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Combinatorial proofs of freeness of
some P-algebras

Vincent Vong†

LIGM, 5 Bd Descartes, Champs-sur-Marne 77454 Marne la Vallée cedex 2, France

Abstract. We present new combinatorial methods for solving algebraic problems such as computing the Hilbert series
of a free P-algebra over one generator, or proving the freeness of a P-algebra. In particular, we apply these methods
to the cases of dendriform algebras, quadrialgebras and tridendriform algebras, which leads us to prove a conjecture
of Aguiar and Loday about the freeness of the quadrialgebra generated by the permutation 12.

Résumé. Nous présentons de nouvelles méthodes combinatoires permettant de résoudre des problèmes algébriques
concernant les P-algèbres, comme déterminer la série de Hilbert de la P-algèbre libre sur un générateur, ou de
prouver qu’une P-algèbre est libre. Nous les appliquons aux cas des algèbres dendriformes, des quadrialgèbres, et
des algèbres tridendriformes. Cette approche nous permet en particulier de résoudre une conjecture de Aguiar et
Loday à propos de la liberté de la quadrialgèbre engendrée par la permutation 12.

Keywords: Free P-algebras, dendriform algebras, quadrialgebras, evaluation trees.

1 Introduction
Recently, new types of algebras have arisen from the theory of operads ([LV12]), for example, the den-
driform and the tridendriform algebras, and the quadrialgebras. For an encyclopedia of different types of
algebra, one can read [Zin]. The types of P-algebras, which are vector spaces equipped with products
satisfying some relations, give rise to two natural questions: the first one is to find the Hilbert series of
the free P-algebra over one generator of degree one, and the second one is to prove the freeness (or the
non-freeness) of a given P-algebra A.

Dendriform algebras were defined by Loday in [Lod01]. He proved that the Hilbert series of the free
dendriform algebra over one generator is equal to the series of Catalan numbers. One example was found
by Loday and Ronco in [LR98]. Hivert, Novelli and Thibon gave some combinatorial properties of this al-
gebra in [HNT05]. Another fundamental example of dendriform algebras is the algebra of Malvenuto and
Reutenauer FQSym ([MR95], [DHT02]) obtained by splitting the shuffle product into two parts. Foissy
in [Foi07], by algebraic methods, proved the freeness of FQSym as a dendriform algebra. Tridendriform
algebras were introduced in [LR04] by splitting an associative law into three parts. An example is given
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by WQSym ([NT06]). The freeness of this algebra was proved in [BR10]. Quadrialgebras were defined
in [AL04]. An example is given by splitting an associative law into four parts. Vallette in [Val08], proved
that the Hilbert series of the free quadrialgebra over one generator in degree one is equal to the generating
function of the non-crossing connected graphs ([FN99]). But the freeness of the quadrialgebra generated
by the permutation 12 remained open ([AL04]).

The aim of this article is to give combinatorial methods to prove the freeness of P-algebras through
some examples, the dendriform algebras, the quadrialgebras and the tridendriform algebras. Although the
formalism of operads enlights different aspects of the method we do not use this language. But despite
this fact, the proofs are independent of the general theory of operads.

In Section 2, we recall some background about evaluation trees. Section 3 deals with the case of
dendriform algebras. In particular, by adapting the proof of the freeness of PBT as a dendriform algebra,
we deduce that FQSym is a free dendriform algebra. In the same way, we prove the freeness of the
quadrialgebra generated by 12 in Section 4.

2 Background
2.1 General definitions
Definition 1. A pair A = (A,P) is called a P-algebra if A is a graded vector space (A = ⊕n∈NAn)
with A0 isomorphic to K, P is a finite set of bilinear maps from A to A such that for each B in P , yn
in An and ym in Am, the element B(yn, ym) is in An+m, and the element of A0 identified to 1K is the
neutral element of B. We set A+ := ⊕n≥1An. If dim(An) is finite for each n, the Hilbert series of A is
the series

∑
n≥0 dim(An)t

n.

Definition 2. A decorated complete binary tree is defined by induction as follows:

• the empty set ∅ is a decorated complete binary tree,
• the triple (a, ∅, ∅) is a decorated complete binary tree, where a is an element of a certain set,
• the triple (a, T1, T2) is a decorated complete binary tree if T1 and T2 are non-empty complete binary

trees, and a is an element.

We denote by CBT (P,B) the set of decorated complete binary trees where the leaves are decorated by
elements of B and the internal nodes are decorated by the elements of P .

Definition 3. Let (A,P) be a P-algebra, and B a basis of A+. The vector space of evaluation trees
over A denoted by ET (A) is the vector space freely spanned by CBT (P,B).
Example 1. If A = (A, {×,~,�}), and a, a′, b, b′, and c are in A, the tree represented Figure 1
corresponds to the element (a~ a′)× (b′ � (b× c)) of ET (A).
Definition 4. Let (A,P) be a P-algebra. The evaluation map Ev is a linear map from ET (A) to A
defined on trees by:

Ev (∅) = 1K
Ev ((x, ∅, ∅)) = x
Ev ((B, T1, T2)) = B (Ev(T1), Ev(T2)) .

(1)

Example 2. ForA = (K〈A〉,m), where K〈A〉 is the associative algebra of noncommutative polynomials
over the alphabet A equipped with the concatenation product m, the vector space ET (A) is spanned
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Fig. 1: Evaluation tree of (a~ a′)× (b′ � (b× c)).

by CBT ({m}, A∗), where A∗ is the set of words over the alphabet A. Let us determine the kernel K of
the map Ev and a vector space S isomorphic to K〈A〉 with S ∩K = {0}. Since the law m is associative,
for all words u, v, w in A∗, we have:

m (m(u⊗ v)⊗ w) = m (u⊗m(v ⊗ w)) . (2)

In other words,
m

m

u v

w

≡

m

u m

v w

where ≡ is the relation “having the same image by the map Ev”. In order to find a vector space S, we
consider the set LC({m}, A) defined by induction as follows:

• the empty set ∅ is in LC({m}, A),
• the leaves (a, ∅, ∅) where a is in A are elements of LC({m}, A),
• the trees of the form (m,T1, T2) where T1 is in LC({m}, A) and T2 is a leaf and in LC({m}, A)

are elements of LC({m}, A).

Then, the word w = a1 · · · an is the image of a tree T (w) by Ev built as follows:

• if w = a1, then T (w) = (a1, ∅, ∅) ;
• otherwise, T (w) = (m,T (w1 · · ·wn−1) , wn).

Thus, each tree in CBT ({m}, A∗) is equivalent to an element of LC(m,A) for the relation ≡. Since
the evaluation map restricted to LC(m,A) is a bijection from LC(m,A) to the set A∗, it follows that a
vector space S is given by vect (LC(m,A)), and a basis of the kernel K by the set

{T ′ − T | T ′ ∈ LC(m,A), T ∈ CBT ({m}, A∗) , T 6= T ′, T ≡ T ′}. (3)

In the general case, for a free associative graded algebra (A,m), there exists a family F of A such that
the map Ev is an isomorphism between vect (LC(m,F)) and A.

Conversely, let (A,m) be a graded associative algebra and F a family of A such that the map Ev is an
isomorphism between vect (LC(m,F)) and A. Let us prove that A is free and generated by F . Since
the map Ev restricted to vect (LC(m,F)) is surjective, we deduce that the algebra A is generated by the
family F . Let P be a polynomial in the variables fi elements of F such that

P (f1, · · · , fn, · · · ) = 0. (4)
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By isomorphism, we deduce that P (f1, · · · , fn, · · · ) is the image by Ev of a linear combination of
trees in LC(m,F). But this family of trees is linearly independent and the kernel of the restriction of Ev
to LC(m,F) is reduced to {0}. So by taking the image by Ev, we deduce that the polynomial P is the
zero polynomial.

Remark 1. Thanks to the formalism of evaluation trees, we see that an algebraic problem such as the
freeness of an associative algebra can be seen as a problem of linear algebra in a family of trees.

If a free family F generates an algebra A, by induction, it is possible to choose the family F homoge-
neous. In other words, each element f in F is in an An.

2.2 Some combinatorial methods for P-algebra problems

In the theory of P-algebras, one of the first question is to compute the Hilbert series of the free P-algebra
over one generator of degree one. In the case of the associative algebra, this Hilbert series is given by 1

1−t ,
which is also the generating function of the combinatorial class LC({m}, {a}), filtered by the number
of a. The freeness (or non-freeness) of a P-algebra A is another natural question.

2.2.1 The Hilbert series of a P-algebra over one generator of degree one

Let us consider A, the free P-algebra over one generator x of degree one. The elements can be rep-
resented as linear combinations of elements of CBT (P, {x}). Since there may be some relations be-
tween elements of P , the set CBT (P, {x}) may not be a basis of A. More generally, for each subset S
of CBT (P, {x}) such that S is a generating family of A, the dimension of An is lower than the dimen-
sion of vect(S)n.

On the other hand, given a P-algebra A′ built from one generator of degree one, the P-algebraA′ may
have other relations. Therefore, we have dim(A′n) ≤ dim(An).

One way to find the Hilbert series of A is to find a subset S of CBT (P, {x}) which generates A,
and such that the family F obtained by evaluation of the set S in the algebra A′ is linearly independent.
Since the subset S generates the algebra A, we deduce that dim(An) ≤ dim(vect(S)n). Since F is
linearly independent in A′, we deduce that dim(vect(S)n) ≤ dim(A′n) ≤ dim(An). It follows from
previous inequalities that dim(An) = dim(A′n) = dim(vect(S)n). Thus, by computing the Hilbert
series of vect(S), we deduce the Hilbert series of A.

2.2.2 The freeness of a P-algebra

Assume that we have found a basis of the free P-algebra over one generator x of degree one, represented
by a subset S of CBT (P, {x}). It follows that the free P-algebra over the family F has a basis repre-
sented by SF which is the set of trees of S whose leaves are replaced by elements of F . Thus, in order
to prove that a P-algebra A is free, it is sufficient to find an homogeneous family F of A such that the
evaluation map Ev restricted to vect(SF ) is an isomorphism between vect(SF ) and A.

In the next sections, we consider different families of P-algebras and apply these methods to some
problems about P-algebra.
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3 The case of dendriform algebras
3.1 General properties
3.1.1 Background
Definition 5. A dendriform algebra (A,�,≺) is a vector space A equipped with two bilinear maps �
and ≺ such that for each elements a, b, c in A, we have: (a ≺ b) ≺ c = a ≺ ((b ≺ c) + (b � c)) = a ≺ (b ≺ + � c)

a � (b � c) = (a ≺ + � b) � c
(a � b) ≺ c = a � (b ≺ c) .

(5)

Remark 2. Since the equality is satisfied for all element in the algebra, it is convenient to omit the entries.
For example, the equality

(a ≺ b) ≺ c = a ≺ (b ≺ + � c) ,
becomes

(≺) ≺ = ≺ (≺ + �).
We can also represent it with evaluation trees:

≺

≺
=

≺

≺
+

�

≺
. (6)

Definition 6. Let u and v be two words respectively of size n and m. The shuffle product is defined by
induction as follows:

• u� v = v� u = v if n = 0,
• u� v = v� u = u if m = 0,
• u� v = (u1 · · ·un−1 � v)un + (u� v1 · · · vm−1)vm otherwise.

If u is a word over the alphabet N, then u[k] is the word (u1 + k)(u2 + k) · · · (ui + k) · · · (un + k).
For u and v two words over the alphabet N, the shifted shuffle of u and v, denoted by u� v is the shuffle
product u� v[k], where k is the greatest letter in u.

Example 3. If σ = 11 and τ = 12, we have:

• σ� τ = 1112 + 1112 + 1112 + 1121 + 1121 + 1211,
• σ� τ = 1123 + 1213 + 2113 + 1231 + 2131 + 2311.

Example 4. Let us denote by S = ∪n∈NSn the set of permutations. We consider the algebra FQSym =
vect(Fσ) equipped with two products � and ≺ defined as follows. Let σ and τ be two permutations of
respective size n and m. Let us set:

Fσ ≺ Fτ :=
∑

γ∈σ�τ
γn+m=σn

Fγ , (7)

and
Fσ � Fτ :=

∑
γ∈σ�τ

γn+m=τm[n]

Fγ . (8)

Then (FQSym,�,≺) is a dendriform algebra ([LR98]).
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3.1.2 A generating family of the free dendriform algebra over one generator
Let (A,�,≺) be the free dendriform algebra generated by one generator x of degree one. We represent
elements by linear combinations of decorated complete binary trees where the leaves are decorated by x,
and the internal nodes by � or ≺.

Example 5. The figure 2 represents an element of the free dendriform algebra over the generator x.

�

≺

x x

x

+

≺

x �

�

x x

x

Fig. 2: An element of the free dendriform algebra over the generator x.

The following proposition was proved in a combinatorial way in [Nov14] by using Relations (5).

Proposition 1. A generating family of the free dendriform algebra generated by x is represented by the set
of complete binary trees whose leaves are by x, the internal nodes by ≺ or �, and avoiding the following
patterns:

�

�

, �

≺

, ≺

≺

. (9)

Proof. By induction on the number of leaves. For n = 1 it is true. For n = 2, it is true by Relations (5).
Assume that the statement is true for n ≥ 3. Let T be a tree with n+1 leaves.

• If T = (�, T1, T2), by applying the induction hypothesis to the tree T2, we obtain a linear com-
bination of trees B of the form (�, T1, T ′2), where T ′2 avoids the patterns (9). But B could be of
the form (�, T1, (�, T ′, T”)), where T” avoids (9) and has not a root decorated by �. We then
apply the equality � (�) = (≺ + �) � and obtain a sum of the form (�, (≺, T1, T ′) , T”) +
(�, (≺, T1, T ′) , T”). The result follows by applying the induction hypothesis to the left subtree.
• If T = (≺, T1, T2), by applying the hypothesis to the tree T1, we obtain a linear combination of

trees B of the form (≺, T ′1, T2), where T ′1 avoids (9).

If we have B = (≺, (≺, x, T ′) , T2), by applying the relation (≺) ≺ = ≺ (?), where ? =≺ + �,
we obtain B = (≺, x, (?, T ′, T”)). Then we apply the induction hypothesis to the right subtree.

If we have B = (≺, (�, T1, T2) , T3), by applying the relation (�) ≺ = � (≺), we obtain B =
(�, T1, (≺, T2, T3)) which is a case already treated and finishes the proof.

Let us denote by T D ({�,≺},F) the set of non-empty trees whose leaves are decorated by elements
of F , the internal nodes by � or ≺ and avoiding the patterns (9), and let us determine its generating
function F .
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Proposition 2. The generating series F of T D ({≺,�}, {x}) is equal to
∑
n≥1 Cnt

n, where Cn is the
n-th Catalan number.

Proposition 3. The evaluation map Ev from T D ({≺,�}, {x}) to FQSym is an injective map.

Proof. Let us begin with Proposition 2. We have: F = t+F≺+F� where F� is the generating function
of trees of T D ({≺,�}, {x}) where the root is decorated by �. Since trees of T D ({≺,�}, {x}) avoids
the patterns (9), we deduce that F≺ is equal to tF and F� is equal to F (t+ F≺). So F satisfies the
equation F = t + 2tF + tF 2 which is a functional equation satisfied by

∑
n≥1 Cnt

n. By uniqueness of
the solution, we deduce that F =

∑
n≥1 Cnt

n.
Let us prove Proposition 3. We consider a tree T of T D ({≺,�}, {x}). By replacing x by F1 and

evaluating T in FQSym, we see that an element Fσ appears only in one and only one evaluation. Thus,
the set of evaluations of elements of T D ({≺,�}, {x}) is linearly independent.

Thus, thanks to Propositions 1, 2, 3 we deduce the following corollary:

Corollary 1. A basis of the free dendriform algebra A over one generator of degree one x is represented
by the set {∅} ∪ T D ({≺,�}, {x}), and the Hilbert series of A+ is equal to

∑
n≥1 Cnt

n.

Remark 3. The plan of proofs given for Propositions 1, 2, 3 are adaptable for other P-algebras. Moreover
by slightly modifying the proofs, we deduce that dendriform algebra A is free if and only if there exists
a family F of elements of A such that the set of evaluations of the trees of T D ({�,≺},F) is a basis
of A+.

3.2 The dendriform algebra FQSym
As we have seen in Example 4, FQSym is a dendriform algebra. So a natural question is whether it is
free or not. By Remark 3, it is sufficient to find a family F such that the set of evaluations of elements
of T D ({�,≺},F) is a basis of FQSym+. In order to do this, we establish a factorization theorem on
permutations which is essentially equivalent to the freeness of FQSym.

3.2.1 A factorization theorem
Proposition 4. Let us consider the lexicographic order over permutations. Let I and J be two subsets
of S, σ and τ be the smallest element of respectively I and J , and n be the size of σ. Then:

• the smallest element of I � J is the permutation στ [n],
• the smallest element of I ≺ J is the permutation σ1 · · ·σn−1τ [n]σn.

Hence, for σ and τ two permutations of respective size n and m, we define two reduced products as
follows: σ �′ τ := στ [n] and σ ≺′ τ := σ1 · · ·σn−1τ [n]σn.

Example 6. For σ = 31452 and τ = 2431, we have σ ≺′ τ = 314579862, and σ �′ τ = 314527986.

Definition 7. Let E be a subset of {�′,≺′}. A permutation σ is said to be E-connected if for all ?′ in E,

(σ = u ?′ v) =⇒ (u = σ or v = σ). (10)

A permutation is called indecomposable if it is {�′,≺′}-connected. We denote by Ip the set of indecom-
posable permutations.



530 Vincent Vong

Example 7. The permutation 3412 is indecomposable, 2341 is {�′}-connected but not {≺′}-connected.

Theorem 1. Let σ be a permutation of positive size. Then σ satisfies one and only one of these possibili-
ties:

• σ is indecomposable,
• σ = u �′ v with v {�′}-connected,
• σ = u ≺′ v with u indecomposable.

Proof. Let u, u′,v, v′ four permutations of respective size n, n′, m, m′. Assume that we have:
σ = u �′ v = u′ ≺′ v′, where v is {�′}-connected, and u′ is indecomposable. If m > m′,

we have n < n′. Then u′ would have u as a prefix which is a permutation. Therefore, u′ could be
factorized as u � w and would not be indecomposable. If n ≥ n′, by comparing the last values, we have
v′[n] > n ≥ n′ ≥ un′ , which is a contradiction.

If σ = u �′ v = u′ �′ v′, we have uv[n] = u′v′[n′]. The {�′} connectedness of v (resp. v′) would be
contradicted if n < n′ (resp. n > n′). Therefore, necessarily, u = u′ and v = v′.

If σ = u ≺′ v = u′ ≺′ v′, and n > n′, then u would not be indecomposable, since we would have
u = u′ ≺ α, where u = u1 · · ·un′−1α[n

′]un′ . By symmetry, the result follows for n < n′.

Example 8. We have 143652 = 1 �′ (1 ≺′ ((1 ≺′ 1) �′ (1 ≺′ 1))).
Corollary 2. The evaluation map from T D ({≺′,�′}, Ip) to permutations of positive size is bijective.

Proof. The fact that the map is surjective comes from the existence of a factorization from Theorem 1,
and the fact that is injective comes from the uniqueness of this factorization.

3.2.2 The freeness of the dendriform algebra FQSym
In [Foi07], Foissy gives an algebraic proof of the freeness of FQSym as a particular case of a structure
theorem: he proves that bidendriform connected algebras are free dendriform algebras over totally prim-
itive elements. Since FQSym has a natural bidendriform structure, the result follows. In the sequel, we
present a combinatorial proof which only use the dendriform structure of FQSym.

Theorem 2. The set S := {Ev(T )| T ∈ T D ({≺,�}, Ip)} is a basis of FQSym+. Therefore, FQSym is
a free dendriform algebra generated by the family (Fσ)σ∈Ip.

Proof. Thanks to Corollary 2, we deduce that for each element Ev(T ) of S there exists a unique permuta-
tion σ such that ev(T ) = Fσ+

∑
τ>lexσ

aτFτ , and σ is only minimal in the evaluation of T . Therefore, S
is a basis of FQSym+, thus FQSym is a free dendriform algebra generated by the family (Fσ)σ∈Ip.

Remark 4. We can deduce Proposition 3 from the first part of Theorem 2. Then, the second part of this
theorem follows thanks to Proposition 3.

4 The case of quadrialgebras
In [AL04], Aguiar and Loday introduced quadrialgebras, motivated by some natural generalizations of
dendriform algebras. At the end of their article, four conjectures about this type of algebras are enunciated.
The first three are proved by Vallette in [Val08] with algebraic methods. The last one seems to remain
open. By the combinatorial methods used in Section 3, we give new proofs for the first and last ones.
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4.1 General properties

4.1.1 Background
Definition 8. ([AL04]) Let V be a K vector space equipped with four internal bilinear maps

[�
�
]
,
[�
≺
]
,
[≺
�
]

and
[≺
≺
]
. We call (V,

[�
�
]
,
[�
≺
]
,
[≺
�
]
,
[≺
≺
]
) a quadrialgebra if the four bilinear maps satisfy the following

relations:
(
[≺
≺
]
)
[≺
≺
]
=
[≺
≺
]
(
[
?
?

]
) (

[≺
�
]
)
[≺
≺
]
=
[≺
�
]
(
[
?
≺
]
) (

[≺
?

]
)
[≺
�
]
=
[≺
�
]
(
[
?
�
]
)

(
[�
≺
]
)
[≺
≺
]
=
[�
≺
]
(
[≺
?

]
) (

[�
�
]
)
[≺
≺
]
=
[�
�
]
(
[≺
≺
]
) (

[�
?

]
)
[≺
�
]
=
[�
�
]
(
[≺
�
]
)

(
[
?
≺
]
)
[�
≺
]
=
[�
≺
]
(
[�
?

]
) (

[
?
�
]
)
[�
≺
]
=
[�
�
]
(
[�
≺
]
) (

[
?
?

]
)
[�
�
]
=
[�
�
]
(
[�
�
]
)

, (11)

where
[
α
?

]
=
[
α
≺
]
+
[
α
�
]

and
[
?
α

]
=
[≺
α

]
+
[�
α

]
with α in {?,≺,�}.

Definition 9. Let k be a positive integer. A 2-permutation of size 2k is a word w such that all letters
from 1 to k are repeated exactly twice in w. The set of 2-permutations is denoted by S(2).

Let us consider the vector space V (S(2)) generated by S(2). Let us define the four following bilinear
maps, for u = u1 · · ·u2n and v = v1 · · · v2m two 2-permutations:

u1 · · ·u2n
[�
�
]
v1 · · · v2m = v1(u� v2 · · · v2m−1)v2m

u1 · · ·u2n
[�
≺
]
v1 · · · v2m = v1(u1 · · ·u2n−1 � v2 · · · v2m)u2n

u1 · · ·u2n
[≺
�
]
v1 · · · v2m = u1(u2 · · ·u2n � v1 · · · v2m−1)v2m

u1 · · ·u2n
[≺
≺
]
v1 · · · v2m = u1(u2 · · ·u2n−1 � v)u2n

. (12)

It is straightforward that (V (S(2)),
[≺
≺
]
,
[�
≺
]
,
[≺
�
]
,
[�
�
]
) is a quadrialgebra ([AL04]).

4.1.2 A generating family of the free quadrialgebra over one generator
In the same way as free dendriform algebra, we represent the element of the free quadrialgebra over one
generator x as linear combination of complete binary trees such that the leaves are decorated by x, and
the internal node are decorated by elements of the set E := {

[≺
≺
]
,
[≺
�
]
,
[�
≺
]
,
[�
�
]
}.

We denote by T Q (E,F) the set of non-empty decorated complete binary trees whose internal nodes
are decorated by elements of E, whose leaves are decorated by elements of F and avoiding the following
patterns:

a

[≺
≺
]
, b

[�
�
]

,

[≺
�
]

[≺
�
]

,

[�
≺
]

[�
≺
]

,

(13)

where a ∈ {
[≺
≺
]
,
[≺
�
]
,
[�
≺
]
,
[�
�
]
}, and b ∈ {

[≺
�
]
,
[�
≺
]
,
[�
�
]
}.

Proposition 5. The set of T Q (E, {x}) generates the free quadrialgebra over x.



532 Vincent Vong

Proposition 6. The generating function F of T Q (E, {x}) satisfies the following equation:

t(F + 1)3 + (F + 1)2 − 3(F + 1) + 2 = 0. (14)

In particular, F is the generating series of the non-crossing connected graph ([FN99]).

Remark 5. We prove Proposition 5 by induction as Proposition 1, and Proposition 6 using the same
method as Proposition 2.

From Proposition 5, we cannot conclude that T Q (E, {x}) is a basis, but just a generating family.

4.2 The quadrialgebra of 2-permutations

4.2.1 A factorization theorem
Proposition 7. Let us consider the lexicographic order on 2-permutations. Let I and J be two subsets
of S(2), σ and τ be respectively the smallest element of I and J , 2n be the size of σ and 2m the size of τ .
Then:

• the smallest element of I
[�
�
]
J is the permutation τ1[n]στ2[n] · · · τ2m[n],

• the smallest element of I
[�
≺
]
J is the permutation τ1[n]σ1 · · ·σ2n−1τ2[n] · · · τ2m[n]σ2n,

• the smallest element of I
[≺
�
]
J is the permutation στ [n],

• the smallest element of I
[≺
≺
]
J is the permutation σ1 · · ·σ2n−1τ [n]σ2n.

Hence, for σ and τ two 2-permutations respectively of size 2n and 2m, we define four reduced products
as follows:

• σ
[�
�
]′
τ := τ1[n]στ2[n] · · · τ2m[n],

• σ
[�
≺
]′
τ := τ1[n]σ1 · · ·σ2n−1τ2[n] · · · τ2m[n]σ2n.

• σ
[≺
�
]′
τ := στ [n],

• σ
[≺
≺
]′
τ := σ1 · · ·σ2n−1τ [n]σ2n.

Example 9. For σ = 211323 and τ = 312213, we have: σ
[�
�
]′
τ = 621132345546,

σ
[�
≺
]′
τ = 621132455463, σ

[≺
�
]′
τ = 21323645546, σ

[≺
≺
]′
τ = 211326455463.

Definition 10. Let E be a subset of {
[�
�
]′
,
[�
≺
]′
,
[≺
�
]′
,
[≺
≺
]′}. A 2-permutation σ is said to be E-connected

if for all ?′ in E,
(σ = u ?′ v) =⇒ (u = σ or v = σ). (15)

A 2-permutation is called indecomposable if it is {
[�
�
]′
,
[�
≺
]′
,
[≺
�
]′
,
[≺
≺
]′}-connected. We denote by IP

the set of indecomposable 2-permutations.

Example 10. The 2-permutation 213213 is indecomposable, the 2-permutation 211323 is not
[�
�
]′

con-
nected (211323 = 11

[�
�
]′
1212) but is {

[≺
≺
]′
,
[≺
�
]′
,
[�
≺
]′}-connected.

Theorem 3. Let σ be a 2-permutation. Then:

• σ is indecomposable,
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• otherwise σ = u
[≺
≺
]′
v, with u indecomposable,

• otherwise σ = u
[≺
�
]′
v, with v

[≺
�
]′

-connected,

• otherwise σ = u
[�
≺
]′
v, with v

[�
≺
]′

-connected,

• otherwise σ = u
[�
�
]′
v, with v {

[�
≺
]′
,
[≺
�
]′
,
[�
�
]′}-connected,

u and v being unique if they exist.

Proof. Assume there exists two pairs (u, v) and (u′, v′), two laws ?′ and �′ of E such that σ = u ?′ v =
u′ �′ v′ with (u, v) and (u′, v′) satisfying the conditions of Theorem 3. By analyzing the two members,
if ?′ and �′ are different, we have a contradiction. And by analyzing the case of ?′ = �′, we obtain,
necessarily, u = u′, and v = v′.

Corollary 3. Let T Q (E′, IP) be the set of trees obtained by replacing labels ? of internal nodes
of T Q (E, IP) by their analogous ?′. Then the map Ev is a bijection between T Q (E′, IP) and the
set of non-empty 2-permutations.

Proof. By applying Theorem 3 by induction, we deduce this corollary.

4.2.2 The free quadrialgebra of 2-permutations
Corollary 4. The family T Q (E, {x}) is a basis of Q+, where Q is the free quadrialgebra over one
generator x.

Corollary 5. (Conjecture in [AL04]) The quadrialgebra generated by the permutation 12 is free.

Corollary 6. The Hilbert series of the free quadrialgebra over one generator of degree one is equal to
the generating series of the non-crossing connected graphs.

Proof. Let S be the set of evaluations of trees of T Q (E, 11). Thanks to Corollary 2 and Proposition 7,
we deduce that the set S is linearly independent. Therefore, the family T Q (E, {x}) is a basis of the free
quadrialgebra over the generator x. We deduce immediately that the quadrialgebra generated by 11 is free
by comparing the dimensions of homogeneous components, and so for the quadrialgebra generated by 12
since it is isomorphic to the quadrialgebra generated by 11 by standardization.

Since the generating series of the set T Q (E, {x}) is equal to the generating series of the non-crossing
connected graphs, Corollary 6 follows.

Theorem 4. The quadrialgebra (V (S(2)),
[≺
≺
]
,
[�
≺
]
,
[≺
�
]
,
[�
�
]
) is free and generated by the set IP .

Proof. Let Q be the free quadrialgebra over the family IP . Thanks to Corollary 4, we deduce that
the set T Q (E, IP) is a basis of Q+. From Theorem 3 and Proposition 7, it follows that the image
of T Q (E, IP) is a basis of V (S(2))+. Since the evaluation map Ev is a morphism of quadrialgebras,
we deduce that this map is in fact an isomorphism, which proves the theorem.

5 The case of tridendriform algebras
For tridendriform algebra we also can apply the same method in order to find the Hilbert series H of
the tridendriform algebra over one generator and to prove that WQSym a tridendriform algebra defined
in [NT06] is free.



534 Vincent Vong

Acknowledgements
I am grateful to Samuele Giraudo for interesting discussions and ideas about operads.

References
[AL04] M. Aguiar and J.-L. Loday. Quadri-algebras. Journal of Pure and Applied Algebra, 191(3):205–

221, 2004.

[BR10] E. Burgunder and M. Ronco. Tridendriform structure on combinatorial Hopf algebras. Journal
of Algebra, 324(10):2860–2883, 2010.

[DHT02] G. Duchamp, F. Hivert, and J.-Y. Thibon. Noncommutative Symmetric Functions VI: Free
Quasi-Symmetric Functions and Related Algebras. International Journal of Algebra and Com-
putation, 12(5):671–717, 2002.

[FN99] P. Flajolet and M. Noy. Analytic combinatorics of non-crossing configurations. Discrete Math-
ematics, 204(1):203–229, 1999.

[Foi07] L. Foissy. Bidendriform bialgebras, trees, and free quasi-symmetric functions. Journal of Pure
and Applied Algebra, 209(2):439–459, 2007.

[HNT05] F. Hivert, J.-C. Novelli, and J.-Y. Thibon. The algebra of binary search trees. Theor. Comput.
Sci., 339(1):129–165, 2005.

[Lod01] J.-L. Loday. Dialgebras. Lect. Notes Math., 1763:7–66, 2001.

[LR98] J.-L. Loday and M.-O. Ronco. Hopf Algebra of the Planar Binary Trees. Advances in Mathe-
matics, 139(2):293 – 309, 1998.

[LR04] J.-L. Loday and M. Ronco. Trialgebras and families of polytopes. Contemporary Mathematics
AMS, 346:369–398, 2004.

[LV12] J.-L. Loday and B. Vallette. Algebraic operads, volume 346. Springer, 2012.

[MR95] C. Malvenuto and C. Reutenauer. Duality between quasi-symmetrical functions and the
Solomon descent algebra. Journal of Algebra, 177(3):967–982, 1995.

[Nov14] J.-C. Novelli. m-dendriform algebras. arXiv preprint arXiv:1406.1616, 2014.

[NT06] J.-C. Novelli and J.-Y. Thibon. Polynomial realizations of some trialgebras. arXiv preprint
math/0605061, 2006.

[Val08] B. Vallette. Manin products, Koszul duality, Loday algebras and Deligne conjecture. J. Reine
Angew. Math., 620:105–164, 2008.

[Zin] GW Zinbiel. Encyclopedia of types of algebras 2010.


	Introduction
	Background
	General definitions
	Some combinatorial methods for P-algebra problems
	The Hilbert series of a P-algebra over one generator of degree one
	The freeness of a P-algebra


	The case of dendriform algebras
	General properties
	Background
	A generating family of the free dendriform algebra over one generator

	The dendriform algebra FQSym
	A factorization theorem
	The freeness of the dendriform algebra FQSym


	The case of quadrialgebras
	General properties
	Background
	A generating family of the free quadrialgebra over one generator

	The quadrialgebra of 2-permutations
	A factorization theorem
	The free quadrialgebra of 2-permutations


	The case of tridendriform algebras

