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Enumeration and structure of inhomogeneous
graphs
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Abstract. We analyze a general model of weighted graphs, introduced by de Panafieu and Ravelomanana (2014)
and similar to the inhomogeneous graph model of Söderberg (2002). We investigate the sum of the weights of those
graphs and their structure. Those results allow us to give a new proof in a more general setting of a theorem of Wright
(1972) on the enumeration of properly colored graphs. We also discuss applications related to social networks.

Résumé. Nous étudions un modèle de graphes pondérés, introduits par de Panafieu et Ravelomanana (2014) et proche
des graphes inhomogènes de Söderberg (2002). Nous analysons la somme des poids de ces graphes et leur structure.
Ces résultats nous permettent d’obtenir une nouvelle preuve d’un théorème de Wright (1972) sur l’énumération des
graphes bien colorés, ainsi que sur un modèle lié aux réseaux sociaux.
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The success of graphs relies on two contradictory properties. They are simple enough to appear natu-
rally in many applications, but at the same time rich enough to enjoy non-trivial mathematical properties.
Extensions such as hypergraphs and digraphs, and various notions of randomness on those objects have
been proposed to address a wider range of applications. In this article, we focus on a model of inho-
mogeneous graphs introduced by de Panafieu and Ravelomanana [4] and similar to the inhomogeneous
graph model of Söderberg [14]. Our main contributions are the computation of the total weight of inho-
mogeneous graphs with a given number of vertices and edges, and the analysis of their structure in the
subcritical regime, without restriction on the weights matrix R. The emphasis is on the development of
the theoretical basis of the model. Our tool is analytic combinatorics, and this work has been influenced
by the articles of Flajolet, Knuth and Pittel [8] and Janson, Knuth, Łuczak and Pittel [12].

In Section 1, we present the model and two applications. Section 2 provides theorems for the enumera-
tion of inhomogeneous graphs with a given number of vertices n and edges m. The set of inhomogeneous
graphs that contain no component with more than one cycle is analyzed in Section 3. We prove in Sec-
tion 4 that when m

n is small enough, almost all inhomogeneous graphs belong to this set, and derive more
explicit results than in Section 2 on the global enumeration of inhomogeneous graphs. Section 5 extends
the previous results to inhomogeneous graphs without loops nor multiple edges.
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1 Notations, models and applications
1.1 Notations
The row vector (u1, . . . , uq) is denoted by �

u, and the column vector (u1, . . . , uq)
ᵀ by ~u. The diagonal

matrix û has main diagonal ~u, and ~1 is the vector with all coefficients equal to 1. We adopt the notation
~u~v for the product

∏
i u

vi
i . The functions log and exp are applied coefficient-wise to the vectors, i.e.

log(
�
u) = (log(u1), . . . , log(uq)). When

∑
i ni = n, the multinomial notation

(
n
~n

)
denotes n!/

∏
i ni!.

The adjugate of a matrix M , equal to the transpose of the cofactor matrix, is adj(M). Open intervals,
closed intervals and integer intervals are denoted by ]x, y[, [x, y] and [a..b].

1.2 Models
The uniform graph model, also called multigraph process, has been studied using analytic combinatorics
in [8] and [12]. This model produces a random vertex-labelled graph with n vertices and m edges by
drawing 2m vertices v1w1 . . . vmwm uniformly independently in [1..n], and adding to the graph the edges
viwi for i from 1 to m: edge(G) = {viwi | 1 ≤ i ≤ m}. The graph is simple if it contains neither
loops nor multiple edges. If the output of the process is conditioned to be simple, the model reduces
to the classic G(n,m) graph model of Erdős and Rényi. The number of ordered sequences of vertices
v1w1 . . . vmwm that correspond to a graph G is denoted by seqv(G)

seqv(G) = |{v1w1 . . . vmwm | {viwi | 1 ≤ i ≤ m} = edge(G)}|.

Observe that a graph G with m edges is simple if and only if its number of sequences of vertices seqv(G)

is equal to 2mm!. For this reason, [12] introduced the compensation factor κ(G) = seqv(G)
2mm! . The total

weight of graphs in a family is defined as the sum of their compensation factors. For example, the total
weight of multigraphs with n vertices and m edges is n2m

2mm! .
The original inhomogeneous graph model was introduced in [14] as a generalization of the classic

G(n, p) random graph model, and extended by Bollobás, Janson and Riordan [3]. We consider in this
paper a variant of this model, introduced in [4] and closer to the uniform graph model. Its parameters are
an irreducible symmetric q× q matrix R and a vector ~r of size q, both with non-negative coefficients. We
call inhomogeneous graph, or (R,~r)-graph, a labelled graph where

• each vertex v has a type t(v) which is an integer in [1..q] and a weight rt(v),

• each edge vw receives a weight Rt(v),t(w).

The weight ω(G) of an (R,~r)-graph G is the product of the compensation factor of the underlying graph
(which is equal to 1 if the graph is simple), the weights of the vertices and the weights of the edges

ω(G) = κ(G)
∏
u∈G

rt(u)

∏
vw∈G

Rt(v),t(w).

One can also think of the parameters (ri) and (Ri,j) as variables marking the vertices and the edges
according to their types and the types of their ends. We define the total weight of (R,~r)-graphs in a
family as the sum of their weights. An (n,m)-(R,~r)-graph is an (R,~r)-graph with n vertices and m
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edges. Let n(G) denote the number of vertices of a graph G and F be a family of (R,~r)-graphs, then the
generating function F (z) of F is defined by

F (z) =
∑
G∈F

ω(G)
zn(G)

n(G)!
.

We use this definition in Section 3. Observe that an (R,~r)-graph that contains an edge of weight zero has
weight zero, and thus does not contribute to the total weight of (R,~r)-graphs.

Lemma 1 Let G∗R,~r denote the set of (R,~r)-graphs with non-zero weight. If the matrix R is reducible,
then there exist a non-trivial partition T1 ] · · · ] Tk = [1..q] of the set of types, symmetric irreducible
matrices S1, . . . , Sk and vectors ~s1, . . . , ~sk such that G∗R,~r is in bijection with the Cartesian product
G∗S1,~s1

× · · · ,×G∗Ss,~sk . Specifically, for any graph G in G∗R,~r ,

• for all i 6= j, there is no edge between a vertex of type in Ti and one of type in Tj ,

• for all i, the graph induced by G on the vertices with types in Ti is in G∗Si,~si .

Proof: Let (~e1, . . . , ~eq) denote the canonical basis of Rq . Since R is reducible, there is a partition
T1, . . . , Tk of [1..q] such that the matrix of R on the basis (~eT1[1], ~eT1[2], . . . , ~eT2[1], ~eT2[2], . . .) has a
block-diagonal shape diag(S1, . . . , Sk). For each i, we set ~si = (rTi[1], rTi[2], . . .). There can be no edge
between types in Ti and in Tj for i 6= j because its weight would be 0. Therefore, any component ofG∗R,~r
with a vertex of type in Ti has all its types in Ti. By construction, such a component is in G∗Si,~si . 2

The matrix R is therefore always assumed to be irreducible. In this paper, we analyze asymptotic
properties of (n,m)-(R,~r)-graphs when n goes to infinity, m is equal to cn and R, ~r and c are fixed.

1.3 Applications
Inhomogeneous graphs have been used in [4] to analyze the phase transition of satisfiability problems. We
present new applications to illustrate the expressiveness of the model, and motivate the theoretical analysis
conducted in the next sections. In the properly q-colored graphs, each vertex has a color in [1..q] and no
edge links two vertices with the same one. We give a new proof of [15, Theorem 3] on their enumeration,
which is not to be confused with an enumeration of q-colorable graphs, a problem addressed in [1].

Application 2 Let R(col) denote the q × q matrix with all coefficients equal to 1 and 0s on the diagonal,
then the number of properly q-colored (n,m)-graphs is equal to the total weight of (n,m)-(R(col),~1)-
graphs. When m

n is in a fixed closed interval of R>0, its asymptotics is

n2m

2mm!

(
1 +

2

q − 1

m

n

)− q−1
2
(

1− 1

q

)m
qn + o(1).

For properly q-colored simple graphs, the previous asymptotics is multiplied by exp
( (

m
n

)2 q
q−1

)
.

Proof: Let us identify the types and the colors. If an (R(col),~1)-graph is properly colored, the product of
the weights of its edges is 1, otherwise it is 0, hence the first assertion of the theorem. The eigenvalues of
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R(col) are q − 1 and −1, with multiplicities 1 and q − 1. The asymptotics is then a direct application of
Theorem 14 and the remark following Theorem 16. 2

As a second example, we consider a world where each person has a number k of topics of interest
among a set of size t ≥ 2k, and where two people can only become friend if they share at least one
common topic of interest. We call friendship graph the graph where each vertex represents a person and
each edge a friendship relation. The graph is naturally assumed to be simple. To analyze the friendship
graphs, we introduce the following notations. Let σ denote a numbering of the subsets of size k of [1..t],
andR(fs) the adjacency matrix of the complement of the Kneser graph (see for example [10]). This matrix
of dimension q =

(
t
k

)
is defined by

R
(fs)
i,j =

{
1 if |σ(i) ∩ σ(j)| ≥ 1,

0 otherwise.

Application 3 The number of friendship graphs with n people and m friendship relations is equal to
the total weight of simple (n,m)-(R(fs),~1)-graphs. When m

n is in a closed interval of ]0, 1
2 [, almost all

friendship graphs contain no component with more than one cycle. There is a value β > 1
2 such that when

m
n is in a closed interval of ]0, β[, the asymptotics of friendship graphs is

n2m

2mm!

((
t

k

)
−
(
t− k
k

))m(
t

k

)n−m
C + o(1)

where the value C, bounded with respect to n, is

C = exp

(
−

(
t
k

)(
t
k

)
−
(
t−k
k

)m
n

(
1 +

m

n

)) k∏
j=1

(
1− (−1)j

2m

n

(
t−k−j
k−j

)(
t
k

)
−
(
t−k
k

))− 1
2 ((tj)−( t

j−1))

.

Proof: Identifying each type i with the set of topics of interest σ(i), the definition of the matrix R(fs)

implies that the weight of a simple (R(fs),~1)-graph is 1 if it is a friendship graph, and 0 otherwise. The
spectrum of the Kneser graph is known, and available in [5]. The spectrum of its complement follows:
the dominant eigenvalue is

(
t
k

)
−
(
t−k
k

)
and for all j from 1 to k, (−1)j

(
t−k−j
k−j

)
is an eigenvalue with

multiplicity
(
t
j

)
−
(
t

j−1

)
. The result is then a consequence of Theorem 14 and the remark that follows

Theorem 16, with parameters Tr(R(fs)) =
(
t
k

)
and Tr((R(fs))2) =

(
t
k

)
−
(
t−k
k

)
. 2

Inhomogeneous graphs can as well handle generalizations of the model. For example, the weight of a
friendship could be a real value, function of the number of common topics of interest.

2 Global enumeration
In this section, we reduce the problem of deriving the asymptotics of (n,m)-(R,~r)-graphs to the location
of the minimums of a function parameterized by R, ~r and m

n . We start with an explicit formula.

Theorem 4 The total weight of (n,m)-(R,~r)-graphs is

GR,~r(n,m) =
1

2mm!

∑
{~n∈Nq |

�
1~n=n}

(
n

~n

)
~r ~n
(�
nR~n

)m
. (1)
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Proof: Let us consider a fixed partition of the set of labels [1..n] into q sets V1, . . . , Vq of sizes n1, . . . , nq ,
and denote by G(~n,m) the set of (n,m)-(R,~r)-graphs where the type of the vertices in Vi is i. Then the
total weight of graphs in G(~n,m) is expressed by summation over all sequences of vertices as∑

G∈G(~n,m)

ω(G) =
1

2mm!

q∏
i=1

rnii
∑

v1,w1,...,vm,wm∈[1..n]2m

m∏
i=1

Rt(vi),t(wi).

Switching the sum and the product, the previous equation becomes

∑
G∈G(~n,m)

ω(G) =
1

2mm!

q∏
i=1

rnii

( ∑
1≤i,j≤q

ninjR

)m
= ~r ~n

(
�
nR~n)m

2mm!
.

Equation (1) is obtained by summation over all possible partitions V1 ] · · · ] Vq = [1..n]. 2

To obtain the asymptotics of GR,~r(n,m), we will apply in the proof of Theorem 7 a multivariate
Laplace method(i). This method requires to give to the previous expression a more suitable shape.

Lemma 5 Let S denote the set {~x ∈ Rq≥0 |
�
1~x = 1}. The exact total weight of (n,m)-(R,~r)-graphs is

GR,~r(n,m) =
n2m

2mm!

1

(2πn)
q−1

2

∑
{~n∈Nq |

�
1~n=n}

An

(
~n

n

)
e
−nΦm

n
( ~nn ), (2)

where, with the usual conventions 0 log(0) = 0 and 00 = 1, the functions An and Φc are defined on S by

An(~x) =
n!

nne−n
√

2πn

q∏
i=1

(nxi)
nxie−nxi

√
2πnxi

Γ(nxi + 1)

1
√
xi
,

Φc(~x) =
(
log(

�
x)− log(

�
r)
)
~x− c log

(�
xR~x

)
.

Proof: In Expression (1), we divide and multiply each factorial from the multinomial coefficient by its
Stirling approximation, and rescale each ni by a factor 1/n

GR,~r(n,m) =
n2m

2mm!

1

(2πn)
q−1

2

∑
~n∈Nq
�
1~n=n

n!

nne−n
√

2πn

q∏
i=1

nnii e
−ni
√

2πni

ni!
√
ni/n

(
~r ~n/n

(~n/n)
~n/n

)n(�
n

n
R
~n

n

)m
.

The functions An and Φc are then introduced to simply this expression. 2

Let E denote a q × (q − 1) matrix with left-kernel of dimension 1 containing the vector �
1 , e.g.

E =


1 0 ··· 0

0 1
. . .

...
...
. . .

. . . 0
0 ··· 0 1
−1 ··· ··· −1

 .

Two vectors ~u and ~v belong to S only if there is a vector ~ε of dimension q− 1 for which ~u = ~v+E~ε. The
following lemma provides tools to locate the minimums of the function Φc.
(i) We thank Nathanaël Fijalkow and Antoine Crouzet for the time spent with us on this asymptotics.
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Lemma 6 For all c > 0, the Taylor expansion of Φc near any point ~x in the interior of S is

Φc(~x+ E~ε) = Φc(~x) +
�
∇Φc(~x)~ε+

1

2
�
εHΦc(~x)~ε+O(‖ε‖3),

where the gradient vector and the Hessian matrix have dimension q − 1 and are defined by

�
∇Φc(~x) =

(
log(

�
x)− log(

�
r)− 2c

�
xR~x

�
xR

)
E,

HΦc(~x) = Eᵀ

(
x̂−1 +

2c
�
xR~x

(
2

�
xR~x

R~x
�
xR−R

))
E.

If ~ϕ is a minimum of Φc, then ~ϕ is in the interior of S, �
∇Φc(~ϕ) =

�
0 andHΦc(~ϕc) is positive-semidefinite.

Proof: Let Ψc denote the function ~x →
(
log(

�
x)− log(

�
r)
)
~x − c log

(�
xR~x

)
from [0, 1]q \ {~0} to R. Its

restriction to S is equal to Φc and its Taylor expansion starts with

Ψc(~x+ ~ε) = Ψc(~x) +
�

∇Ψc(~x)~ε+
1

2
�
εHΨc(~x)~ε+O(‖~ε‖3)

where the gradient
�

∇Ψc(~x) and the Hessian matrix HΨc(~x) of Ψc are computed using partial derivations.
It follows that the Taylor expansion of Φc near any point ~x in the interior of S is

Φc(~x+ E~ε) = Φc(~x) +
�

∇Ψc(~x)E~ε+
1

2
�
εEᵀHΨc(~x)E~ε+O(‖~ε‖3).

Observing the limit of the gradient �
∇Φc(~x) of Φc when one coordinate of ~x vanishes, we conclude that the

local minimums of Φc cannot be reached on the boundary of S, and must therefore cancel �
∇Φc(~x). 2

Gathering the previous results, we can finally apply the multivariate Laplace method.

Theorem 7 Let [a, b] be a fixed closed interval such that the function (c, ~x)→ det(HΦc(~x)) from [a, b]×S
to R does not vanish, and let ~ϕc,1, . . . , ~ϕc,s denote the local minimums of Φc, then when n is large while
c = m

n is in [a, b], the asymptotics of the total weight of (n,m)-(R,~r)-graphs is

GR,~r(n,m) ∼ n2m

2mm!

∑
~ϕ∈{~ϕc,1,...,~ϕc,s}

(
~r ~ϕ

~ϕ ~ϕ

)n (�
ϕR~ϕ

)m√
det(HΦc(~ϕ))

∏q
i=1 ϕi

.

Proof: We inject in the integral representation of the sum (2) the following relations

An(~ϕ+ E~ε) ∼
q∏
i=1

ϕ
−1/2
i +O(‖~ε‖), e−nΦc(~ϕ+E~ε) =

(
~r ~ϕ

~ϕ ~ϕ

)n (�
ϕR~ϕ

)m
e−

1
2n

�
εHΦc(~ϕc)~ε+O(n‖~ε‖3),

valid for any minimum ~ϕ of Φc, and apply the multivariate Laplace method (see [13, Chapter 5]). 2

The previous theorem requires to locate the minimums of Φc, and to avoid the values of c for which
those minimums cross or merge. Even when the dimension of the matrix R is 2, those minimums can
exhibit interesting behaviors. For example, for R = ( 2 1

1 2 ), Φc has a unique minimum when c ≤ 1/6 and
two local minimums when c > 1/6. Investigating the link between the inhomogeneous graph model and
the Stochastic Block Model from [11] may provide an explanation for this change in Φc. Theorems 12 and
14 provide two examples of families of parameters R, ~r and m

n for which Φc has a unique minimum and
a more explicit asymptotics for the total weight of (n,m)-(R,~r)-graphs can be derive.
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3 Trees and unicycles
An (R,~r)-tree is a connected (R,~r)-graph that contains no cycle. Such a graph is rooted if one vertex,
called the root, is marked. An (R,~r)-unicycle is a connected (R,~r)-graph with exactly one cycle. A
classic result of Erdős and Rényi [7] states that almost all (n,m)-graphs with m

n < 1
2 contain only trees

and unicycles. In this section, we derive a similar result for (R,~r)-graphs. We also give a more explicit
asymptotics for the total weight of (n,m)-(R,~r)-graphs than in Theorem 7 when m

n is smaller than a
value β, defined in Theorem 12.

Lemma 8 Let Ti(z), U(z) and V (z) denote the generating functions of (R,~r)-rooted trees with root of
type i, (R,~r)-trees and (R,~r)-unicycles, and let ~T (z) denote the vector (T1(z), . . . , Tq(z))

ᵀ, then

~T (z) = zr̂ exp
(
R~T (z)

)
, U(z) =

�
1 ~T (z)− 1

2

�

T (z)R~T (z), V (z) = −1

2
log
(

det
(
I − T̂ (z)R

))
.

Proof: An (R,~r)-rooted tree is a root with a set of sons which are (R,~r)-rooted trees themselves. Let i
denote the type of the root, and j the type of the root of one of those sons, then the root has weight ri and
the weight of the edge linking the root to the son is the coefficient Ri,j . Using the Symbolic Method (see
for example the book of Flajolet and Sedgewick [9]) the previous combinatorial description translates into
the first relation on ~T (z). The expression for U(z) is obtained using the Dissymmetry Theorem presented
in [2]. The proof of the expression of V (z) is a variation of [9, Proposition V.6]. 2

Lemma 9 The generating functions ~T (z) has the following singular expansions

~T (z) = ~τ − ~γ
√

1− z/ρ+O(1− z/ρ)

where the value ρ and the vectors ~τ and ~γ have positive coefficients and are characterized by the system

~τ = ρr̂ exp (R~τ) , (I − τ̂R)~γ = 0,
1

2
�
γRγ̂R~γ =

�
1~γ. (3)

Proof: The square-root singular expansion of ~T (z) is a consequence of [6, Proposition 3]. The constraints
on its coefficients are obtained by injection of this expansion into the relation ~T (z) = zr̂ exp(R~T (z)) and
identification of the coefficients corresponding to the same power of

√
1− z/ρ. 2

We can now build (R,~r)-graphs that contain only trees and unicycles.

Theorem 10 We set α = 1
2

�
τ R~τ
�
1~τ

. For c = m
n in any closed interval of ]0, α[, let ζc and ~ϕc be characterized

by
1

2

�

T (ζc)R~T (ζc)
�
1 ~T (ζc)

= c and ~ϕc =
~T (ζc)

�
1 ~T (ζc)

, (4)

then the total weight of (n,m)-(R,~r)-graphs that contain only trees and unicycles is

G
(U,V )
R,~r (n,m) ∼ n2m

2mm!
C
−1/2
c,~ϕc

(
~r ~ϕc

~ϕ ~ϕc
c

)n (�
ϕcR

�
ϕc
)m

,

where Cc,~x =
1

c

(
(1− c) �

1

(
I − 2c

�
xR~x

x̂R
)−1

~x− 1

)
det

(
I − 2c

�
xR~x

x̂R

)
. (5)
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Proof: A tree with n vertices has n− 1 edges, and a unicycle with n vertices has n edges. Therefore, an
(n,m)-(R,~r)-graph that contains only trees and unicycles is a set of n−m trees and a set of unicycles

G
(U,V )
R,~r (n,m) = n![zn]

U(z)n−m

(n−m)!
eV (z).

We apply [9, Theorem VIII.8] to extract its asymptotics. The saddle-point equation is Equation (4). We
then introduce the notation ~ϕ, which satisfies the relation

~T (ζc) =
2c

�
ϕcR~ϕc

~ϕc,

and apply Stirling approximations to rearrange the expression. 2

In a longer version of this article, we plan to enumerate connected (n,m)-(R,~r)-graphs whenm−n ≥
1 is fixed, and to prove that such components appear with a non-zero probability when m = αn +
O(n2/3). This would extend to (R,~r)-graphs the result obtained for graphs in [12] with α = 1

2 . Therefore,
we conjecture that m

n = α is the threshold for the emergence of components with at least two cycles.
Following the approach of [8], one could as well derive the limit law of the number of edges when the
first cycle appear in a random (n,m)-(R,~r)-graph.

The following lemma links the determinant of the Hessian matrixHΦc(~x) to the value Cc,~x.

Lemma 11 Let ~τ , Cc,~x and HΦc(~x) be defined by Equations (3), (5) and Lemma 6, and set α to 1
2

�
τ R~τ
�
1~τ

,
then for all c ∈ [0, α[ and ~x ∈ S, the following identity holds

Cc,~x = det(HΦc(~x))

q∏
i=1

xi.

Proof: We introduce the matrix M =
�
xR~x
2c x̂

−1 − R and the vector ~v =
√

2/(
�
xR~x)~x. Since E is a

q × (q − 1) matrix, it becomes a square matrix F if we concatenate to its right the column vector ~v. The
determinant of F ᵀMF can be expressed as det(F )2 det(M) or using a block-determinant formula. The
equality between those two expressions is

2
�
xR~x

det(M) = (
�
vM~v + 1) det(EᵀME)− det(Eᵀ(M +M~v

�
vM)E). (6)

The properties of the matrix E imply

det(EᵀME) = det(M)
�
1M−1~1 and Eᵀ(M +M~v

�
vM)E =

�
xR~x

2c
HΦc(~x).

The result is obtained by injection of those relations in Equation (6) and rearrangement of the terms. 2
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4 Global enumeration when Φc has a unique minimum
In this section, we present two cases where the result of Theorem 7 can be made more specific.

Theorem 12 We set β = sup{c | ∀~x ∈ S, det(HΦc(~x)) > 0}, then β is greater than α (defined in Theo-
rem 10). The equation �

∇Φc(~ϕ) =
�
0 defines implicitly on [0, β[ a unique solution ~ϕc, given by Equation (4)

when c ∈]0, α]. Finally, when m
n is in a closed interval of ]0, β[, the asymptotics of (n,m)-(R,~r)-graphs

is

GR,~r(n,m) ∼ n2m

2mm!

(
~r ~ϕc

~ϕ ~ϕc
c

)n (�
ϕcR~ϕc

)m√
det(HΦc(~ϕc))

∏q
i=1 ϕi

.

Proof: When c = 0, for all ~x ∈ S the matrixHΦ0(~x) is positive-definite. By continuity of its eigenvalues
with respect to c and ~x, HΦc(~x) stays positive-definite for all c ∈ [0, β[ and ~x ∈ S, so the function Φc is
convex. According to Lemma 6, Φc has no minimum on the boundary of S, so it has a unique minimum,
which cancels its gradient �

∇Φc(~x). The asymptotics is then a consequence of Theorem 7. For c ∈]0, α[,
let us define ~ϕc as in Equation (4). A direct computation shows that log(

�
ϕc)− log(

�
r)− 2c

�
ϕR/(

�
ϕR~ϕ) is

collinear to �
1 , so ~ϕc cancels �

∇Φc(~x). We extend continuously ~ϕc for c = 0 and c = α with

~ϕ0 = lim
z→0

~T (z)
�
1 ~T (z)

=
~r

�
1~r
, ~ϕα = lim

z→ρ

~T (z)
�
1 ~T (z)

=
~τ

�
1~τ
.

The last point we need to prove is that β > α. According to Lemma 11, det(HΦc(~x)) vanishes only
if Cc,~x does, and Theorem 10 implies in particular Cc,~ϕc > 0 when c ∈]0, α[. Observe that HΦc(~x) is
independent of ~r and that for each ~x ∈ S, there is a vector ~r ∈ Rq>0 such that ~ϕc = ~x. This proves β ≥ α.
For c = α, ~ϕα is equal to ~τ/(�

1~τ). The definitions (3) of ~τ and (5) of Cc,~ϕc then imply

det

(
I − 2α

�
ϕαR~ϕα

ϕ̂αR

)
= 0 and Cα,~ϕα =

1− α
α

�
1 adj(I − τ̂R)

~τ
�
1~τ
.

The value of the generating function of unrooted (R,~r)-trees �
1 ~T (z) −

�

T (z)R~T (z)/2 is positive at its
dominant singularity ρ, and ~τ = ~T (ρ), so α =

�
τR~τ/(2

�
1~τ) is smaller than 1. By definition of ~τ , the irre-

ducible matrix τ̂R has dominant eigenvalue 1 of dimension 1 with eigenvector ~γ, defined in Equation (3).
Therefore, adj(I − ~τR) is proportional to ~γ �

γ, which has positive coefficients. This implies Cα,~ϕα > 0,
so det(HΦα(~x)) is positive for all ~x in S and Φα is still strictly convex. Therefore, β is greater than α. 2

The following corollary is obtained by comparison of the asymptotics of G(U,V )
R,~r (n,m) from Theo-

rem 10 andGR,~r(n,m) from Theorem 12, using the relationCc,~x = det(HΦc(~x))
∏q
i=1 xi from Lemma 11.

Corollary 13 When c = m
n is in a closed interval of ]0, α[, then almost all (n,m)-(R,~r)-graphs contain

only trees and unicycles.

When R is the adjacency matrix of a regular graph, then~1 is an eigenvector and ~ϕc becomes explicit.

Theorem 14 Let λ1 ≥ · · · ≥ λq denote the eigenvalues of R, and assume that~1 is an eigenvector of R,
then when m

n is in a closed interval of ]0, β[, the asymptotics of (n,m)-(R,~1)-graphs is

GR,~1(n,m) ∼ n2m

2mm!
λm1 q

n−m
q∏
i=2

(
1− 2

λi
λ1

m

n

)−1/2

.
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If λ2 is positive, β < λ1

2λ2
, otherwise the previous asymptotics holds for m

n in any closed interval of R>0.

Proof: R has non-negative coefficients and is irreducible. The Perron-Fröbenius theorem implies that its
dominant eigenvalue is positive and corresponds to the unique eigenvector with positive coefficients, thus
R~1 = λ1~1. The first assertion of the theorem is then a consequence of Theorem 12 with ~ϕc = ~1/q,

�
∇Φc(~1/q)

=
�
0 and det(HΦc(~1/q)

) =
qq

1− 2c
det

(
I − 2c

λ1
R

)
= qq

q∏
i=2

(
1− 2c

λi
λ1

)
.

Observe that det(HΦc(~1/q)
) vanishes at c = λ1

2λ2
. Let us now consider the case λ2 ≤ 0. The func-

tion log(
�
x)~x reaches its unique minimum on S at ~1/q. To prove that the function Φc(~x) = log(

�
x)~x −

c log(
�
xR~x) does the same, it is then sufficient to prove that �

xR~x reaches at~1/q its global maximum. Since
~x is in S, there is a vector ~y ∈ Rq−1 that satisfies ~x = ~1/q + E~y. Since �

1E is equal to �
0 , we obtain

�
xR~x =

λ1

q
+

�
yEᵀRE~y.

The symmetry of R implies the existence of an orthogonal matrix Q with first row �
1/
√
q such that R =

Qᵀ diag(λ1, . . . , λq)Q. The first row of QE is �
0 . Let P denote the (q − 1)× (q − 1) matrix in the lower

block of QE. Then P is invertible, and

EᵀQᵀ diag(λ1, . . . , λq)QE = P ᵀ diag(λ2, . . . , λq)P.

We set ~z = P~y and obtain �
xR~x =

~1
q +

∑q
i=2 λiz

2
i . Therefore, �

xR~x reaches its global maximum λ1/q

when ~z = ~0, which implies ~y = ~0 and ~x = ~1/q. 2

A future direction of research is the expansion of the family of parameters R, ~r and c for which we
can link the asymptotics of (n,m)-(R,~r)-graphs to the spectrum of R. Information on the location of the
minimums of Φc for c greater than β would also be instructive.

5 Simple (R,~r)-Graphs
The previous sections focused on (R,~r)-graphs where loops and multiple edges were allowed. We now
extend those results to simple (R,~r)-graphs, starting with a theorem similar to Theorem 4.

Theorem 15 The total weight of simple (n,m)-(R,~r)-graphs is

SGR,~r(n,m) = [wm]
∑

�
1~n=n

(
n

~n

)
~r ~n

∏
1≤i<j≤q

(1 +Ri,jw)ninj
q∏
i=1

(1 +Ri,iw)ni(ni−1)/2. (7)

Proof: We consider a partition V1 ] · · · ] Vq = [1..n] of the set of vertices and define ni = |Vi| for all i.
Let SG(~n,m) denote the set of simple (n,m)-(R,~r)-graphs where each vertex of Vi has type i. When
i 6= j, there are ninj available edges between vertices of Vi and Vj , and for all i, there are ni(ni − 1)/2
possible edges between vertices of Vi. Therefore, the total weight of graphs in SG(~n,m) is∑

G∈SG(~n,m)

ω(G) = [wm]~r ~n
∏

1≤i<j≤q

(1 +Ri,jw)ninj
q∏
i=1

(1 +Ri,iw)ni(ni−1)/2.
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The result of the Lemma is obtained by summation over all partitions V1 ] · · · ] Vq = [1..n]. 2

Theorem 16 With the notations of Theorem 7, for all c = m
n in [a, b], the asymptotics of simple (n,m)-

(R,~r)-graphs is

SGR,~r(n,m) ∼ n2m

2mm!

∑
~ϕ∈{~ϕc,1,...,~ϕc,s}

(
~r ~ϕ

~ϕ ~ϕ

)n (�
ϕR~ϕ

)m e
− c

�
ϕR~ϕ

Tr(ϕ̂R)−
(

c
�
ϕR~ϕ

)2
Tr((ϕ̂R)2)√

det(HΦc(~ϕ))
∏q
i=1 ϕi

.

Proof: Starting with the exact expression (7), we replace w with nw

SGR,~r(n,m) = nm
∑

�
1~n=n

(
n

~n

)
~r ~n[wm]eFn(~n/n,w), (8)

where Fn(~x,w) = log

( ∏
1≤i<j≤q

(
1 +Ri,j

w

n

)nxinxj q∏
i=1

(
1 +Ri,i

w

n

)nxi(nxi−1)/2
)
.

An expansion of the logarithm reduces this expression to

Fn(~x,w) = n
�
xR~x

w

2
− 1

2
Tr(x̂R)w − 1

4
Tr((x̂R)2)w2 +O(n−1).

With c = m
n bounded, we apply [9, Theorem VIII.8] with saddle-point ζ = 2c/(

�
xR~x):

[wm]eFn(~x,w) =
nm

2mm!
(

�
xR~x)m exp

(
−1

2
Tr(x̂R)

2c
�
xR~x

− 1

4
Tr((x̂R)2)

(
2c

�
xR~x

)2
)

(1 +O(n−1))

holds uniformly for ~x ∈ S. Adopting the notation Φc of Lemma 5, Equation (8) then becomes

SGR,~r(n,m) =
n2m

2mm!

1

(2πn)
q−1

2

∑
{~n∈Nq |

�
1~n=n}

SAn

(
~n

n

)
e
−nΦm

n
( ~nn ),

where SAn(~x) =

q∏
i=1

(nxi)
nxie−nxi

√
2πnxi

Γ(nxi + 1)

1
√
xi
e
−Tr(x̂R) c

�
xR~x
−Tr((x̂R)2)

(
c

�
xR~x

)2

(1 +O(n−1)).

The end of the proof is the same as in Theorem 7. 2

Theorems12 and 14 extend to simple (R,~r)-graphs in the same way.

Corollary 17 When m
n is in a closed interval of ]0, α[, almost all simple (n,m)-(R,~r)-graphs contain

only trees and unicycles.

Proof: We verify that the asymptotics of simple (n,m)-(R,~r)-graphs containing only trees and unicycles
is equal to the asymptotics of all simple (n,m)-(R,~r)-graphs, derived in Theorem 16. The generating
function U(z) of (R,~r)-trees is the same for graphs and simple graphs. The generating function SV (z)
of simple (R,~r)-unicycles becomes

SV (z) = V (z)− 1

2
Tr(T̂ (z)R)− 1

4
Tr
(

(T̂ (z)R)2
)

to avoid loops and double edges in the cycle. The end of the proof is the same as in Theorem 10. 2
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