On Schubert calculus in elliptic cohomology
Cristian Lenart, Kirill Zainoulline

To cite this version:

HAL Id: hal-01337776
https://hal.archives-ouvertes.fr/hal-01337776
Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
On Schubert calculus in elliptic cohomology

Cristian Lenart and Kirill Zainoulline

Abstract. An important combinatorial result in equivariant cohomology and K-theory Schubert calculus is represented by the formulas of Billey and Graham-Willems for the localization of Schubert classes at torus fixed points. These formulas work uniformly in all Lie types, and are based on the concept of a root polynomial. We define formal root polynomials associated with an arbitrary formal group law (and thus a generalized cohomology theory). We use these polynomials to simplify the approach of Billey and Graham-Willems, as well as to generalize it to connective K-theory and elliptic cohomology. Another result is concerned with defining a Schubert basis in elliptic cohomology (i.e., classes independent of a reduced word), using the Kazhdan-Lusztig basis of the corresponding Hecke algebra.

Résumé. Un résultat combinatoire important dans le calcul de Schubert pour la cohomologie et la K-théorie équivariante est représenté par les formules de Billey et Graham-Willems pour la localisation des classes de Schubert aux points fixes du tore. Ces formules sont uniformes pour tous les types de Lie, et sont basés sur le concept d’un polynôme de racines. Nous définissons les polynômes formels de racines associées à une loi arbitraire de groupe formel (et donc à une théorie de cohomologie généralisée). Nous utilisons ces polynômes pour simplifier les preuves de Billey et Graham-Willems, et aussi pour généraliser leurs résultats à la K-théorie connective et la cohomologie elliptique. Un autre résultat concerne la déinition d’une base de Schubert dans cohomologie elliptique (c’est à dire, des classes indépendantes d’un mot réduit), en utilisant la base de Kazhdan-Lusztig de l’algèbre de Hecke correspondant.

Keywords: Schubert classes, Bott-Samelson classes, elliptic cohomology, root polynomial, Kazhdan-Lusztig basis

1 Introduction

Modern Schubert calculus has been mostly concerned with the cohomology and K-theory (as well as their quantum deformations) of generalized flag manifolds G/B, where G is a connected complex semisimple Lie group and B a Borel subgroup; Kac-Moody flag manifolds have also been studied, but we will restrict ourselves here to the finite case. The basic results in Schubert calculus for other cohomology theories have only been obtained recently in [CZZ12, CZZ13, CZZ14, CPZ13, GR13, HHH05, HK11, KK13]. After this main theory has been developed, the next step is to give explicit formulas, thus generalizing...
well-known results in cohomology and K-theory, which are usually based on combinatorial structures. This paper is a contribution in this direction; for some of the related proofs, see [LZ14].

We focus on elliptic cohomology, more precisely, on the associated hyperbolic formal group law, which we view as the first case after K-theory in terms of complexity. (The correspondence between generalized cohomology theories and formal group laws is explained below.) The main difficulty beyond K-theory is the fact that the naturally defined cohomology classes corresponding to a Schubert variety depend on its chosen Bott-Samelson desingularization, and thus on a reduced word for the given Weyl group element (which is not the case in ordinary cohomology and K-theory, where we have naturally defined Schubert classes). Thus, one problem is to express combinatorially these so-called Bott-Samelson classes.

In this paper, we extend the combinatorial formulas for localizations of Schubert classes in (torus equivariant) cohomology and K-theory, which are due to Billey [Bi99] (cf. also [AJS94]) and Graham-Willems [Gr02, Wi04], respectively. These formulas are based on the concept of a root polynomial. We define formal root polynomials, which correspond to an arbitrary formal group law. We explain the connection of these polynomials to the hyperbolic solution of the Yang-Baxter equation. We then show that, in the hyperbolic case, the formal root polynomials provide an efficient way to compute the transition matrix between two natural bases of the formal Demazure algebra. As a corollary, we derive in a simpler and uniform manner (i.e., in all Lie types, and for both ordinary cohomology and K-theory) the connective K-theory version of the formulas of Billey and Graham-Willems, which seems new. We also derive a duality result in connective K-theory, as well as other related results, and state a positivity conjecture.

Another result is concerned with defining a Schubert basis in elliptic cohomology (i.e., classes independent of a reduced word), using the Kazhdan-Lusztig basis of the corresponding Hecke algebra.

2 Background

We briefly recall the main results in Schubert calculus for generalized cohomology theories.

2.1 Complex oriented cohomology theories

A (one dimensional, commutative) formal group law over a commutative ring R is a formal power series $F(x, y)$ in $R[[x, y]]$ satisfying

$$F(x, y) = F(y, x), \quad F(x, 0) = x, \quad F(x, F(y, z)) = F(F(x, y), z).$$

(1)

Let $E^*(\cdot)$ be a complex oriented cohomology theory with base ring $R = E^*(pt)$. By [Qu71], this is equipped with a formal group law $F(x, y)$ over R, which expresses the corresponding first Chern class, denoted $c(\cdot)$, of a tensor product of two line bundles L_1 and L_2 on a space X in terms of $c(L_1)$ and $c(L_2)$:

$$c(L_1 \otimes L_2) = F(c(L_1), c(L_2)).$$

(2)

The reciprocal of Quillen’s statement is false: there are formal group laws which do not come from complex oriented cohomology theories. However, if one translates and extends the axiomatics of oriented theories into the algebraic context, then to any formal group law one can associate the respective algebraic oriented cohomology theory [LM07]. In this paper we work in the more general algebraic setting, so $E^*(\cdot)$ stands for the respective algebraic oriented cohomology.

We refer to the (finite type) generalized flag variety G/B, and we let T be the corresponding maximal torus. We use freely the corresponding root system terminology. As usual, we denote the set of roots by
of \([CPZ13, \text{Def. 2.4}]\). The Weyl group acts on \(S\). More precisely, for an elliptic curve given in Tate coordinates by the respective formal group law is the hyperbolic one is the additive group law, which corresponds to ordinary cohomology \([HHH05]\). Its base ring \(E\) between genera and formal group laws) is precisely the one in (4). (cf. his earlier work). Indeed, the book is centered on the notion of a (2-parameter) virtual generalization appeared in Hirzebruch’s celebrated book \([Hi95]\) devoted to the proof of the Riemann-Roch theorem \([MR07]\). More precisely, for an elliptic curve given in Tate coordinates by \((1 - \mu_1 t - \mu_2 t^2)s = t^3\), it is known that the respective formal group law is the hyperbolic one

\[
F_\lambda(x, y) = \frac{x + y - \mu_1 xy}{1 + \mu_2 xy}, \quad \text{defined over } R = \mathbb{Z}[\mu_1, \mu_2].
\]

The hyperbolic formal group law is, in fact, a very natural one from a topological perspective. It implicitly appeared in Hirzebruch’s celebrated book \([Hi95]\) devoted to the proof of the Riemann-Roch theorem (cf. his earlier work). Indeed, the book is centered on the notion of a “(2-parameter) virtual generalized Todd genus”. It turns out that the associated formal group law (via the one-to-one correspondence between genera and formal group laws) is precisely the one in (4).

Let us also mention some important special cases. In the trivial case \(\mu_1 = \mu_2 = 0\), \(F_\lambda(x, y) = F_\alpha(x, y)\) is the additive group law, which corresponds to ordinary cohomology \(H^* (\cdot)\). If \(\mu_2 = 0\), and \(\mu_1 = 1\), resp. \(\mu_1 \) is not specialized, then \(F_\lambda(x, y) = F_m (x, y)\) is the corresponding version of the multiplicative formal group law, associated to \(K\)-theory, and connective \(K\)-theory, respectively.

2.2 Schubert and Bott-Samelson classes

Given a Weyl group element \(w\), consider a reduced word \(I_w = (i_1, \ldots, i_l)\) for it, so \(w = s_{i_l} \cdots s_{i_1}\). There is a Bott-Samelson resolution of the corresponding Schubert variety \(X(w)\), which we denote by \(\gamma_{I_w} : \Gamma_{I_w} \to X(w) \to G/B\). This determines a so-called Bott-Samelson class in \(E^*_T (G/B)\) via the corresponding pushforward map, namely \((\gamma_{I_w})_!(1)\). Here we let

\[
\zeta_{I_w} := (\gamma_{I_w^{-1}})_!(1),
\]

where \(I_w^{-1} := (i_l, \ldots, i_1)\) is a reduced word for \(w^{-1}\); we use \(I_{w^{-1}}\), rather than \(I_{w^{-1}}\), in order to simplify the correspondence with the setup in \([Bl99, Wi04]\), which is used in Sections \(4\) and \(5\). Note that \(\zeta_{\emptyset}\) is the class of a point (where \(\emptyset\) denotes the reduced word for the identity).

It is well-known that the Bott-Samelson classes are independent of the corresponding reduced words only for cohomology and \(K\)-theories (we can say that connective \(K\)-theory is the “last” case when this happens). In these cases, the Bott-Samelson classes are the Schubert classes, and they form bases of \(H^*_T (G/B)\) and \(K_T (G/B)\) over the corresponding formal group algebra \(S\), as \(w\) ranges over \(W\).
By [CZZ13], if we fix a reduced word, the twisted braid relations are the usual braid relations (since relations as well as (10) are called there are also more involved relations if \(m \) are bases of the free left \(Q \)-module of \(I \)). Following [HMSZ13, Def. 6.1] and [CZZ13, Def. 6.1], we define in \(R \) as an twisted group algebra \(Q \) variables (to be used later). Following [HMSZ13, §6] and [CZZ12, §3], consider the localization \(Q \) of \(S \) along all \(x_\alpha \), for \(\alpha \in \Phi \) (note the change of notation, from \(y_\lambda \) to \(x_\lambda \), cf. the convention at the beginning of Section 3.1), and define the twisted group algebra \(Q_W \) to be the smash product \(Q \# R[W] \), see [HMSZ13, Def. 6.1]. More precisely, as an \(R \)-module, \(Q_W \) is \(Q \otimes_R R[W] \), while the multiplication is given by

\[
q \delta_w \cdot q' \delta_{w'} = q(wq')q_{w, w'}, \quad q, q' \in Q, \ w, w' \in W.
\]

We denote \(\delta_i := \delta_{x_i}, x_{\pm i} := x_{\pm x_{\alpha_i}}, \) and \(x_{i+1} := x_{i+1}, x_{i+1} \), for \(i, j \in \{1, \ldots, n\} \); similarly for the \(y \) variables (to be used later). Following [HMSZ13, Def. 6.2] and [CZZ13, Def. 6.2], we define in \(Q_W \):

\[
X_i := \frac{1}{x_i} \delta_i - \frac{1}{x_i} \delta_i \equiv \frac{1}{x_i} (\delta_i - 1), \quad Y_i := X_i + \kappa_i = \frac{1}{x_i} + \frac{1}{x_i} \delta_i = 1 + \delta_i \frac{1}{x_i}, \quad i = 1, \ldots, n,
\]

where \(\kappa_i := \frac{1}{x_i} + \frac{1}{x_i} \). We call \(X_i \) and \(Y_i \) the Demazure and the push-pull element, respectively. The \(R \)-subalgebra \(D_F \) of \(Q_W \) generated by the elements of \(S \) and the elements \(\{X_i\} \), or \(\{Y_i\} \), is called the formal affine Demazure algebra. Its dual \(D_F^* \) serves as an integral model for \(E_\text{inv}(G/B) \) [CZZ14].

Relations in the algebra \(D_F \) were given in [HMSZ13, Thm. 6.14] and [HMSZ13, Prop. 8.10]. In the case of the hyperbolic formal group law, these relations are:

(a) For all \(i \), we have

\[
Y_i^2 = \mu_1 Y_i.
\]

(b) If \(\langle \alpha_i, \alpha_i^\vee \rangle = 0 \), so that \(m_{ij} = 2 \), where \(m_{ij} \) be the order of \(s_i s_j \) in \(W \), then

\[
Y_i Y_j = Y_j Y_i.
\]

(c) If \(\langle \alpha_i, \alpha_i^\vee \rangle = \langle \alpha_j, \alpha_i^\vee \rangle = -1 \), so that \(m_{ij} = 3 \), then

\[
Y_i Y_j Y_i = Y_j Y_i Y_j = \mu_2 (Y_j - Y_i).
\]

There are also more involved relations if \(m_{ij} = 4 \) or \(m_{ij} = 6 \), given in [HMSZ13, Prop. 6.8]. These relations as well as (10) are called twisted braid relations. In the case of ordinary cohomology and \(K \)-theory, the twisted braid relations are the usual braid relations (since \(\mu_2 = 0 \)).

Given a reduced word \(I_w = (i_1, \ldots, i_l) \) for \(w \in W \), define \(X_{I_w} := X_{i_1} \ldots X_{i_l} \) and \(Y_{I_w} := Y_{i_1} \ldots Y_{i_l} \). By [CZZ13], if we fix a reduced word \(I_w \) for each \(w \in W \), then \(\{X_{I_w} : w \in W \} \) and \(\{Y_{I_w} : w \in W \} \) are bases of the free left \(Q \)-module \(Q_W \). Note that, in cohomology and \(K \)-theory, \(X_{I_w} \) and \(Y_{I_w} \) do not depend on the choice of the reduced word \(I_w \), so we can simply write \(X_w \) and \(Y_w \).

A fundamental result in generalized cohomology Schubert calculus states that the Bott-Samelson classes \(\zeta_{I_w} \), for \(I_w = (i_1, \ldots, i_l) \), can be calculated recursively as follows (via the usual action of \(D_F \) on the Borel model of \(E_\text{inv}(G/B) \), see e.g. [GR13]):

\[
\zeta_{I_w} = Y_{i_1} \cdots Y_{i_l} \zeta_0.
\]
By analogy with (11), we define the following classes:

$$\tilde{\zeta}_I^w := X_{i_1} \cdots X_{i_l} \zeta_{\emptyset},$$

where \(\zeta_{\emptyset} = \zeta_w\) is the class of a point, and \(I_w = (i_1, \ldots, i_l)\) is a reduced word for \(w\), as above. Clearly, in ordinary cohomology we have \(\zeta_w = \tilde{\zeta}_w\), because \(X_i = Y_i\) (and there is no dependence on \(I_w\)). In \(K\)-theory we have \(X_i = Y_i - 1\); for the geometric significance of the corresponding classes \(\tilde{\zeta}_w\), we refer to Remark 4.7.

2.4 The GKM model of equivariant cohomology

In the GKM model, see e.g. [GKM98, GR13, HHH05, CPZ13], we embed \(E^*_T(G/B)\) into \(\bigoplus_{w \in W} S\), with pointwise multiplication. This comes from the embedding \(i^*: E^*_T(G/B) \to \bigoplus_{w \in W} S\), where

$$i^*: E^*_T(pt) \simeq \bigoplus_{w \in W} S,$$

where

$$i^* := \bigoplus_{w \in W} i_w^*, \quad \text{and} \quad i_w: pt \to G/B, \quad \text{with} \quad pt \mapsto w^{-1}.$$ (14)

There is a characterization of the image of this embedding, see e.g. [GR13]. We denote the elements of \(\bigoplus_{w \in W} S\) by \((f_w)_{w \in W}\); alternatively, we view them as functions \(f: W \to S\).

Finally, note that the algebras \(Q_W\) and \(D_F\) act on the GKM model of \(E^*_T(G/B)\), cf. [GR13, Eq. (3.19), (3.20)]. Using this action, we can calculate the classes \(\zeta_I^w\) and \(\tilde{\zeta}_I^w\) recursively via (11) and (12), as the class \(\zeta_{\emptyset} = \tilde{\zeta}_{\emptyset}\) is known, see [GR13, Eq. (4.4)].

3 Formal root polynomials and their properties

In this section we define formal root polynomials by extending the definitions in [Bi99, Gr02, Wil04], and begin their study. The setup is the one above, so it corresponds to an arbitrary formal group law.

3.1 Definition and basic facts

Consider the ring \(Q_W[[\Lambda]]_F = S \otimes_R Q_W\), where the elements of \(S\) on the left (denoted by \(y\)'s) commute with the elements of \(Q_W\). The formal root polynomials are elements of this ring which depend on a reduced word \(I_w = (i_1, \ldots, i_l)\) for a Weyl group element \(w\). In fact, we will define two formal root polynomials, corresponding to the Demazure and push-pull operators \(X_i\) and \(Y_i\) in (7). It is well-known that \(I_w\) induces a so-called reflection order on the roots in \(\Phi^+ \cap w\Phi^-\), namely

$$\Phi^+ \cap w\Phi^- = \{\alpha_{i_1}, s_i \alpha_{i_2}, \ldots, s_i \cdots s_{i_{l-1}} \alpha_{i_l}\}.\) (15)

Definition 3.1. The formal \(Y\)-root polynomial corresponding to \(I_w\) is

$$R^Y_{I_w} := \prod_{k=1}^{l} h^Y_{i_k}(s_{i_k} \cdots s_{i_{k-1}} \alpha_{i_k}),$$

where \(h^Y_i(\lambda) := 1 - y_\lambda Y_i\).

Similarly, we define the formal \(X\)-root polynomial by replacing \(h^Y_i(\lambda)\) with \(h^X_i(\lambda) := 1 + y_\lambda X_i\).
Example 3.2. For type A_2 and $w = s_is_js_i$, $I_w = (i, j, i)$, we obtain (cf. the notation in Section 2.3)

$$
R_{(i,j,i)}^Y = (1 - y_i Y_i)(1 - y_{i+j} Y_j)(1 - y_j Y_i)
= -y_i y_{i+j} Y_i Y_j + y_i y_{i+j} Y_j Y_i + (\kappa_i y_i y_j - y_i - y_j) Y_i - y_{i+j} Y_j + 1.
$$

Consider a ring homomorphism $ev: S \otimes_R Q \to Q$ given by $y_\lambda \mapsto x_{-\lambda}$, for $\lambda \in \Lambda$. Since $Q_W[[\Lambda]]_F$ is a left $S \otimes_R Q$-module, it induces a homomorphism of left $S \otimes_R Q$-modules $ev: Q_W[[\Lambda]]_F \to Q_W$, which we call the evaluation map.

Lemma 3.3. We have

$$
ev(R_{I_w}^X) = \delta_w, \quad ev(R_{I_w}^Y) = \theta_{I_w} \delta_w, \quad \text{where } \theta_{I_w} := \prod_{k=1}^{t} \theta(s_{i_1} \ldots s_{i_{k-1}} \alpha_{i_k}), \quad \theta(\lambda) = \frac{-x_{-\lambda}}{x_{\lambda}} \in S.
$$

Furthermore, θ_{I_w} does not depend on the choice of the reduced word I_w for w, so we write $\theta_w = \theta_{I_w}$.

We will call θ_w the normalizing parameter.

Remark 3.4. In the ordinary cohomology case, the formal root polynomials coincide with those Billey [Bi99, Definition 2], and we have $\theta(\lambda) = 1$. In the K-theory case, the Y-root polynomials coincide with those of Willems [Wil04, Section 5], and we have $\theta_w = e^{\rho-w}r$, where $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$, as usual.

3.2 Independence of choices of reduced words

We now provide necessary and sufficient conditions for the root polynomials $R_{I_w}^Y$ and $R_{I_w}^X$ to be independent of a choice of I_w, hence generalizing the respective results of Billey [Bi99] and Willems [Wil04]. For simplicity, we refer here only to the Y-root polynomial, and let $h_i = h_i^Y$.

Proposition 3.5. If $\langle \alpha_i, \alpha_j^\vee \rangle = 0$, i.e., $m_{ij} = 2$, then the h_i's satisfy the commuting relations for all $\lambda, \nu \in \Lambda$, that is, $h_i(\lambda) h_j(\nu) = h_j(\nu) h_i(\lambda)$.

Proposition 3.6. Consider a root system containing a pair of simple roots α_i, α_j with $m_{ij} = 3$, which we fix. Also assume that 2 is not a zero divisor in the coefficient ring R. Then the following are equivalent.

(a) The underlying formal group law is the hyperbolic one [4].

(b) We have

$$
h_i(\lambda) h_j(\lambda + \nu) h_i(\nu) = h_j(\nu) h_i(\lambda + \nu) h_j(\lambda),
$$

for all $\lambda, \nu \in \Lambda$. We say that h_i, h_j satisfy the (type A) Yang-Baxter relation for all weights.

(c) We have

$$
h_i(\alpha_i) h_j(\alpha_i + \alpha_j) h_i(\alpha_j) = h_j(\alpha_j) h_i(\alpha_i + \alpha_j) h_j(\alpha_i).
$$

We say that h_i, h_j satisfy the (type A) Yang-Baxter relation for the corresponding simple roots.

Now recall from [Bi99, Wil04] the Yang-Baxter relations of types B and G.

Proposition 3.7. Consider a root system containing a pair of simple roots α_i, α_j with $m_{ij} = 4$ or $m_{ij} = 6$, which we fix. Also assume that the underlying formal group law is the hyperbolic one. Then h_i and h_j satisfy the (type B, resp. type G) Yang-Baxter relation for all weights, cf. [16].
Based on Propositions \ref{prop:3.5} \ref{prop:3.6} \ref{prop:3.7} we deduce the following result.

Theorem 3.8. The root polynomial $R^Y_{I_w}$ does not depend on the choice of I_w if the underlying formal group law $F(x, y)$ is the hyperbolic one; so we can write $R^X_{I_w}$ instead. The reciprocal holds if the corresponding root system contains a pair of simple roots α_i, α_j with $m_{ij} = 3$.

Remarks. (1) The first part of Theorem 3.8 appears as \cite{Bi99} Theorem 2, resp. \cite{Wil04} Theorem 5.2, in the case of the additive formal group law, resp. the multiplicative one.

(2) An alternative proof of the first part of Theorem 3.8, which is uniform for all Lie types, is given in Section 4.1.

4 Applications of formal root polynomials in the hyperbolic case

4.1 The coefficients of formal root polynomials

In this section we present our main application of formal root polynomials in the hyperbolic case, which is continued in the next section.

We start with an arbitrary formal group law $F(x, y)$. Consider the root polynomials $R^Y_{I_w}$ and $R^X_{I_w}$ as elements of $Q_W[[\Lambda]]_F$. Recall that, after we fix a reduced word I_v for each $v \in W$, the elements $\{Y_{I_w} : v \in W\}$ and $\{X_{I_w} : v \in W\}$ form bases of the left $S \otimes_R Q$-module $Q_W[[\Lambda]]_F$.

Definition 4.1. Let $K^Y(I_v, I_w)$, resp. $K^X(I_v, I_w)$, denote the coefficient of Y_{I_w} in the expansion of $R^Y_{I_w}$, resp. the coefficient of X_{I_w} in the expansion of $R^X_{I_w}$, i.e.

$$R^Y_{I_w} = \sum_{v \leq w} K^Y(I_v, I_w) Y_{I_v}, \quad R^X_{I_w} = \sum_{v \leq w} K^X(I_v, I_w) X_{I_v}. \quad (17)$$

By analogy with the setup of \cite{Bi99}, we call $K^Y(I_v, I_w)$ and $K^X(I_v, I_w)$ (normalized) formal Kostant polynomials.

From now on, we assume that we are in the hyperbolic case, so by Theorem 3.8 we know that the root polynomials do not depend on the choice of a reduced word. However, we will not use this knowledge in this section, so we will continue to use the notation $R^Y_{I_w}$ and $R^X_{I_w}$.

Observe that the free left Q-module Q_W also has a basis $\{\delta_w : w \in W\}$. Consider the following expansions, cf. \cite{CZZ13} Lemmas 3.1 and 3.2:

$$\delta_w = \sum_{v \leq w} b^Y_{w, I_v} Y_{I_v}, \quad \delta_w = \sum_{v \leq w} b^X_{w, I_v} X_{I_v} \quad (18)$$

for some coefficients b^Y_{w, I_v} and b^X_{w, I_v} in S (in x’s).

By applying the evaluation map ev to (17) and by using Lemma 3.3 we derive the following result. Here we use the sign change involution $*$ on the formal group algebra S, given by $y_\lambda \mapsto y_{-\lambda}$ (not to be confused with ev).

Theorem 4.2. In the hyperbolic case, we have in S:

$$b^Y_{w, I_v} = *(\theta_w K^Y(I_v, I_w)), \quad b^X_{w, I_v} = *(K^X(I_v, I_w)).$$

In particular, $K^Y(I_v, I_w)$ (resp. $K^X(I_v, I_w)$), and hence $R^Y_{I_w}$ (resp. $R^X_{I_w}$), do not depend on the choice of I_w, so we can use the notation $K^Y(I_v, I_w)$ and $R^Y_{I_w}$ (resp. $K^X(I_v, I_w)$ and $R^X_{I_w}$) in this case.
Remarks 4.3. (1) The formula in Theorem 4.2 relates the coefficients of the Y-root polynomial with the entries of the transformation matrix between two natural bases of the twisted formal group algebra; similarly for the X-root polynomial. This provides an efficient way to compute these matrices, see Example 4.4. For cohomology and K-theory, these matrices feature prominently in the work of Kostant-Kumar [KK90], as they encode information about the singularities of Schubert varieties; see [BL00, Chapter 7].

(2) Theorem 4.2 contains an alternative, type-independent proof to the first part of Theorem 3.8.

Example 4.4. Consider the root system A_2 and the Lorentz formal group law, i.e., (4) with $\mu_1 = 0$. For each permutation $v \neq w_o$ in S_3 we have a unique reduced word, and choose $I_{w_o} = (1, 2, 1)$. Based on Example 3.2 while also noting that here $\kappa_i = 0$, $\theta_w = 1$ (cf. Remark 3.4), and $y_{-w} = -y_w$, we have

$$\delta_{w_o} = y_1 y_1 + 2 y_2 Y_1 Y_2 Y_1 + y_1 y_1 + 2 Y_1 Y_2 + y_2 y_1 + 2 Y_2 Y_1 + (y_1 + y_2) Y_1 + y_1 + 2 Y_2 + 1.$$

If we choose $I_{w_o} = (2, 1, 2)$ instead, we need to adjust the above expansion by rewriting $Y_1 Y_2 Y_1$ as $Y_2 Y_1 Y_2 + \mu_2 (Y_2 - Y_1)$ via (10), and then collecting terms. Alternatively, we can avoid using the twisted braid relation by using the expression for $R^Y_{(1, 2, 1)}$ in Example 3.2. Note that, although $R^Y_{(1, 2, 1)} = R^Y_{(2, 1, 2)}$, the expressions for them given in Example 3.2 are different.

Let us now turn to a generalization of the cohomology and K-theory Schubert structure constants. Given a choice of reduced words I_w, let $Y_{I_w}^*$ in the dual Demazure algebra D_r^* be the usual dual of Y_{I_w}, see Section 2.3; these are not the Bott-Samelson classes in general (see Section 5). Let

$$Y_{I_w}^* \cdot Y_{I_w}^* = \sum_{w \geq u \geq v} p_{I_w, I_u}^I Y_{I_u}^* Y_{I_w}^*$$

be the expansion of the given product into the basis $\{ Y_{I_w}^* \}$ of D_r^*. We follow the approach in Billey’s paper [Bi99] related to the cohomology structure constants. We start by generalizing [Bi99, Lemma 5.3].

Proposition 4.5. The coefficients p_{I_w, I_u}^I can be computed recursively by

$$p_{I_w, I_u}^I = \frac{1}{b_{I_w, I_u}} \left(\alpha^I_{I_w, I_u} b_{I_w, I_u} Y_{I_u} - \sum_{t < u} p_{I_{w}, I_{t}}^I b_{I_{w}, I_{t}} \right),$$

starting with $w = u$ (for $v \leq u$, $p_{I_w, I_u}^I = b_{I_w, I_u}^I$) and going up in length.

Corollary 4.6. For any formal group law, the coefficients p_{I_w, I_u}^I do not depend on the choice of I_w, so we can write $p_{I_{w}, I_{u}}^I = p_{I_{u}, I_{w}}^I$.

Hence, in the hyperbolic case, via Theorem 4.2, we are able to compute p_{I_w, I_u}^I in terms of the coefficients $K^Y(I_w, I_u)$ of Y-root polynomials. This gives another application of these polynomials. We have completely similar results for the multiplication of the basis elements $\{ X_{I_w}^* \}$.

4.2 Localization formulas in connective K-theory

We work in the setup of connective K-theory, whose formal group law is obtained by setting $t := \mu_1$ and $\mu_2 = 0$ in (4), cf. Section 2.1. Recall from Section 2.3 that the corresponding operators Y_i and X_i satisfy $Y_i^2 = t Y_i$, $X_i^2 = -t X_i$, and the usual braid relations. We define the functions

$$\psi^v := (\xi w_o)^{(v)} , \quad \xi^v := (\zeta w_o)^{(v)},$$

where, given a function $f : W \to S$, we define $f^{(v)} : W \to S$ by $f^{(v)}(w) := f(ww_o)$.

$$\psi^v := (\xi^v w_o)^{(v)} , \quad \xi^v := (\zeta^v w_o)^{(v)},$$
Remark 4.7. Consider ordinary K-theory, so $t = 1$. The evaluation $\xi^v(w)$ can be interpreted geometrically as $i^*_w(v_*([O_{V_{uw}}]))$, where O_v is the structure sheaf of the Schubert variety indexed by v (see Section 2.4). The Poincaré dual of the K-theory class $\xi_v = [O_v]$ is the class of the ideal sheaf of the Schubert variety indexed by v, which under i^*_v is mapped to $*\psi^v(w)$, see e.g., [KK90], [GK08 Prop. 2.1]. The duality property, which holds for both cohomology and K-theory, says that there is a non-degenerate pairing

$$p_t(\xi_v \cdot *\psi^w) = p_t(Y_{w^{-1}} \cdot \eta_v \cdot X_{(w^{-1})v}^{-1} \cdot (\psi^v w)) = \delta_{v,w}, \quad (20)$$

where p_t is the degree map for cohomology and the Euler characteristic for K-theory.

The following formulas generalize the ones of Billey [Bi99], in cohomology, and Graham-Willems [Gr02, Wil04], in ordinary K-theory. They are proved by induction of $\ell(v)$. To state our result, consider a reduced word $I_w = (i_1, \ldots, i_k)$ for w, and recall the corresponding reflection order $< \ldots < i_{k} \leq \ell$, namely $(\beta_1, \ldots, \beta_l)$, where $\beta_j := s_{i_{j_1}} \ldots s_{i_{j_m}} \alpha_{i_j}$.

Theorem 4.8. In connective K-theory, we have $\psi^v(w) = \theta_w K^Y(v, w)$. More explicitly, we have

$$\psi^v(w) = \theta_w \sum_{1 \leq j_1 < \ldots < j_k \leq \ell} (-1)^k t^{k-\ell(v)} y_{j_1} \ldots y_{j_k}, \quad (21)$$

where $\ell(v) \leq k \leq l$, and the summation ranges over the integer sequences $1 \leq j_1 < \ldots < j_k \leq \ell$ for which the corresponding subword $\langle p_1, \ldots, p_k \rangle = \langle i_{j_1}, \ldots, i_{j_k} \rangle$ of I_w is subject to $Y_{p_1} \ldots Y_{p_k} = t^{k-\ell(v)} Y_v$. Similar results hold for ξ^v.

4.3 The results of Billey and Graham-Willems revisited: duality in connective K-theory

The following result is an immediate consequence of Theorem 4.2 and the duality result for an arbitrary cohomology theory in [CZZ13, Theorem 12.4].

Theorem 4.9. The connective K-theory analogue of the duality (20) is equivalent to both formulas, for ψ^v and ξ^v, in Theorem 4.8.

Let us comment on this result. Based on the duality result (20) in cohomology and K-theory, we have a new proof of Theorem 4.8 in these cases, and hence of the formulas of Billey and Graham-Willems. This proof has the advantage of being very short, completely transparent, and uniform (in all short and for both cohomology and K-theory). On the other hand, by reversing our reasoning, in connective K-theory we can rely on the proof of Theorem 4.8 and derive the analogue of the duality (20), which seems new.

5 Bott-Samelson classes in the hyperbolic case

In the previous section, we have considered two families of elements in $E_2^*(G/B)$, namely the Bott-Samelson classes ζ_{I_t} and X^+_t, both of which are viewed as functions from W to S (recall that $X^+_{t_0}$ is evaluated at δ_w, cf. the expansion (15)). It is not hard to see (by the duality argument in Section 4.3) that these families essentially coincide in K-theory, but not beyond that, due to the dependence on the reduced word I_w. Furthermore, in Theorem 4.2 we have been able to express $X^+_t(\delta_w)$ in the hyperbolic case based on formal root polynomials, thus generalizing the results of Billey and Willems in ordinary cohomology and K-theory. We now refer to the calculation of ζ_{I_t} in the hyperbolic case, which turns out to be a
considerably harder problem. For simplicity, we denote the parameters in (4) by \(t := \mu_1 \) and \(u := -\mu_2 \), so the underlying ring \(R \) is \(\mathbb{Z}[t, u] \).

Based on the analogy with (21), as well as experimental evidence, we formulate the following positivity conjecture. To state it, consider \(v \leq w \), and let \(\Phi^+ \cap w\Phi^- = \{ \beta_1, \ldots, \beta_l \} \); also let \(z_i = y_{-\beta_i} \).

Conjecture 5.1. (1) If \(t = 0 \), \(\zeta_{t, ww_0}(ww_0) \) is a sum with positive coefficients of terms of the form

\[
u^{(m-\ell(v))/2}z_{j_1} \cdots z_{j_m} ,
\]

where \(\ell(v) \leq m \leq l \), \(m - \ell(v) \) is even, and \(1 \leq j_1 < \cdots < j_m \leq l \).

(2) If \(t = 1 \), \(\zeta_{t, ww_0}(ww_0) \) is a sum with positive coefficients of terms of the form

\[(-1)^{k-\ell(v)}\nu^{(m-k)/2}z_{j_1} \cdots z_{j_m} ,
\]

where \(\ell(v) \leq k \leq m \leq l \), \(m - k \) is even, and \(1 \leq j_1 < \cdots < j_m \leq l \).

If the conjecture is true, it would be interesting to find the geometric reason for positivity.

6 A Schubert basis via the Kazhdan-Lusztig basis

An important open problem in Schubert calculus beyond \(K \)-theory is defining a Schubert basis, i.e., classes which are independent of a reduced word for the indexing Weyl group elements. The standard topological approach works if the Schubert variety classes which are independent of a reduced word for the indexing Weyl group elements.

Based on the analogy with (21), as well as experimental evidence, we formulate the following positivity conjecture. To state it, consider \(v \leq w \), and let \(\Phi^+ \cap w\Phi^- = \{ \beta_1, \ldots, \beta_l \} \); also let \(z_i = y_{-\beta_i} \).

Conjecture 5.1. (1) If \(t = 0 \), \(\zeta_{t, ww_0}(ww_0) \) is a sum with positive coefficients of terms of the form

\[
u^{(m-\ell(v))/2}z_{j_1} \cdots z_{j_m} ,
\]

where \(\ell(v) \leq m \leq l \), \(m - \ell(v) \) is even, and \(1 \leq j_1 < \cdots < j_m \leq l \).

(2) If \(t = 1 \), \(\zeta_{t, ww_0}(ww_0) \) is a sum with positive coefficients of terms of the form

\[(-1)^{k-\ell(v)}\nu^{(m-k)/2}z_{j_1} \cdots z_{j_m} ,
\]

where \(\ell(v) \leq k \leq m \leq l \), \(m - k \) is even, and \(1 \leq j_1 < \cdots < j_m \leq l \).

If the conjecture is true, it would be interesting to find the geometric reason for positivity.
above isomorphism. We now define our Schubert classes, which we call Kazhdan-Lusztig (KL-) Schubert classes.

Definition 6.1. Consider the element \mathcal{S}_w in $Ell^*_T(G/B)$ given by $(t + t^{-1})^{-\ell(w)} \Gamma_{\omega^{-1}}(\zeta_0)$ under the action of D_T on the GKM model of $Ell^*_T(G/B)$.

Theorem 6.2. The KL-Schubert classes $\{\mathcal{S}_w : w \in W\}$ form a basis of $Ell^*_T(G/B)$. In the limit $t \to 0$, the class \mathcal{S}_w becomes the Bott-Samelson class ζ_w in K-theory, which coincides with the corresponding Schubert class.

We conjecture the following natural property for the KL-Schubert classes \mathcal{S}_w.

Conjecture 6.3. If the Schubert variety $X(w)$ is smooth, then the class $[X(w)]$ in $(\mathbb{C},2)$ coincides with \mathcal{S}_w.

We tested this conjecture on the computer. Moreover, we proved the special cases below.

Theorem 6.4. Conjecture 6.3 is true in the following cases (which all correspond to non-singular Schubert varieties):

1. in all types for w which is a product of distinct simple reflections;
2. in all classical types A_n, B_n, C_n, D_n, for w^{-1}, where w is a highest coset representative for W_n/W_{n-1} (in particular, for $w = w_o$, the longest element, we have $\mathcal{S}_{w_o} = 1$).

Remark 6.5. Case (1) of Theorem 6.4 is easy, because the formal group law is not involved in the calculation of the respective classes. However, this no longer happens in case (2), which is therefore highly non-trivial.

References

