for the root αij and the reflection sαij

, which is the transposition tij .
We now consider the specialization of the alcove model to type A. For any k = 1, . . . , n− 1, we have

the following ωk-chain, from A◦ to A−ωk
, denoted by Γ(k):

((k, k + 1), (k, k + 2) , . . . , (k, n),
(k − 1, k + 1), (k − 1, k + 2) , . . . , (k − 1, n),
...

...
...

(1, k + 1), (1, k + 2) , . . . , (1, n)) .

(8)

Fix a dominant weight λ, for which we use the partition notation above. We construct a λ-chain
Γ = (β1, β2, . . . , βm) as the concatenation Γ := Γ1 . . .Γλ1 , where Γj = Γ(λ′j). Let J = {j1 < · · · < js}
be a set of folding positions in Γ, not necessarily admissible, and let T be the corresponding list of roots of
Γ, also viewed as transpositions. The factorization of Γ induces a factorization on T as T = T 1T 2 . . . Tλ1 .
We denote by T 1 . . . T j the permutation obtained by composing the transpositions in T 1, . . . , T j from left
to right. For w ∈W , written w = w1w2 . . . wn, let w[i, j] = wi . . . wj .

Definition 2.11. Let πj = πj(T ) := T 1 . . . T j . We define the filling map, which associates with each
J ⊆ [m] a filling of the Young diagram λ, by fill(J) = fill(T ) := C1 . . . Cλ1 , where Ci := πi[1, λ

′
i]. In

other words, the columns Ci of the Young diagram are filled top to bottom by the first λ′i entries of the
permutation πi. We define the sorted filling map sfill(J) by sorting ascendingly the columns of fill(J).

Theorem 2.12. [Len12, LL14] The map sfill is the unique affine crystal isomorphism between A(Γ) and
the subgraph of B⊗λ consisting of the dual Demazure arrows. In other words, given sfill(J) = b, there is
a dual Demazure arrow b → fi(b) if and only if fi(J) 6= 0, and we have fi(b) = sfill(fi(J)). The map
sfill also preserves weights, and translates the height statistic into the Lascoux-Schützenberger charge
statistic on fillings.

There is a similar result in type C [Len12], [LS13], [LL14, Section 4.2].

3 The main results
In this section we realize the combinatorial R-matrix in terms of the quantum alcove model, and show
that this model is independent of the choice of a λ-chain. We start with a preview of the main result. Let
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p be the composition p = (p1, . . . , pk), and let p′ = (p′1, . . . , p
′
k) be a permutation of p. Let

B⊗p := Bp1,1 ⊗ · · · ⊗Bpk,1 , B⊗p
′

:= Bp
′
1,1 ⊗ · · · ⊗Bp

′
k,1

Γ := Γ(p1) · · ·Γ(pk) , Γ′ := Γ(p′1) · · ·Γ(p′2) , (9)

where Γ(i) is an ωi-chain; thus, Γ and Γ′ are λ-chains, where λ := ωp1 + · · · + ωpk . We will show that
A(Γ) and A(Γ′) are models for the isomorphic affine crystals B⊗p and B⊗p

′
. Thus, we want to realize

the combinatorial R-matrix as an affine crystal isomorphism between A(Γ) and A(Γ′).

Example 3.1. Consider type A2. Let p = (1, 2, 2, 1), p′ = (1, 2, 1, 2), so λ = (4, 2, 0). Then

B⊗p = B1,1 ⊗B2,1 ⊗B2,1 ⊗B1,1 ' B1,1 ⊗B2,1 ⊗B1,1 ⊗B2,1 = B⊗p
′
.

We first note that in type A the combinatorial R-matrix can be realized by Schützenberger’s jeu de taquin
(sliding algorithm) on the last two columns, see [Ful97]. For example:

3 ⊗ 2
3
⊗ 1

2
⊗ 3 = 3 ⊗ 2

3
⊗ 1 3

2
7→ 3 ⊗ 2

3
⊗ 1

2 3

7→ 3 ⊗ 2
3
⊗ 1

2 3
= 3 ⊗ 2

3
⊗ 2 ⊗ 1

3
.

We now demonstrate how to realize the combinatorial R-matrix in the quantum alcove model. Let Γ and
Γ′ be the λ-chains corresponding to p and p′ (the bars indicate the splittings into ωi-chains, cf. (9)):

Γ = ( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ) ,

Γ′ = ( (1, 2), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) | (2, 3), (1, 3) ) .
(10)

In (10) we also showed (via the underlined positions) two admissible subsets: J = {1, 2, 3, 6, 7, 8} in
A(Γ) and J ′ = {1, 2, 3, 5, 7, 8} in A(Γ′). Here J is admissible as it corresponds to the path in QB(W )
shown in Figure 1a which starts at the identity and consists of the edges labeled 1, 2, 3, 2, 1, 2. The details
of our construction will be given in Section 3.1 (see Example 3.3); for now, note that J will correspond to
J ′ via our construction. We recover the construction above in terms of jeu de taquin since

sfill(J) = 3 ⊗ 2
3
⊗ 1

2
⊗ 3 7→ 3 ⊗ 2

3
⊗ 2 ⊗ 1

3
= sfill(J ′) .

We construct a bijection between A(Γ) and A(Γ′) by generalizing the construction in [Len07], which
gives the bijection in the classical case, where admissible subsets correspond to saturated chains in Bruhat
order. The bijection in [Len07] is based on a sequence of operations called Yang-Baxter moves.

3.1 Quantum Yang-Baxter moves
This section contains our main constructions. We use freely the notation related to the quantum alcove
model in Section 2.4. We consider segments of the λ-chain corresponding to Weyl subgroups of rank 2.

We start by recalling that there are only two reflection orderings on the positive roots corresponding to a
dihedral Weyl group of order 2q, that is, a Weyl group of typeA1×A1,A2,C2, orG2 (with q = 2, 3, 4, 6,



578 Cristian Lenart and Arthur Lubovsky

respectively). Let Φ be the corresponding root system with simple roots α, β. The two reflection orderings
on Φ

+
are given by the following sequence and its reverse:

β1 := α, β2 := sα(β), β3 := sαsβ(α), . . . , βq−1 := sβ(α), βq := β . (11)

Fix λ ∈ Λ+. Consider an index set I := {1 < . . . < t < 1 < . . . < q < t+ 1 < . . . < n}. Let
Γ = {βi}i∈I be a λ-chain, denote ri := sβi

as before, and define the sequence of roots Γ′ = {β′i}i∈I by

β′i =

{
βq+1−i if i ∈ [q]
βi if i ∈ I \ [q] .

(12)

In other words, the sequence Γ′ is obtained from the λ-chain Γ by reversing a certain segment. Now
assume that {β1, . . . , βq} are the positive roots (without repetition) of a rank two root subsystem Φ of Φ.
The corresponding dihedral reflection group W is a subgroup of the Weyl group W .

Proposition 3.2. [Len07]

(1) The sequence Γ′ is also a λ-chain, and the sequence (β1, . . . , βq) is a reflection ordering of Φ
+

.

(2) We can obtain any λ-chain from any other λ-chain by moves of the form Γ→ Γ′.

Let us now map the admissible subsets inA(Γ) to those inA(Γ′). To this end, fix a reflection ordering of
Φ+ compatible with the above ordering (β1, . . . , βq) of Φ; this clearly exists (take any reflection ordering
of Φ+, and reverse it if needed). Now fix an admissible subset J = {j1 < · · · < js} in A(Γ). Define
w(J) := rj1rj2 · · · rjs , and

u := w(J ∩ {1, . . . , t}) , and w := w(J ∩ ({1, . . . , t} ∪ [q])) . (13)

Note that, by the definition ofA(Γ), we have a path in QB(W ) from u to w with increasing edge labels
J ∩ [q] (here we identify an edge label βi with i, for i ∈ [q]). By the shellability property of QB(W ), that
is, by Theorem 2.1, there is another path in QB(W ) from u to w whose edge labels (in Φ+) increase with
respect to the reverse of the reflection ordering considered above. In fact, by the proof of Theorem 2.1 in
[BFP99], these edge labels are also in Φ

+
, since the edge labels of the first path had this property. Thus,

by now identifying the label β′i with i, we can view the edge labels of the new path as a subset of [q],
which we denote by Yu,w(J ∩ [q]).

It is clear that we have a bijection Y : A(Γ)→ A(Γ′) given by

Y (J) := (J\[q]) ∪ Yu,w(J ∩ [q]) . (14)

We call the moves J 7→ Y (J) quantum Yang-Baxter moves. They generalize the Yang-Baxter moves in
[Len07], which correspond to saturated chains in the Bruhat order (i.e., there are no down steps).

Example 3.3. We continue Example 3.1. In (10) we obtain Γ′ from Γ by reversing the first three roots
in the right half of Γ. We will use the conventions of this section and (re)label this segment of Γ by
(β1, β2, β3). We also let s1 = sβ1 and s2 = sβ3 . We have u = s1s2s1 = 321, and w = s2 = 213, in one
line notation. In this case, we have Yu,w({2, 3}) = {1, 3}, see Figure 1a. Hence Y ({1, 2, 3, 6, 7, 8}) =
{1, 2, 3, 5, 7, 8}, where now the indexing corresponds to the entire λ-chain, cf. Example 3.1.



A uniform realization of the combinatorial R-matrix 579

We now describe the quantum Yang-Baxter moves in types A2, C2, and B2; type G2 is more involved,
but still manageable. Our description is in terms of the corresponding dihedral reflection group W , which
is a subgroup of the Weyl group W above. The following result is based on [BFP99, Lemma 5.1].

Proposition 3.4. Given w ∈ W , let bwc be the minimum length representative of the coset wW , and
write w = bwcw, where w ∈W . Under the bijection w 7→ bwcw between W and wW , every edge of the
graph on wW induced from QB(W ) corresponds to an edge of QB(W ).

By Proposition 3.4, the map Yu,w used to define the quantum Yang-Baxter moves in (14) depends only
on u and w, so we will denote it by Yu,w. Hence it suffices to focus on the quantum Bruhat graphs for
the dihedral Weyl groups. The ones of type A2 and C2 are shown in Figure 1, where the edge labels
correspond to the reflection ordering (11), and s1 := sβ1 , s2 := sβq . The graph of type B2 is identical
with the one of type C2 if we set β1 = ε2 (short root, like in type C2), β4 = ε1 − ε2 (long root), and
s1 := sβ1

, s2 := sβ4
, as above.

s1s2s1

s1s2 s2s1

s1 s2

1

1 3
2

1

3

3

13
2

1

2 1

31 3

β1 = ε1−ε2 β3 = ε2−ε3

(a) Type A2

s2s1s2s1

s1s2s1 s2s1s2

s1s2 s2s1

s1 s2

1

4 1

2

4

1

2

1

41
2

4

3
4

14 2

1

3 1

41 4

β1 = ε1−ε2, β4 = 2ε2

(b) Type C2

Fig. 1: Quantum Bruhat graphs.

Let us now recall from [Len07] the explicit description of the classical Yang-Baxter moves, i.e., of
the map J → Yu,w(J) on subsets of [q], for u < w in W . Recall that J and Yu,w(J) correspond to
saturated chains in Bruhat order from u to w, whose edge labels increase, resp. decrease, with respect
to the reflection ordering (11); in fact, as explained in Section 3.1, an index i in J corresponds to the
root/edge label βi, whereas an index i in Yu,w(J) corresponds to the root β′i := βq+1−i, cf. (12). The
classical moves can be described in a uniform way (i.e., for all types), and only in terms of a := `(u) and
b := `(w), as shown in Figure 2. The non-classical quantum Yang-Baxter moves J → Yu,w(J) do not
have a uniform description and are listed in Figure 3, by the corresponding starting vertex u. The top and
bottom rows are the sequences J and Yu,w(J), respectively, while we also have to consider the reverse
moves Yu,w(J) → J ; the mentioned sequences correspond to paths in QB(W ), as explained in Section
3.1 (see also the convention related to the edge labels, which was recalled above, in connection to the
classical moves). The symbol ∗ is used to indicate the down edges in QB(W ).
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Case 0: ∅ ↔ ∅ if a = b .

Case 1.1: {1} ↔ {q} if 0 ≤ a = b− 1 ≤ q − 1 .

Case 1.2: {q − a} ↔ {a+ 1} if 0 < a = b− 1 < q − 1 .

Case 2.1: {1, a+ 2, a+ 3, . . . , b} ↔ {a+ 1, a+ 2, . . . , b− 1, q} if 0 ≤ a < a+ 2 ≤ b < q .

Case 2.2: {1, a+ 2, a+ 3, . . . , b− 1, q} ↔ {a+ 1, a+ 2, . . . , b} if 0 < a < a+ 2 ≤ b ≤ q .

Case 3: [q]↔ [q] if a = 0 and b = q .

Fig. 2: The classical Yang-Baxter moves.

Type A2

s1
{1*},{1*,3 }
{3*},{2 ,3*}
s1s2
{1 ,2*},{3*},{1 ,2*,3 },{1 ,3*}
{1*,3*},{1*},{1*,2 ,3*},{1*,2 }
s1s2s1
{2*},{1*,3*},{1*},{2*,3 },{3*}
{2*},{2*,3 },{3*},{1*,3*},{1*}
s2
{3*},{2 ,3*}
{1*},{1*,3 }
s2s1
{1*,3*},{1*,2 ,3*},{1*,2 },{1*}
{1 ,2*},{1 ,2*,3 },{1 ,3*},{3*}

Type C2

s1
{1*},{1*,4 }
{4*},{3 ,4*}
s1s2
{1 ,2*},{4*},{1 ,2*,4 },{2 ,4*}
{1*,4*},{1*},{1*,3 ,4*},{1*,3 }
s1s2s1
{2*},{1*,4*},{1*},{2*,4 },{1*,2 ,4*},{1*,2 }
{3*},{3*,4 },{4*},{1 ,3*},{1 ,3*,4 },{1 ,4*}
s2
{4*},{3 ,4*}
{1*},{1*,4 }
s2s1
{1*,4*},{1*,3 ,4*},{1*,3 },{1*}
{2 ,3*},{2 ,3*,4 },{2 ,4*},{4*}
s2s1s2
{1 ,2*,4*},{1 ,2*,3 ,4*},{1 ,2*,3 },{1 ,4*},{1 ,2*},{4*}
{1*,2 ,3*},{1*,2 ,3*,4 },{1*,2 ,4*},{1*,2 },{1*,4*},{1*}
s2s1s2s1
{2*,4*},{2*,3 ,4*},{2*,3 },{4*},{2*},{1*,4*},{1*}
{1*,3*},{1*,3*,4 },{1*,4*},{1*},{3*},{3*,4 },{4*}

Fig. 3: The non-classical Yang-Baxter moves for types A2 and C2.

3.2 Properties of the quantum Yang-Baxter moves
Using the same notation as in Section 3.1, we present the main properties of the quantum Yang-Baxter
moves, concerning the quantities they preserve, and their interaction with the crystal operators.

Proposition 3.5. The quantum Yang-Baxter moves preserve the Weyl group element w( · ), as well as the
weight µ( · ) and the height statistic (defined in (6)); in other words, we have

w(J) = w(Y (J)) , µ(J) = µ(Y (J)) , height(J) = height(Y (J)) ,

where the left hand sides are computed with respect to Γ, and the right hand sides with respect to Γ′.

Theorem 3.6 below generalizes the similar result in [Len07] for the classical Yang-Baxter moves.

Theorem 3.6. The crystal operators commute with the quantum Yang-Baxter moves, that is, fi is defined
on an admissible subset J if and only if it is defined on Y (J), and we have Y (fi(J)) = fi(Y (J)).



A uniform realization of the combinatorial R-matrix 581

3.3 Corollaries and conjectures
In this section we state some corollaries of the results in the previous section which are, in fact, the main
results of the paper. We also discuss possible strengthenings of these results.

Theorem 3.6 and Proposition 3.5 immediately imply the following corollary (cf. also Proposition 3.2),
which essentially says that the quantum alcove model is independent of the choice of a λ-chain.

Corollary 3.7. Given λ-chains Γ and Γ′, there is an affine crystal isomorphism betweenA(Γ) andA(Γ′),
realized by composing quantum Yang-Baxter moves; it preserves the weights and heights of the vertices.

By composing the explicit bijection between B⊗p and A(Γlex) in Theorem 2.9 with an affine crystal
isomorphism betweenA(Γlex) andA(Γ) realized by quantum Yang-Baxter moves (where Γ is an arbitrary
λ-chain, see Corollary 3.7), we obtain the following strengthening of Theorem 2.9.

Corollary 3.8. Theorem 2.9 holds for any choice of a λ-chain, based on the bijection mentioned above.

Remark 3.9. There are several ways to connect two λ-chains Γ to Γ′ via the moves in Proposition 3.2.
A priori, the corresponding compositions of quantum Yang-Baxter moves give different affine crystal
isomorphisms betweenA(Γ) andA(Γ′) in Corollary 3.7. Therefore, in Corollary 3.8 we have a collection
of a priori different affine crystal isomorphisms between B⊗p and A(Γ), for a fixed λ-chain Γ. All this
is due to the fact that B⊗p is not necessarily connected under the dual Demazure arrows, cf. Remark 2.2
(1) and Remark 2.4 (2). However, we make the following conjecture.

Conjecture 3.10. All the affine crystal isomorphisms between A(Γ) and A(Γ′) in Corollary 3.7 are
identical. The same is true about the isomorphisms between B⊗p and A(Γ) in Corollary 3.8.

Remark 3.11. If all the tensor factors in B⊗p are perfect crystals, then there is a unique affine crystal
isomorphism between B⊗p and A(Γ), by Remark 2.4 (2). Conjecture 3.10 then follows.

Now let p be a composition and p′ a permutation of it. Recall the corresponding λ-chains Γ and Γ′

constructed in (9). By Corollary 3.8, we have affine crystal isomorphisms betweenB⊗p andA(Γ), as well
as betweenB⊗p

′
andA(Γ′). Also recall from Remark 2.2 (2) the combinatorialR-matrixB⊗p ∼= B⊗p

′
.

The uniqueness property in Remark 3.11 leads to the following result.

Corollary 3.12. Suppose that all the tensor factors in B⊗p are perfect crystals. Then the quantum Yang-
Baxter moves realize the combinatorial R-matrix as an affine crystal isomorphism between A(Γ) and
A(Γ′), in the sense mentioned above.

Remark 3.13. For the general case of Corollary 3.12, we need to realize the non-dual Demazure 0-arrows
in the quantum alcove model, cf. Theorem 2.9, and generalize Theorem 3.6 accordingly.
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