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We define parallelograms of basea andb in a group. They appear as minimal relators in a presentation of a subgroup
with generatorsa andb. In a Lie group they are realized as closed polygonal lines, with sides being orbits of left-
invariant vector fields. We estimate the number of sides of parallelograms in a free nilpotent group and point out a
relation to the rank of rational series.

Keywords: Lie algebras, free group, Magnus group, lower central series, Lyndon basis

1 Introduction
In IR2 a parallelogram of basea andb can be defined as a closed polygon with the minimum number of
sides parallel toa andb. In that paper we also consider parallelograms defined in more general groups.

In section1. we first give some definitions and examples of parallelograms in Lie groups. These
examples show the various complex situations occurring in the general case. In this paper we concentrate
our attention on free nilpotent groups. This analysis will give universal properties for parallelograms. We
obtain

Theorem. The number of sides of a parallelogram on a free nilpotent group on two generators of ordern
is betweenn andn2.

We do not know what is the exact number of sides of parallelograms in a free nilpotent group neither
how manynon-equivalentparallelograms exist. We hope that an investigation of parallelograms might
help understand general nilpotent groups. In particular it will be interesting to find presentations with
relators of minimal size.

We have chosen in this paper to recall the basic properties and constructions of free Lie algebras in
order to make it self-contained. That is done in section2. In the last section we then introducemth-order
parallelograms and prove our result. A connection with rational series is pointed out at the end of the
paper.

Our initial motivation to study parallelograms was the notion of curvature and holonomy of a con-
nection for Riemannian manifolds and the generalization of those notions to sub-Riemannian geometry
(see [FGR] and [BeR]). In classical differential geometry, curvature appears as the quadratic term in
the asymptotic expansion of holonomy around short (four-sided) parallelograms, holonomy being the
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measure of the difference of the vector field by parallel translation around a closed loop. In the case of
sub-Riemannian manifolds, the tangent space is naturally a nilpotent group ([BeR]) and the holonomy as-
sociated to it will be calculated usingparallelogramswith many sides. The analog of sectional curvatures
should be the holonomy associated to different parallelograms.

Another motivation is the approximation of a given element of the group by elements of a given sub-
group. This occur for example in the search of symplectic integrators (see [K, Su]) that give numerical
schemes for long-time integration of hamiltonian systems. Namely we try to approximate exp✄ x ☎ y✆ by
a product of exp✄ x✆ and exp✄ y✆ . In this frame, minimal length ofmth-order approximants are bounded by
approximately 2m.
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2 Definitions and examples
Definition 2.1 A segmentin a Lie group is a curve obtained by following the orbit of left-invariant vector
field. It has initial and end points. Two segments are parallel if they are orbits of two dependent left-
invariant vector fields.

Definition 2.2 A polygonal linein a Lie group is a curve obtained by concatenation of segments, two
consecutive segments being not parallel. This is a sequence of segments where the end point of one of
them coincides with the initial point of its successor. Each segment is called aside.

Observe that once we have fixed a left invariant vector fieldX, a side is of the formγ ✄ t ✆✞✝ x0exp✄ tλX ✆ ,
where 0 ✟ t ✟ 1. In that case we call✠ λ ✠ the lengthof the side.γ ✄ 0✆ is its initial point andγ✄ 1✆ its end
point.

Definition 2.3 A polygon in a Lie group is a closed polygonal line. Itslength is the sum of its sides
lengths.

Definition 2.4 A parallelogramof baseX and Y in a Lie group is a polygon with sides of integer length,
obtained from the two given left-invariant vector fields X andY✡ with minimum length. Two parallelograms
areequivalentif there exists a group isomorphism which maps one parallelogram onto the other.

In order to describe explicitly a polygonal line withn sides, let☛☞✝✍✌ Xα ✎ be a family of linearly inde-
pendent vectors in the Lie algebrag of the Lie groupG. Fix x0 ✝ 1 ✏ G. We writeγj ✄ t ✆✑✝ x j ✒ 1exp✄ tλ jXα j ✆
for x j ✝ x j ✒ 1exp✄ λ jXα j ✆ , 0 ✟ t ✟ 1 and 1✟ j ✟ n. Here we require thatXα j andXα j ✓ 1 are independent.
Denote byP ✄ λ1Xα1 ✡✕✔✖✔✖✔✗✡ λXαn ✆ the polygonal line defined in this way.

Example 2.1 Consider the abelian Lie groupIRn. A parallelogram in that group is clearly aparallelo-
gram.
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Example 2.2 Consider the Heisenberg group H3 with Lie algebra generated by X✡ Y✡ Z, with ✘X ✡ Y ✙✚✝ Z,
all other brackets being null. One can verify, using the Campbell-Hausdorff formula that both

P8 ✄ X ✡ Y ✆✛✝ P ✄ X ✡ Y ✡✖✜ X ✡✖✜ 2Y ✡✖✜ X ✡ Y✡ X ✆ and P✢8 ✄ X ✡ Y ✆✞✝ P ✄ X ✡ Y ✡✖✜ X ✡✖✜ Y✡✕✜ X ✡ Y ✡ X ✡ Y ✆
are parallelograms. They are not equivalent as P8 has at least one side of length two. On the other hand
starting with X✡ Z we get a parallelogram of 4 sides.

Example 2.3 Let L4 be a free nilpotent group of order 4, generated by X and Y. We can verify that
P ✄ X ✡ Y✡✕✜ 2X ✡✖✜ Y✡ X ✡ Y ✡ X ✡✕✜ Y ✡✖✜ 2X ✡ Y ✡ X ✡✖✜ Y✆ is a parallelogram. It has length 14. An interesting question
would be to know all non-equivalent parallelograms.

Example 2.4 If the group generated byexp✄ X ✆ andexp✄ Y ✆ is free, then there is no parallelogram of base
X and Y.

We thank the referee for pointing out the two following examples.

Example 2.5 As a result of a theorem bySANOV ([Sa]), for X ✣✤✝ ✥
0 1
0 0 ✦ and X✒ ✝ ✥

0 0
1 0 ✦ , the

group G ✝★✧ exp✄ 2X ✣✛✆✩✡ exp✄ 2X ✒ ✆✫✪ is free (see also [LS]), so there exist no parallelogram of base2X ✣
and2X ✒ . Moreover it is straightforward that P✝✬✄ exp✄ X ✣✭✆ exp✄✮✜ X ✒ ✆✕✆ 6 ✝ 1 is a parallelogram of length
12 with base X✣ and X✒ .

We could have given a more general definition of a parallelogram in an arbitrary group. Leta andb
be two elements on a groupG andG ✧ a ✡ b ✪ be the subgroup generated bya ✡ b. Consider the set of all
relators, i. e., the set of words ina ✡ b ✡ a✒ 1 ✡ b✒ 1 which are the identity inG. One should consider only
reduced words in the sense that ifa is of ordern andan appears in a word, one should substitute the
identity for an. The same forb. A parallelogramof basea ✡ b is a reduced relator (in the above sense) of
minimal length with lettersa ✡ b ✡ a✒ 1 ✡ b✒ 1. Of course ifG ✧ a ✡ b ✪ is free ina ✡ b there is no parallelogram.

Example 2.6 In the case of the symmetric group

S3 ✝★✧ σ1 ✡ σ2; σ2
i ✝ 1 ✡ σ1σ2σ1 ✝ σ2σ1σ2 ✪

one can verify that a minimal relator with baseσ1 ✡ σ2 is ✄ σ1σ2 ✆ 3 of length 6. On the other hand we have
also

S3 ✝★✧ σ1 ✡ σ3 ✝ σ2σ1; σ2
1 ✝ 1 ✡ σ3

3 ✝ 1 ✡ σ1σ3 ✝ σ3σ1 ✪
that has a minimal relator of length 4.

In the case of Lie groups we would like to defineinfinitesimal parallelograms, that is parallelograms
which remain the same in form when their sides are changed by a conformal factor. They will not exist in
general but in the case of graded nilpotent groups their existence is assured.

Example 2.7 Consider the Lie group with Lie algebra generated by X✡ Y with ✘X ✡ Y ✙✯✝ X. Then we can
construct a parallelogram which is not infinitesimal. Observe that

exp✄ tY ✆ exp✄ uX ✆ exp✄✖✜ tY ✆✛✝ exp✄ uexp✄✖✜ t ✆ X ✆✕✆✩✔
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So if t ✝✍✜ ln2 and u ✝ 1, we haveexp✄ tY ✆ exp✄ uX ✆ exp✄✖✜ tY ✆ exp✄✖✜ uexp✄✮✜ t ✆ X ✆✞✝ 1. That is a paralle-
logram of length 5 with baseln2 Y and X. It is clear that if we change the sides by a conformal factor
this will no longer be a parallelogram. More generally, a polygon is a product

exp✄ c1Y ✆ exp✄ d1X ✆✚✰✖✰✖✰ exp✄ cnX ✆ exp✄ dnY ✆
such that∑i ✄ ∑ j ✱ i c j ✆ exp✄✖✜ di ✆✛✝ 0. The previous equation has clearly no integer solutions.

Example 2.8 Let us consider inIR2, X ✝ ∂x and Y ✝ f ✄ x✆ ∂y for a given analytic function f . The Lie
algebra L✄ X ✡ Y ✆ is in general infinite dimensional as✄ ad X ✆ nY ✝ f ✲ n✳ ✄ x✆ ∂y and is spanned, as vector
space by X and✌✴✄ adX ✆ nY ✎ . By noticing thatexp✄ λadX ✆ Y ✝ f ✄ x ☎ λ ✆ ∂y, we deduce that

exp✄ tX ✆ exp✄ uY ✆ exp✄✮✜ tX ✆✵✝ exp✄ u f ✄ x ☎ t ✆ ∂y ✆
so

exp✄ X ✆ exp✄ Y ✆ exp✄✮✜ X ✆ exp✄ Y ✆ exp✄ X ✆ exp✄✮✜ Y ✆ exp✄✮✜ X ✆ exp✄✮✜ Y ✆✶✝
exp✄ f ✄ x ☎ 1✆ ∂y ✆ exp✄ f ✄ x✆ ∂y ✆ exp✄✖✜ f ✄ x ☎ 1✆ ∂y ✆ exp✄✮✜ f ✄ x✆ ∂y ✆✶✝ 1 ✔

This gives a parallelogram of length 8.

3 Magnus Groups and Algebras
Let us first introduce some notations and recall some results about free groups, free associative algebras
and free Lie algebras. All these results can be found in ([B, La, R]).

Let X be a set (alphabet). We denote byX ✷ the free monoid generated byX, that is, the set of words
including the empty word denoted by 1, with concatenation as a product.X ✷ is totally ordered by the
lexicographic order. The free magmaM ✄ X ✆ is the set of words with parentheses, generated byX and
A ✄ X ✆ denotes the free associative algebra, that is to say theQ-algebra ofX ✷ . An elementP in A ✄ X ✆ will
be written∑w ✸ X ✹ ✄ P✡ w✆ w.

We denote byL ✄ X ✆ the free Lie algebra onA. It is the quotient of theQ-algebra ofM ✄ X ✆ by the ideal
generated by the elements✄ u ✡ u✆ and ✄ u ✡✕✄ v✡ w✆✖✆✵☎✺✄ v✡✗✄ w✡ u✆✖✆✑☎✻✄ w✡✕✄ u ✡ v✆✖✆ . The associative algebraA ✄ X ✆
may be identified to the enveloping algebra ofL ✄ X ✆ by considering✘ v✡ w✙✯✝ vw ✜ wv. We denote by adx
the mapy ✼✽✾✘ x ✡ y✙ .

The free group generated byX is denoted byF ✄ X ✆ .
3.1 Gradations

The setsL ✄ X ✆✩✡ F ✄ X ✆ so asA ✄ X ✆ are graded by
— the length (the unique homomorphism that extends the functionx ✼✽ 1 on X). For x ✏ X ✷ (resp.
F ✄ X ✆✿✡ M ✄ X ✆ ) ✠ x ✠ denotes the length.Ln ✄ X ✆ (resp. An ✄ X ✆ ) is the submodule generated by monomials of
lengthn.
— the multi-degree which is the unique homomorphism fromX ✷ (resp. F ✄ X ✆✿✡ M ✄ X ✆ ) onto IN✲ X ✳ that
extendsx ✼✽ 1lx. For a givenα in IN ✲ X ✳ , Lα ✄ X ✆ (resp. Aα ✄ X ✆ ) denotes the submodule generated by
monomials of degreeα.
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Definition 3.1 Let A✡ B be subgroups of a group C. We denote by✄ A ✡ B✆ the set of all commutators✄ a ✡ b✆✞✝ aba✒ 1b✒ 1. Starting with F❀ 1 ✄ X ✆✞✝ F ✄ X ✆ and defining F❀ n ✄ X ✆✞✝❁✄ F❀ 1 ✄ X ✆✿✡ F❀ n ✒ 1 ✄ X ✆✖✆ , we get the
so-calledlower central series.

As a consequence, we have✄ F❀ n ✄ X ✆✩✡ F❀ m ✄ X ✆✕✆❃❂ F❀ n✣ m ✄ X ✆ andF ✄ X ✆✗❄ F❀ n ✄ X ✆ is an abelian group.

3.2 Formal series
We defineL̂ ✄ X ✆ and Â ✄ X ✆ as L̂ ✄ X ✆✫✝ ∏n ❀ 0Ln ✄ X ✆ Â ✄ X ✆✫✝ ∏n ❀ 0An ✄ X ✆ . We will write x ✏ L̂ ✄ X ✆ (resp.
Â ✄ X ✆✖✆ as a series∑n ❀ 0xn. L̂ ✄ X ✆ so asÂ ✄ X ✆ are algebras with multiplications law✄ xy✆ n ✝ ∑

p✣ q❅ n
xpyq ✡✛✄✖✘ x ✡ y✙❆✆ n ✝ ∑

p✣ q❅ n
✘ xp ✡ yq ✙❇✔ (1)

We will also usêL ❀ p ✄ X ✆❈✝ ∏n ❀ pLn ✄ X ✆ Â❀ p ✄ X ✆✞✝ ∏n ❀ pAn ✄ X ✆ . The setΓ ✄ X ✆✞✝ 1 ☎ Â❀ 1 ✄ X ✆ is called the
Magnus group. It is a subgroup of the invertible elements ofÂ ✄ X ✆ . One defines the exponential and the
logarithm as

exp :Â❀ 1 ✄ X ✆❉✽ Γ ✄ X ✆ log : Γ ✄ X ✆❉✽ Â❀ 1 ✄ X ✆
x ✼✽ ∑n ❀ 0

xn

n!
✡ x ✼✽ ✜ ∑n ❀ 1

✄ 1 ✜ x✆ n
n

✔
They are mutually reciprocal functions and we have (see [B, Ch. II,❊ 5]) the

Theorem 3.1 (Campbell-Hausdorff) For x ✡ y ✏ L̂ ❀ 1 ✄ X ✆ ,
H ✄ x ✡ y✆✛✝ log ✘ exp✄ x✆ exp✄ y✆❇✙✑✏ L̂ ❀ 1 ✄ X ✆✿✔ (2)

Denoting byÊ❀ n ✄ X ✆✞✝ exp✄ L̂ ❀ n ✄ X ✆✖✆ , we get

Corollary 3.1 The setÊ❀ 1 ✄ X ✆✞✝ exp✄ L̂ ❀ 1 ✄ X ✆✖✆❋❂ Γ ✄ X ✆ is a group.

Ê❀ 1 ✄ X ✆ acts on itself by conjugacy and we have exp✄ x✆ exp✄ y✆ exp✄✮✜ x✆✞✝ exp✄ exp✄ adx✆ y✆ .
Definition 3.2 Let us consider the Magnus map µ: F ✄ X ✆●✽ Γ ✄ X ✆ as the unique group homomorphism
that extends x✼✽ 1 ☎ x, for x ✏ X. We set D❀ n ✄ X ✆●✝ µ✒ 1 ✄ 1 ☎ Â❀ n ✄ X ✆✕✆ . This is Magnus’ n-th dimension
subgroup of F.

Definition 3.3 Let us consider the map µ✢ : F ✄ X ✆✯✽ Γ ✄ X ✆ as the unique group homomorphism that extends
x ✼✽ exp✄ x✆ , for x ✏ X. We set D✢ ❀ n ✄ X ✆✛✝ µ✢ ✒ 1 ✄ 1 ☎ Â❀ n ✄ X ✆✮✆ .

This defines central filtrations ofF ✄ X ✆ . We have clearly thatF❀ n ✄ X ✆✛❂ D ❀ n ✄ X ✆ andF❀ n ✄ X ✆✭❂ D ✢ ❀ n ✄ X ✆ .
In fact Magnus proved a stronger result (see [B])

Proposition 3.1 D ❀ n ✄ X ✆✞✝ D ✢ ❀ n ✄ X ✆✞✝ F❀ n ✄ X ✆
Let Nn ✄ X ✆ be the free nilpotent group of class n (or ordern ☎ 1) onX. That is

1 ✽ F❀ n✣ 1 ✄ X ✆✞✽ F ✄ X ✆✞✽ Nn ✄ X ✆✞✽ 1 (3)

We will use the following corollary to establish the lower bound to the number of sides of parallelogram
on the free nilpotent group.

Corollary 3.2 The projection of g in F✄ X ✆ onto Nn ✄ X ✆ is the identity if and only if µ✢ ✄ g✆●✏ Ê❀ n ✄ X ✆ .
In fact we need only the if part of the corollary for the lower bound, that is not dependent on Magnus

result but on the inclusionF❀ n ✄ X ✆❃❂ D ❀ n ✄ X ✆ .
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4 mth-order parallelograms
Definition 4.1 Theorderof g in F ✄ X ✆ is the biggest integer k such that g✏ F❀ k ✄ X ✆ . An element of order
k will be called kth-order polygon.

Using proposition (3.1), amth-order polygong satisfies

g ✝ xa1yb1 ✰✖✰✕✰ xanybn ✏ F❀ m ✄ X ✆✿✡ (4)

µ✢❍✄ g✆❉✝ exp✄ a1x✆ exp✄ b1y✆✴✰✖✰✕✰ exp✄ anx✆ exp✄ bny✆❋✏ 1 ☎ Â❀ m ✄ X ✆✩✡ (5)

µ ✄ g✆❉✝ ✄ 1 ☎ x✆ a1 ✄ 1 ☎ y✆ b1 ✰✕✰✖✰■✄ 1 ☎ x✆ an ✄ 1 ☎ y✆ bn ✏ 1 ☎ Â❀ m ✄ X ✆✿✔ (6)

Here none ofa✢isnorb✢is is 0.

Definition 4.2 Thelengthl : F ✄ X ✆✞✽ IN is the unique homomorphism that extends x✼✽ 1 ✡ x✒ 1 ✼✽ 1, for x

in X. If g ✝ xi1
1 ✰✕✰✖✰ xip

p ✏ F ✄ X ✆ , we sill say that it is a p-sidedpolygon. For example xyx✒ 1y✒ 1 is a 4-sided
second-order parallelogram of length 4. In formula (4), we have l✄ g✆✞✝ ∑n

i ❅ 1 ✄✕✠ ai ✠✮☎✻✠bi ✠ ✆ .
We thus deduce that for anyg1 ✡ g2 in F ✄ X ✆ , we havel ✄ g1g2 ✆✫✟ l ✄ g1 ✆❏☎ l ✄ g2 ✆ . The inequality is strict

only if terms ofg1 cancel terms ofg2.

Definition 4.3 For m ✏ IN, we define lm as the lowest length of mth-order polygons. A mth-order paral-
lelogramwill be a mth-order polygon of minimal length.

Before discussing the lower and upper bounds for the length and the number of factors ofmth-order
parallelograms, let us show some transformations that preserve polygons.

Proposition 4.1 Letαβ be a mth-order polygon then so isβα.

Corollary 4.1 If g is a ✄ 2p ☎ 1✆ -sided mth-order polygon then there exists a2p-sided mth-order polygon.

Proof. — The proposition comes from the fact thatF ❄ F❀ m ✄ X ✆ is abelian.
Let us suppose thatg ✝ xa1yb1 ✰✖✰✕✰ ybpxap ✓ 1 is amth-order polygon. Then

x ✲ a1 ✣ ap✓ 1 ✳ yb1 ✰✖✰✕✰ ybp (7)

has smaller length as✠ a1 ☎ ap✣ 1 ✠❑✟▲✠ a1 ✠✮☎▼✠ap✣ 1 ✠ and is also amth-order polygon. ◆
We can now suppose that for any integerm, anmth-order parallelogram has an even number of factors.

We will now discuss lower and upper bound oflm.

4.1 Lower bound
Proposition 4.2 For any m ✏ IN we have m✟ lm.

Proof. — Let us consider the following equality

exp✄ a1x✆ exp✄ b1y✆✴✰✖✰✕✰ exp✄ anx✆ exp✄ bny✆✞✝ exp✄ z✆✩✔ (8)

wherez ✏ L̂ ❀ m ✄ X ✆ and none of thea✢isnorbi ’s is 0. Considering the wordw ✝✍✄ xy✆ n, we have✄ exp✄ z✆✩✡ w✆✭✝ ∏n
i ❅ 1aibi ❖✝ 0

and som ✟ 2n ✟ lm. In fact the number of sides itself is bigger thanm. ◆



The Number of Sides of a Parallelogram 39

4.2 Upper bound
First of all, let us show some small-order parallelograms.

If m ✝ 1 g1 ✝ x or g1 ✝ y is convenient. Ifm ✝ 2, we findg2 ✝ xyx✒ 1y✒ 1 thus l2 ✟ 4. In fact l2 ✝ 4
which is a consequence of the following

Lemma 4.1 For any m P 2, lm is even.

Proof. — This is a consequence of

µ ✄ g✆✞✝✍✄ 1 ☎ x✆ a1 ✄ 1 ☎ y✆ b1 ✰✖✰✕✰✗✄ 1 ☎ x✆ a1 ✄ 1 ☎ y✆ b1 ✝ 1 ☎▼✄ a1 ☎◗✰✖✰✖✰✖☎ an ✆ x ☎◗✄ b1 ☎◗✰✖✰✖✰✖☎ bn ✆ y ✄ Â❀ 2 ✄ X ✆✕✆✩✔
So if µ ✄ g✆ belongs toÂ❀ m ✄ X ✆ we have∑n

i ❅ 1ai ✝ ∑n
i ❅ 1bi ✝ 0 thus∑ ✠ ai ✠ and∑ ✠ bi ✠ are even. ◆

We have seeng2 as the commutator of two first-order polygons. We will now build a sequencegm of
mth-order polygons, eachgm being constructed as commutator ofgp andgm✒ p for somep. We first use
the following lemma

Lemma 4.2 Let gp and gq be two polygons of order p and q respectively, then✄ gp ✡ gq ✆ has order at least
p ☎ q and has length at most2 ✄ l ✄ gp ✆✚☎ l ✄ gq ✆✖✆ .

Remark. — This is also a consequence of the fact that✄ F❀ n ✄ X ✆✕✆ n is a central filtration but we will show
it by using the Hausdorff series.

Proof. — Let us write

Pp ✝ µ✢❆✄ gp ✆✞✝ exp✄ x✆✭✝ exp✄ ∑k ❀ pxk ✆✿✡ Pq ✝ µ✢❆✄ gq ✆✛✝ exp✄ y✆✛✝ exp✄ ∑k ❀ qyk ✆✩✔ (9)

then we have

PpPqP✒ 1
p P✒ 1

q ✝ exp✄ exp✄ adx✆ y✆ exp✄✖✜ y✆✛✝ exp✄ H ✄ exp✄ adx✆ y✡✖✜ y✆✕✆✩✔ (10)

But

H ✄ exp✄ adx✆ y✡✖✜ y✆✶✝ H1 ✄ exp✄ adx✆ y✡✕✜ y✆✚☎ ∑
k ❀ 2

Hk ✄ exp✄ adx✆ y✡✖✜ y✆ (11)

✝ exp✄ adx✆✕✆ y ✜ y ☎ ∑k ❀ 2Hk ✄ exp✄ adx✆ y✡✖✜ y✆ (12)

✝ ✘ x ✡ y✙❘☎ ∑
k ❀ 2

1
k!
✄ adx✆ ky ☎ ∑

k ❀ 2

Hk ✄ exp✄ adx✆ y✡✖✜ y✆✩✔ (13)

But ✄ adx✆ ky ✏ L̂ ❀ kp✣ q ✄ X ✆✵✏ L̂ ❀ 2p✣ q ✄ X ✆ andHk ✄ exp✄ adx✆ y✡✖✜ y✆✯✝ Hk ✄ exp✄ adx✆ y ✜ y✡✕✜ y✆✑✏ L̂ ❀ p✣ 2q ✄ X ✆ . In
conclusion, if✘ xp ✡ yq ✙ ❖✝ 0, thengp✣ q ✝✬✄ gp ✡ gq ✆ is ap ☎ q-th order polygon and has length 2✄ l ✄ gp ✆❙☎ l ✄ gq ✆✖✆ .
In order to be sure to obtain a✄ p ☎ q✆ -th order polygon let us show that

Lemma 4.3 Letα ✏ F❀ p ✄ X ✆ andβ ✏ F❀ q ✄ X ✆ such that

µ✢ ✄ α ✆✛✝ exp✄ x✆✛✝ exp✄ ∑k ❀ pxk ✆✩✡ µ✢ ✄ β ✆✛✝ exp✄ y✆✞✝ exp✄ ∑k ❀ qyk ✆✩✔ (14)

If xp and yq are not proportional, then✄ α ✡ β ✆ has order exactly p☎ q.
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Proof. — This is a consequence of the following lemma.

Lemma 4.4 Let xp ✏ Lp ✄ X ✆ and y ✏ Lq ✄ X ✆ . If xp and yq are not proportional then✘ xp ✡ yq ✙ ❖✝ 0.

Proof. — Let us write

xp ✝ ∑
w ✸ X ✹p ✄ xp ✡ w✆✛✝ n

∑
i ❅ 1

λ iwi ✡ yq ✝ ∑
w ✸ X ✹q ✄ yq ✡ w✆✛✝ n❚

∑
i ❅ 1

λ ✢iw✢i ✔ (15)

Here we havewi ✧ wj if i ✧ j. As ✘ xp ✡ yq ✙❏✝❯✘ xp ✡ yq ✜ λxp✙ for someλ, one can suppose thatw1 ✧ w✢1. In
factw1 andw✢1 are so-called Lyndon words (see [R]), that is to say satisfyw1w✢1 ✧ w✢1w1. In✘ xp ✡ yq ✙❱✝ λ1λ ✢1 ✄ w1w✢1 ✜ w✢1w1 ✆☎ λ1∑

j

λ ✢ j ✄ w1w✢ j ✜ w✢ jwj ✆✚☎ λ ✢1∑
i

λ i ✄ wiw✢1 ✜ w✢1wi ✆✚☎ ∑
i ❲ j ❳ 1

λ iλ ✢ j ✄ wiw✢ j ✜ w✢ jwi ✆ (16)

As w1 ✧ w✢1 ✧ w✢ j we deduce thatw1w✢1 ✧ wiw✢1 ✧ wiw✢ j for eachi ✡ j ✪ 1. We have alsow1w✢1 ✧ w✢1w1 ✧
w✢1wi ✧ w✢ j wi sow1w✢1 is the smallest word in formula (16). This proves that✄✕✘ xp ✡ yq ✙❨✡ w1w✢1 ✆ ❖✝ 0 and so✘ xp ✡ yq ✙ ❖✝ 0. ◆

Remark. — Lemma 4.4 shows that for any not null Lie polynomialP the kernel of adP is spanned by
P.

We will show that

Proposition 4.3 There exists a sequence of mth-order polygons gm with even length lm ✟ m2.

Proof. — We will prove by induction onm the followingP ✄ m✆ : “there exists a sequencegm or order
exactlym with even lengthlm ✟ m2.”

If m ✝ 1, theng1 ✝ x or g1 ✝ y is convenient. Ifm ✝ 2 theng2 ✝❩✄ x ✡ y✆❬✝ xyx✒ 1y✒ 1 is convenient
and has length 4. Ifm ✝ 3 theng3 ✝❭✄ g1 ✡ g2 ✆●✝ x2yx✒ 1y✒ 1x✒ 1yxy✒ 1 ✰ x✒ 1 is a third-order polygon so as
xyx✒ 1y✒ 1x✒ 1yxy✒ 1 that has length 8.

Suppose nowP ✄ m✆ .❪ If m ☎ 1 ✝ 2p ☎ 1 is odd, let us considerg ✝✍✄ gp ✡ gp✣ 1 ✆ . p andp ☎ 1 have not same parity so

l ✄ g✆❃✟ 2 ✄ lp ☎ lp✣ 1 ✆❋✟ 2 ✄ p2 ☎◗✄ p ☎ 1✆ 2 ✜ 1✆❈✝❁✄ 2p ☎ 1✆ 2 ✜ 1 ✔
We thus deduce thatg is a ✄ 2p ☎ 1✆ th-order polygon and sol2p✣ 1 ✟❫✄ 2p ☎ 1✆ 2 ✜ 1.❪ If m ☎ 1 ✝ 4p, let us considerg ✝✍✄ g2p ✒ 1 ✡ g2p✣ 1 ✆ .

l ✄ g✆●✟ 2 ✄ l2p ✒ 1 ☎ l2p✣ 1 ✆●✟ 2 ✄✖✄ 2p ☎ 1✆ 2 ☎▼✄ 2p ✜ 1✆ 2 ✜ 2✆❈✝✍✄ 4p✆ 2❪ If m ☎ 1 ✝ 4p ☎ 2, let us considerg ✝❯✄ g2p✣ 1 ✡ ϕ ✄ g2p✣ 1 ✆✕✆ . Hereϕ is the involutionx ✼✽ y✡ y ✼✽ x. If
µ✢ ✄ g2p✣ 1 ✆✞✝ exp✄ ∑k ✱ 2p✣ 1xk ✆ , we will have

µ✢ ✄ g✆✞✝ exp✄✕✘ x2p✣ 1 ✡ ϕ ✄ x2p✣ 1 ✆❴✙❘☎ ∑k ❀ 2p✣ 2yk ✆✿✔ (17)

The degree ofx2p✣ 1 in x is not the degree iny sox2p✣ 1 as 2p ☎ 1 is odd andϕ ✄ x2p✣ 1 ✆ have not same
multi-degree thus are not proportional. It follows thatg ✏ F❀ m✣ 1 ✄ X ✆ . We have

l ✄ g✆●✟ 4l2p✣ 1 ✟❫✄ 4p ☎ 2✆ 2 ✜ 4 ✟✬✄ 4p ☎ 2✆ 2 ✔ (18)

We thus deduce thatlm✣ 1 ✟❫✄ m ☎ 1✆ 2. Proposition 4.3 is then proved. ◆
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4.3 Rational series
In fact there is a strong connection with the rank of rational series. The setÂ ✄ X ✆ is usually denoted by
Q ✧❵✧ X ✪❛✪ and is called the set of formal series.

Consider the following operation ofX ✷ on Â ✄ X ✆ ; for u ✏ X ✷ , let

u✒ 1S ✝ ∑
w ✸ X ✹ ✄ S✡ uw✆ w (19)

We extend it by linearity to obtain̂A ✄ X ✆ as a right module overA ✄ X ✆ .
A combinatorial interpretation of that operation in the case whereS ✝ v is a single word says thatu✒ 1v

vanishes , unlessv starts withu, that is,v ✝ uv✢ , and in that caseu✒ 1v ✝ v✢ .
Definition 4.4 A formal series is rational if it is an element of the closure of A✄ X ✆

A fundamental theorem due to M.-P. Schützenberger assures that the orbits of the action ofA ✄ X ✆ are
finite dimensional overQ on rational series. We may then state the following

Definition 4.5 The rank of a rational series S is the dimension of the space S❜ A ✄ X ✆ .
We state now corollary 3.6 of [BR].

Proposition 4.4 If S ✏ 1 ☎ Â❀ m ✄ X ✆ is a rational series, thenrankS P m

To obtain a lower bound on the length of a polygon we will compute the rank of the rational series
µ ✄ g✆✞✝✍✄ 1 ☎ x✆ a1 ✄ 1 ☎ y✆ b1 ✰✖✰✕✰✗✄ 1 ☎ x✆ an ✄ 1 ☎ y✆ bn.

Proposition 4.5 rank ✘❝✄ 1 ☎ x✆ a1 ✄ 1 ☎ y✆ b1 ✰✕✰✖✰■✄ 1 ☎ x✆ an ✄ 1 ☎ y✆ bn ✙✑✟ ∑i ✠ ai ✠✮☎✻✠bi ✠ .
Proof. — We first observe that the following properties are easily established [BR]

x✒ 1 ✄ ST✆❞✝ ✄ x✒ 1S✆ T ☎▼✄ S✡ 1✆✿✄ x✒ 1T ✆ (20)

x✒ 1 ✄ S✷ ✆❞✝ x✒ 1S✷ where S✷ ✝✍✄ 1 ✜ S✆ ✒ 1 (21)

Observe thatx✒ 1 ✄ 1 ☎ x✆❈✝ 1 ✡ x✒ 1 ✄ 1 ☎ y✆✑✝ 0 ✡ y✒ 1 ✄ 1 ☎ x✆✵✝ 0 ✡ y✒ 1 ✄ 1 ☎ y✆✵✝ 1.
An easy computation then gives that rank✘❝✄ 1 ☎ x✆ a✙✚✝❯✠ a ✠ , and this implies that

rank ✘❡✄ 1 ☎ x✆ a ✄ 1 ☎ y✆ b✙❏✝❁✠ a ✠❴☎✻✠b ✠❴✔
From equation 20 we deduce that rank✄ ST✆❢✟ rank ✄ S✆✑☎ rank ✄ T ✆ and that implies that the rank of a
product ✄ 1 ☎ x✆ a1 ✄ 1 ☎ y✆ b1 ✰✖✰✕✰✗✄ 1 ☎ x✆ an ✄ 1 ☎ y✆ bn can be at most∑n

i ❅ 1 ✠ ai ✠❴☎▼✠bi ✠ . ◆
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