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In this paper, we confirm conjectures of Laborde-Zubieta on the enumeration of corners in tree-like tableaux and
in symmetric tree-like tableaux. In the process, we also enumerate corners in (type B) permutation tableaux and
(symmetric) alternative tableaux. The proof is based on Corteel and Nadeau’s bijection between permutation tableaux
and permutations. It allows us to interpret the number of corners as a statistic over permutations that is easier to count.
The type B case uses the bijection of Corteel and Kim between type B permutation tableaux and signed permutations.
Moreover, we give a bijection between corners and runs of size 1 in permutations, which gives an alternative proof
of the enumeration of corners. Finally, we introduce conjectural polynomial analogues of these enumerations, and
explain the implications on the PASEP.

Keywords: permutations, signed permutations, permutation tableaux, type B permutation tableaux, tree-like tableaux,
symmetric tree-like tableaux, alternative tableaux, symmetric alternative tableaux

1 Introduction
The partially asymmetric exclusion process (PASEP) is a model from statistical mechanics, in which
particles jump stochastically to the left or to the right, the probability of hopping left is q times the
probability of hopping right. Moreover, particles can enter from the left with probability α and exit at
the right with probability β. We can describe (see Corteel and Williams (2007)) the equilibrium state
of the PASEP using permutation tableaux in Postnikov (2006), alternative tableaux in Viennot (2008) or
tree-like tableaux in Aval et al. (2013b). These combinatorially equivalent objects have been the focus of
intense research in the recent years. For example, the reader can be referred to Burstein (2007), Corteel
and Nadeau (2009), Laborde-Zubieta (2015), Nadeau (2011) and references therein for more information.
One of the main reasons being that they are in bijection with permutations. For each of these three
tableaux, a type B version was also defined, e.g., see Aval et al. (2013b), Nadeau (2011), Steingrı́msson
and Williams (2007), and the previous bijections with permutations were extended to bijections with
signed permutations.
∗This work was partially supported by the 973 Project, the PCSIRT Project of the Ministry of Education and the National Science

Foundation of China and the Scientific Research Program of the Higher Education Institution of Xinjiang Uygur Autonomous Region
(No. XJEDU2016S032)
†Corresponding author. Email: brianys1984@126.com.

ISSN 1365–8050 c© 2016 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

51
1.

05
45

6v
4 

 [
m

at
h.

C
O

] 
 2

4 
N

ov
 2

01
6

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/1408


2 Alice L.L. Gao, Emily X.L. Gao, Patxi Laborde-Zubieta, Brian Y. Sun

Laborde-Zubieta (2015) showed that the corners in tree-like tableaux are interpreted in the PASEP as
the locations where a jump of particle is possible. He started with the enumeration of occupied corners
and obtained the following results.

Proposition 1.1 (Laborde-Zubieta, 2015, Theorem 3.2) The number of occupied corners in the set of
tree-like tableaux of size n is n!.

Proposition 1.2 (Laborde-Zubieta, 2015, Theorem 3.7) The number of occupied corners in the set of
symmetric tree-like tableaux of size 2n+ 1 is 2n · n!.

Regarding the unrestricted corners, he gave the following two conjectures.

Conjecture 1.3 (Laborde-Zubieta, 2015, Conjecture 4.1) The number of corners in the set of tree-like
tableaux of size n is n!× n+4

6 .

Conjecture 1.4 (Laborde-Zubieta, 2015, Conjecture 4.2) The number of corners in the set of symmetric
tree-like tableaux of size 2n+ 1 is 2n × n!× 4n+13

12 .

In this work, we give a proof of these conjectures. For the first one, through bijections, we give relations
between the number of corners in permutation tableaux, alternative tableaux and tree-like tableaux. Then,
using a bijection due to Corteel and Nadeau (2009), we interpret the number of corners in permutation
tableaux as a statistic in permutations. By computing this statistic in permutations of fixed size, we deduce
the enumeration of corners in each of the three kind of tableaux (Theorem 4.1). The second conjecture is
proven in the same way, which also gives us the enumeration of corners in type B permutation tableaux,
in symmetric alternative tableaux (Theorem 4.3). It should be noted that Hitczenko and Lohss (2015)
proved both conjectures in a different way, using a probabilistic approach. Additionally, we present a
bijection between corners in tree-like tableaux and runs of size 1 in permutations, which answers to a
question raised in Gao et al. (2015). Counting corners in tree-like tableaux gives an information about the
average number of locations where a jump of particle is possible in the PASEP, if we set q = α = β = 1.
We give a conjectural (a, b)-analogue of this enumeration which would generalise the result to the case
where only q is equal to 1. We also conjecture an x-analogue for the enumeration of corners in symmetric
tree-like tableaux.

The paper is organised in the following way. In Section 2 we give several definitions, in particular we
recall the definitions of the tableaux we will be considering. Section 3 presents the different bijections we
need to relate corners in tree-like tableaux with permutations. In parallel, we also deal with the type B
case. Then (Section 4), we prove the two conjectures and enumerate corners in the other types of tableaux.
Moreover we give a bijection between corners in tree-like tableaux and runs of size 1 in permutations.
Finally we give polynomial analogues of Conjecture 1.3 and Conjecture 1.4, and partially prove them.

2 Preliminaries
First of all, to be self-contained in this paper, let us recall some necessary basic notions and introduce
some notations in this section.

2.1 (k, n)-diagrams
Here we mainly adopt Cho and Park’s terminologies in Cho and Park (2015). For two nonnegative integers
n and k with n > k, a (k, n)-diagram D (left subfigure of Figure 1) is a left-justified diagram of boxes
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in a k × (n − k) rectangle with λi boxes in the i-th row, where λ1 > λ2 > · · · > λk > 0. The integer
n is called the length of D, it is equal to the number of rows plus the number of columns. Note that a
(k, n)-diagram may have empty rows or columns. A shifted (k, n)-diagram is a (k, n)-diagram together
with a stair-shaped array of boxes added above, where the j-th column (from the left) has (n− k+1− j)
additional boxes for j ∈ [n−k].We denoteD∗ the shifted (k, n)-diagram obtained from a (k, n)-diagram
D. In terms of the definitions in Cho and Park (2015), D is called the (k, n)-subdiagram of D∗. The
length of D∗ is defined to be the length of its (k, n)-subdiagram. Among the cells we added, the ones at
the top of a column are called diagonals. An example of a shifted (4, 8)-diagram is shown in the middle
of Figure 1, its diagonals are pointed out in the right Figure 1.
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Fig. 1: A (4, 8)-diagram D (left), the shifted (4, 8)-diagram D∗ (middle) and the labeling of the rows and
the columns of D∗ (right).

Let us now introduce some definitions and notations about those diagrams. A (k, n)-diagram D is
uniquely determined by its South-East border, which is the lattice path starting at the North-East corner
of the rectangle k × (n − k), going along D’s border and finishing at the South-West corner. Following
the same direction, we label the steps of the South-East border with [n] = {1, . . . , n}. We extend the
labelling to shifted (k, n)-diagrams. An example of both cases is given respectively in the left and the
middle subfigures of Figure 1. The steps of the South-East border are called, border edges. We label the
rows and the columns of a (k, n)-diagram with the label of their corresponding vertical and horizontal
border edge respectively. Moreover, in the case of a shifted (k, n)-diagram, we label the added rows as
follows: if the diagonal cell of an added row is in column i, then the row is labeled by −i. The right
subfigure of Figure 1 shows an example of the labelling of the rows and columns of a shifted (k, n)-
diagram. From now on, we will say row i or column j when we actually refer to the row with the label i
or to the column with the label j. The cell (i, j) is the cell at the intersection of the ith row starting from
top and the jth column starting from left, this notation is independent from the previous labelling of rows
and columns. The cells we will be looking at are the followings.

Definition 2.1 In a (shifted) (k, n)-diagram, a corner is a cell such that its bottom and right edges are
border edges.

For example, the (4, 8)-diagram in the left subfigure of Figure 1 has two corners, (1, 4) and (3, 3). Its
shifted (4, 8)-diagram has also two corners, (5, 4) and (7, 3), as we can see in the middle subfigure of
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Figure 1. The last definition we need, about (k, n)-diagrams, is the main diagonal. As we can see in the
Figure 2, it is the line going through the North-West and the South-East corners of the top left cell.

@
@
@
@@ main diagonal line

Fig. 2: A diagram with its main diagonal line.

In this article we study alternative tableaux, permutation tableaux, tree-like tableaux and their corre-
sponding type B versions. Tableaux should be understood in the following way.

Definition 2.2 LetD be a (shifted) (k, n)-diagram, a tableau of underlying diagramD, is a certain filling
of the cells of D with some symbols. The underlying diagram of T is denoted by D(T ). The previous
definitions about (shifted) (k, n)-diagrams are extended to tableaux.

A corner of tableaux T is called an occupied corner if it is filled with a symbol, otherwise, a corner cell
is called a non-occupied corner. Let us denote by C(T ) the set of corners of a given tableau T and C(X)
the set corners of a given set X of tableaux, i.e.,

C(X) =
⋃
T∈X
C(T ).

Similarly, denote by c(T ) the number of corners of T and let c(X) = |C(X)|.

2.2 Tableaux
In what follows, we shall introduce the main combinatorial objects of our work: permutation tableaux,
alternative tableaux, tree-like tableaux and their type B versions.

2.2.1 Permutation tableaux
Permutation tableaux arose in the study of totally nonnegative Grassmannian, see Postnikov (2006). There
have been a lot of work on the subject in many different directions since they were formally introduced
by Steingrı́msson and Williams (2007), see Burstein (2007), Corteel and Nadeau (2009), Corteel and Kim
(2011) and Corteel and Williams (2007) for details.

Definition 2.3 A permutation tableau, is a (k, n)-diagram with no empty columns together with a 0,1-
filling of the cells such that

(1) each column has at least one 1;

(2) there is no 0 which has a 1 above it in the same column and a 1 to the left of it in the same row.

We denote by PT n the set of permutation tableaux of length n. An example of permutation tableau
of length 8 is given in the left subfigure of Figure 3. We need to introduced some definitions about
permutation tableaux that will be needed in the description of the bijection between alternative tableaux
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and permutation tableaux (Section 3.2). In a permutation tableau, a topmost 1 is a highest 1 of a column.
A restricted 0, is a 0 with a 1 above it in the same column. Finally, a rightmost restricted 0, is a restricted
0 with no restricted 0 to its right.

The type B version of these tableaux, were introduced by Lam and Williams (2008).

Definition 2.4 A type B permutation tableau is a shifted (k, n)-diagram D∗ together with a 0, 1-filling of
D∗ satisfying the following conditions:

(1) each column has at least one 1;

(2) there is no 0 which has a 1 above it in the same column and a 1 to the left of it in the same row;

(3) if a 0 is in a diagonal cell, then it does not have a 1 to the left of it in the same row.

We denote by PT Bn the set of type B permutation tableaux of length n. An example of a permutation
tableau of length 7 is given in right subfigure of Figure 3. We extend the definition of topmost 1, restricted
0 and rightmost restricted 0, adding that a 0 in a diagonal is restricted.

0 0 1
1 1 1
0 1 0 1

1
0
0
0
0
0

1
0
0
1

1
1
0

1

Fig. 3: A permutation tableau (left) and a type B permutation tableau (right).

2.2.2 Alternative tableaux
Alternative tableaux, were introduced by Viennot (2008) as follows.

Definition 2.5 An alternative tableau is a (k, n)-diagram with a partial filling of the cells with left arrows
“←” and up arrows “↑”, such that all cells left of a left arrow “←”, or above an up arrow “↑” are empty.
In other words, all cells pointed by an arrow must be empty.

We denote by AT n the set of alternative tableaux of length n. An example of an alternative tableau of
length 8 is given in the left subfigure of Figure 4.

The type B version of alternative tableau are called symmetric alternative tableaux, they were defined
by Nadeau (2011).

Definition 2.6 A symmetric alternative tableau is an alternative tableau unchanged by the reflection with
respect to its main diagonal.

The set of symmetric alternative tableaux of length 2n will be denoted AT sym2n . A symmetric alternative
tableau of size 8 is given in the right subfigure of Figure 4.
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←

↑ @
@
@
@@ main diagonal line←

←
↑

↑

Fig. 4: An alternative tableau (left) and a symmetric alternative tableau (right).

2.2.3 Tree-like tableaux
The last kind of tableaux we will consider are the tree-like tableaux. They were introduced in Aval et al.
(2013b). They have a nice recursive structure, given by an insertion algorithm, which simplified some of
the previous main results.

Definition 2.7 A tree-like tableau is a filling of (k, n)-diagram (without empty rows or empty columns)
with points inside some cells, such that the resulting diagram satisfies the following three rules,

(1) the top left cell of the diagram contains a point, called the root point;

(2) for every non-root pointed cell c, there exists either a pointed cell above c in the same column, or a
pointed cell to its left in the same row, but not both;

(3) every column and every row possess at least one pointed cell.

The size of a tree-like tableau is defined to be its number of points. It is not difficult to see that the length
of a tree-like tableau is equal to its size plus one. In the sequel, we denote by Tn the set of the tree-like
tableaux of size n. An example of a tree-like tableau of size 8 is shown in the left subfigure of Figure 5.

Definition 2.8 A symmetric tree-like tableau is a tree-like tableau unchanged by the reflection with re-
spect to its main diagonal.

The size of a symmetric tree-like tableau is necessarily odd, we denote by T sym2n+1 the set of symmetric
tree-like tableaux of size 2n + 1. An example of a symmetric tree-like tableau of size 9 is given in the
right subfigure of Figure 5.

•
• •

•
•

•
•

•

•

• •
•
• •
•

•
•

@
@
@
@
@
@ main diagonal line

Fig. 5: A tree-like tableau (left) and a symmetric tree-like tableau (right).
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2.3 Permutations
A permutation π of length n is a bijection from [n] to [n], we use the notation πi := π(i) for 1 6 i 6 n.
We can represent a permutation with the word π1 . . . πn. The group of permutations of length n is denoted
by Sn. We consider the following non usual definitions for ascents and descents given in Corteel and
Nadeau (2009).

Definition 2.9 Given a permutation π = π1 · · ·πn ∈ Sn with the convention that πn+1 = n+ 1, we say
that πi is a descent if πi > πi+1 and call πi an ascent if πi < πi+1 for 1 6 i 6 n.

For example, the descents of the permutation 5, 7, 6, 3, 1, 2, 8, 4 are {7, 6, 3, 8}.
A signed permutation (also called permutation of type B) σ of length n is a bijection on {−n,−(n −

1), . . . ,−1, 1 . . . , n} satisfying σ(−i) = −σ(i) for i ∈ [n]. We also use the notation σi := σ(i) and
represent a signed permutation with the word σ1 . . . σn. The group of type B permutations is denoted
by SB

n . Corteel and Kim (2011) gave the following definitions of an ascent and a descent of a signed
permutation.

Definition 2.10 Let σ = σ1σ2 · · ·σn ∈ SB
n with convention that σn+1 = n + 1. For i ∈ [n], σi is a

signed descent if σi < 0 or σi > |σi+1|, otherwise σi is a signed ascent and satisfies 0 < σi < |σi+1|.
For σ = 3,−1,−4, 2, 6, 5, 7 ∈ SB

7 , the signed descents of σ are {−1,−4, 3, 6}.

3 Bijections
In this section we give bijections between the different kinds of tableaux and we deduce equalities between
the number of corners in each type of tableaux.

3.1 A bijection α between tree-like tableaux and alternative tableaux compati-
ble with the type B case

Recall that Tn denote the set of tree-like tableaux of size n andAT n denote the set of alternative tableaux
of length n.

Theorem 3.1 (Aval et al. (2013b)) There is a bijection α : Tn → AT n−1 such that for any T ∈ Tn, the
underlying diagram of α(T ) is obtained from D(T ) by deleting its topmost row and its leftmost column.

We give a description of the bijection α and its inverse α−1 in detail without proof. Given a tree-like
tableau T ∈ Tn of size n, we construct α(T ) in two steps. First replace every non-root point p with a left
arrow “←” if there is no point to its left in the same row and an up arrow “↑” if there is no point above it
in the same column. Then, simply delete the topmost row and the leftmost column. One can verify that
the tableau we obtain is an alternative tableau of length n− 1. Figure 6 gives an example of the bijection.

Let T ′ be an alternative tableau of length n − 1 with underlying diagram D′. Suppose D′ has k rows
and n− 1− k columns. We construct the underlying diagram D of α−1(T ′) from D′ by adding a column
of k cells at the left of its leftmost column, a row of n− 1− k cells above its topmost row and a cell at its
top left corner. Note that D′ is a (k, n− 1)-diagram and D is a (k+1, n+1)-diagram. Next, for any cell
c = (i, j) in D′, if there is an up arrow “ ↑ ” in c and there is no arrows (both “← ” and “ ↑ ” ) to its left
in the same row, add a point in the cell (i + 1, 1) in D. If there is a left arrow “ ← ” in c and there is no
arrows above c in the same column, add a point in the cell (1, j + 1) in D. Then add a point in (1, 1) and
(1, j + 1) or (i+ 1, 1) in D if column j or row i has no arrows in D′. Lastly, add a point in (i+ 1, j + 1)
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in D if there is an arrow in (i, j) in D′, the resulting tableau is a tree-like tableau of size n, denoted by
T = α−1(T ′).

On the basis of the bijection, we can conclude the following result.

Corollary 3.2 The number of corners in Tn and in AT n−1 satisfy the relation:

c(Tn) = c(AT n−1) + 2(n− 1)!.

Proof: The underlying diagram of α(T ) is obtained from D(T ) by removing the topmost row and the
leftmost column. Hence, the bijection α doesn’t create any new corner, but it removes the corners at the
right of the topmost row (corners of type 1) or the corners at the bottom of the leftmost column (corners
of type 2). Corners of type 1 in Tn are in easy bijection with tree-like tableaux of size n − 1, which are
counted by (n − 1)!. To a corner of type 1 c in a tree-like tableau T of size n, we associate the tree-like
tableau obtained from T by removing c. With a similar argument, we can also prove that corners of type
2 in Tn are counted by (n− 1)!. 2

Furthermore, the bijection α can be restricted to symmetric tree-like tableaux and symmetric alternative
tableaux. As an example, see Figure 6.

Theorem 3.3 If α is restricted to the set of symmetric tree-like tableaux T sym2n+1. Then it is also a bijec-
tion between the set of symmetric tree-like tableaux T sym2n+1 and the set of symmetric alternative tableaux
AT sym2n .

←
↑

↑

@
@
@
@
@
@
@

←
← ↑−→α

@
@
@
@
@
@
@
@

•

•

• • • • •
•

•
•

•

•
•
•

•

main diagonal line main diagonal line

Fig. 6: The bijection α between symmetric tree-like tableaux and symmetric alternative tableaux.

With Theorem 3.3, it is natural to deduce the following corollary.

Corollary 3.4 The number of corners in T sym2n+1 is equal to the number of corners inAT sym2n plus 2n(n−
1)!, i.e.,

c(T sym2n+1) = c(AT sym2n ) + 2n(n− 1)!.

Proof: As in Corollary 3.2, the bijection α doesn’t create any new corner, but it removes the corners at
the right of the topmost row (type 1) and the corners at the bottom of the leftmost column (type 2). A
symmetric tree-like tableau has a corner of type 1 if and only if it has a corner of type 2. Hence we will
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enumerate pairs of corners of type 1 and 2 belonging to the same symmetric tree-like tableaux of size n.
Such pairs are in easy bijection with symmetric tree-like tableaux of size n − 1, which are counted by
2n−1(n− 1)!. The bijection simply consists in removing the two corners. 2

3.2 A bijection γ between alternative tableaux and permutation tableaux
In this subsection, we give a simple description of the bijection γ, the reader can refer to Viennot (2008)
for more details about its proof.

Theorem 3.5 (Viennot (2008)) There exists a bijection γ : PT n → AT n−1 such that for any permuta-
tion tableau PT ∈ PT n, the underlying diagram of alternative tableau γ(PT ) is obtained from D(PT )
by removing its first row.

Given a permutation tableau PT , γ(PT ) is computed in the following way. First, change the topmost 1
in every column to “ ↑ ”. Then, transform every rightmost restricted 0 to “ ← ”. Finally, delete all other
0s and 1s, and erase the first row. See Figure 7 as an example.

Conversely, let AT be an alternative tableau of length n− 1 with underlying diagram D′. Suppose D′
has k rows and n− 1− k columns. The underlying diagram D of γ−1(AT ) is obtained by adding to D′
a row of n − 1 − k cells above its first row . We change the filling, in the following way. For any cell
c = (i, j) in D′, if there is an up arrow “ ↑ ” (resp. “ ← ”) in c, add a 1 (resp. 0) in the cell (i + 1, j)
in D. Then, if there is no 1 in some column j of D, we add a 1 in the cell (1, j). Lastly, fill with 0s the
empty cells to the left of a 0 in the same row, or above a 1 in the same column, and then, fill the rest of
empty cells with 1s.

0

1
0 1

1

0 1

1
0 1

−→γ ↑
←
↑

Fig. 7: The bijection γ from a permutation tableau to an alternative tableau.

Based on Theorem 3.5, we can deduce the following corollary.

Corollary 3.6 The number of corners in AT n−1 and in PT n satisfy the relation:

c(AT n−1) = c(PT n)− (n− 1)!.

Proof: The bijection γ−1 doesn’t form any corner, but if the step 1 is a west step, a new corner is
constructed. The alternative tableau of length n−1 such that the step 1 is a west step, are in easy bijection
with alternative tableaux of length n− 2, which are counted by (n− 1)!. The bijection simply consist in
removing the west step. 2
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3.3 A bijection ζ between symmetric alternative tableaux and type B permuta-
tion tableaux

The alternative representation of a permutation tableau of type B was introduced by Corteel and Kim
(2011).

Definition 3.7 The alternative representation of PTB ∈ PT Bn is a tableau obtained from PTB according
to the following operations, denoted byR. First, we replace the topmost 1s with “ ↑ ”s and the rightmost
restricted 0s with “ ← ”s and remove the remaining 0s and 1s. Second, we remove the “ ↑ ”s in the
diagonal and cut off the diagonal cells as shown in Figure 8. We call the resulting tableau, denoted by
R(PTB), the alternative representation of PTB .

7
5
2

-1
-3
-4
-6

6 4 3 1

1
0
0
0
0
0

1
0
0
1

1
1
0

1 −→R

@
@
@
@
@
@

7
5
2

-1
-3
-4
-6

6 4 3 1

↑

← ↑

Fig. 8: A type B permutation tableau of length 7 (left) and its alternative representation (right).

It is not difficult to see that R is a bijection, see Corteel and Kim (2011) for details. We note that the
alternative representation of a type B permutation tableau can be obtained by cutting a symmetric alter-
native tableau across its main diagonal line. Hence we can construct a bijection ζ between permutation
tableaux of type B and symmetric alternative tableaux via the bijectionR.

Theorem 3.8 There is a bijection ζ : PT Bn → AT
sym
2n .

Proof: We denote by F the reflection of an alternative representation across all its diagonal cells (or main
diagonal line). It is bijection between alternative representations and symmetric alternative tableaux. Then
ζ := F ◦ R, is a bijection from PT Bn to AT sym2n . 2

As a corollary of Theorem 3.8, we have the following result.

Corollary 3.9 The number of corners in the set of symmetric alternative tableaux of length 2n is equal
to twice the number of corners in the set of type B permutation tableaux of length n plus 2n−1n!, i.e.,

c(AT sym2n ) = 2c(PT Bn ) + 2n−1n!.

Proof: The bijection ζ doesn’t remove any corner, but it creates new ones. Let PT be a type B permu-
tation tableau. All the corners of PT appears twice in ζ(PT ) and if the step 1 of PT is a west step, an
additional corner appears in ζ(PT ). To prove the Corollary, we just need to enumerate the number of
type B permutation tableaux of size n such that step 1 is a west step, we denote PT Wn the set of those
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tableaux. In fact, they are in bijection with type B permutation tableaux of size n such that step 1 is a
south step (PT Sn). The bijection consist simply in removing the rightmost diagonal, i.e., the cell above
the step 1. Since the set of permutation tableaux of size n is the disjoint union of PT Wn and PT Sn , hence,
|PT Wn | = 1

2 |PT n| = 2n−1n!. 2

3.4 A bijection ϕ from permutation tableaux to permutations
To begin with, it is worthy to mention that there have been several bijections from permutation tableaux
to permutations up to now, see Burstein (2007); Corteel and Nadeau (2009); Corteel and Kim (2011);
Steingrı́msson and Williams (2007). Here we only introduce the one due to Corteel and Nadeau. We give
the following theorem without describing the bijection, the reader can be referred to Corteel and Nadeau
(2009) for details.

Theorem 3.10 (Corteel and Nadeau, 2009, Theorem 1. (1)) There exists a bijection ϕ : PT n → Sn

such that for any permutation tableau PT ∈ PT n and 1 6 i 6 n, i is a label of a column in PT if
and only if i is a descent in π; and i is a label of a row in PT if and only if i is an ascent in π, where
π = ϕ(PT ).

By Theorem 3.10, we can easily find the following result.

Corollary 3.11 For a permutation tableau PT ∈ PT n and 1 6 i < n, the consecutive border edges
labeled with i and i+ 1 in the South-East border in its underlying diagram form a corner if and only if i
is an ascent and i+ 1 is a descent in π = ϕ(PT ).

Remark 3.12 It should be noted that, since ascent and descent are not defined in the usual way, the
property such that i is an ascent and i+ 1 is a descent, does not correspond to a peak.

3.5 A bijection ξ between type B permutation tableaux and type B permuta-
tions

Corteel and Kim (2011) built a bijection between type B permutation tableaux and signed permutations.

Theorem 3.13 (Corteel and Kim, 2011, Proposition 4.1) There exists a bijection ξ : SB
n → PT

B
n such

that for any σ ∈ SB
n and 1 6 i 6 n, i is a signed descent if any only if i is a label of a column; and i is a

signed ascent if any only if i is a row label.

By Theorem 3.13, we deduce the following corollary easily.

Corollary 3.14 For a signed permutation σ ∈ SB
n and PTB = ξ(σ), the consecutive border edges

labeled with i and i + 1 in the underlying shifted (k, n)-diagram of PTB form a corner if, and only if, i
is a signed ascent and i+ 1 is a signed descent in σ.

4 Enumeration of Corners
4.1 Enumeration of Corners
In this subsection, from the enumeration of the statistics on permutations and signed permutations that
arose in Corollary 3.11 and Corollary 3.14, we deduce the enumeration of corners in each kind of tableau.
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Theorem 4.1 At fixed size, the number of corners in each of the three kinds of typeA tableaux, is counted
by

c(PT n) =
{

0, if n = 1,

(n− 1)!× n2+4n−6
6 , if n > 2.

c(AT n−1) =
{

0, if n = 1,

(n− 1)!× n2+4n−12
6 , if n > 2.

c(Tn) =
{

1, if n = 1,
n!× n+4

6 , if n > 2.

Proof: For n = 1, there is only one tableau for each kind, and only the tree-like tableau of size 1 has a
corner.

For general n, using Corollary 3.2, Corollary 3.6 and Corollary 3.11, we just need to compute the
number of i′s in permutations of size n such that i is an ascent and i + 1 is a descent. Suppose ai(π)
means that i is an ascent and i+ 1 is a descent in a permutation π and

χ(ai) =

{
1, if ai is true,
0, otherwise,

then,

c(PT n) =
∑

PT∈PT n

c(PT ) =
∑
π∈Sn

n−1∑
i=1

χ(ai(π)) =

n−1∑
i=1

∑
π∈Sn

χ(ai(π)).

For 1 6 i < n, let Ai denote the set of permutations in Sn such that i is an ascent and i+1 is a descent
in π ∈ Sn, and |Ai| the cardinality of Ai. It is clear that

|Ai| =
∑
π∈Sn

χ(ai(π)).

So, it is sufficient to compute |Ai| in order to count c(PT n).
For any permutation π = π1 . . . πn ∈ Ai, suppose there exist 1 6 t1, t2 6 n such that πt1 = i and

πt2 = i+1. By the definition of ascents and descents, we know that πt1 < πt1+1 and πt2 > πt2+1. There
are three cases to consider.

Case 1: If t2 = t1 + 1, it means that there is a subsequence πt1 , πt2 , πt2+1 = i, i + 1, πt2+1 such that
i+ 1 > πt2+1 in π. It is easy to see that the number of such permutations is (i− 1)(n− 2)!.

Case 2: If t1 = t2 + 1, similarly there is a subsequence πt2 , πt1 , πt1+1 = i + 1, i, πt1+1 such that
i < πt1+1 in π. It is clear that the number of such permutations is (n−2)!+(n−i−1)(n−2)! =
(n− i)(n− 2)!, where (n− 2)! counts the number of permutations such that πt1+1 = n+ 1.

Case 3: For |t1 − t2| > 1, there are two subcases to consider.

(a) if πt1+1 6 n, the number of such permutations is (n− i− 1)(i− 1)(n− 2)!.
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(b) if πt1+1 = n+ 1, the number of such permutations is (i− 1)(n− 2)!.

Therefore, in total there are (n− i)(i− 1)(n− 2)! such permutations in Sn.

So, the number of corners in the set of permutation tableaux of length n > 2 is

c(PT n) =
n−1∑
i=1

|Ai|

=

n−1∑
i=1

[(i− 1)(n− 2)! + (n− i)(n− 2)! + (n− i)(i− 1)(n− 2)!]

= (n− 2)!

n−1∑
i=1

[(i− 1) + (n− i) + (n− i)(i− 1)]

= (n− 2)!

n−1∑
i=1

[(n+ 1)i− i2 − 1]

= (n− 1)!× n2 + 4n− 6

6
.

This completes the proof. 2

As the third author gave the number of occupied corners, see Proposition 1.1, we can give an enumera-
tive result for non-occupied corners in Tn.

Corollary 4.2 The number of non-occupied corners in Tn is n!× n−2
6 for n > 3 and zero for n = 1, 2.

We also obtain analogues results with type B tableaux.

Theorem 4.3 At fixed size, the number of corners in each of the three kind of type B tableaux, is counted
by

c(PT Bn ) =
{

0, if n = 1,

2n−1(n− 1)!× 4n2+7n−12
12 , if n > 2.

c(AT sym2n ) =

{
1, if n = 1,

2n(n− 1)!× 4n2+13n−12
12 , if n > 2.

c(T sym2n+1) =

{
3, if n = 1,

2nn!× 4n+13
12 , if n > 2.

Proof: For n = 1, there are two tableaux for each kind. The two permutations tableaux have no corners,
only one of the two alternative tableaux has a corner and the two tree-like tableaux have respectively one
and two corners.

For general n, using Corollary 3.4, Corollary 3.9 and Corollary 3.14, we can compute the number
of corners in each kind of type B tableaux, from the enumeration of i′s in the permutation σ such that
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i(1 6 i < n) is a signed ascent and i+1 is a signed descent in σ. Suppose, bi(π) means that i is a signed
ascent and i+ 1 is a signed descent in σ and

χ(bi) =

{
1, if bi is true,
0, otherwise,

then,

c(PT Bn ) =
∑

PTB∈PT B
n

c(PTB) =
∑
σ∈SB

n

n−1∑
i=1

χ(bi) =

n−1∑
i=1

∑
σ∈SB

n

χ(bi).

For 1 6 i < n, let Bi denote the set of type B permutations in SB
n such that i is a signed ascent and

i+ 1 is a signed descent in σ ∈ SB
n , and |Bi| the cardinality of Bi. It is clear that

|Bi| =
∑
σ∈SB

n

χ(bi).

So, it is sufficient to compute |Bi| in order to count c(PT Bn ).
For 1 6 i < n and σ = σ1σ2 · · ·σn ∈ Bi. Suppose there exist 1 6 t1, t2 6 n such that |σt1 | = i and
|σt2 | = i + 1. It is worthy to mention that 1 6 t1, t2 6 n and t1 6= t2. By the definition of Bi we know
that |σt1 | is a signed ascent and |σt2 | is a signed descent in σ, which implies that 0 < σt1 < |σt1+1| and
σt2 < 0 or σt2 > |σt2+1|. So there are two cases to consider for a given integer i.

Case 1: If σt1 = i < |σt1+1| and σt2 = −(i+ 1), we can divide it into two subcases:

Subase 1: t2 = t1 + 1, which means that there is a subsequence σt1 , σt2 = i,−(i+ 1) in σ. By
the definition of signed permutations, it is not difficult to compute the number of such
signed permutations is 2n−2(n− 1)!.

Subase 2: t2 6= t1 + 1, then there are two subcases to consider.

(i) if |σt1+1| 6 n, the number of such type B permutations is 2n−2(n−i−1)(n−1)!;
(ii) if σt1+1 = n+ 1, the number of such type B permutations is 2n−2(n− 1)!.

Hence there are 2n−2(n− i)(n− 1)! such signed permutations in SB
n .

Case 2: If σt1 = i < |σt1+1| and σt2 = i+ 1 > |σt2+1|. Similarly, there are three subcases to consider:

Subase 1: if t2 = t1+1, this implies that there is a subsequence σt1 , σt2 , σt2+1 = i, i+1, σt2+1

such that i+1 > |σt2+1| in σ. By the definition of permutations of typeB, the number
of such permutations is 2n−2(i− 1)(n− 2)!.

Subase 2: if t1 = t2 + 1. That is to say, there is a subsequence σt2 , σt1 , σt1+1 = i+ 1, i, σt1+1

such that i < |σt1+1| in σ. Analogously, the number of such permutations is 2n−2(n−
2)!+2n−2(n− i−1)(n−2)!, where 2n−2(n−2)! counts the number of permutations
such that σt1+1 = n + 1. Thus such type B permutations are counted by 2n−2(n −
i)(n− 2)!.

Subase 3: if |t1 − t2| > 1, there are two subcases to consider:

(i) if |σt1+1| 6 n, the number of such permutations is 2n−2(n−i−1)(i−1)(n−2)!.
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(ii) if σt1+1 = n+ 1, the number of such permutations is 2n−2(i− 1)(n− 2)!.

In total, there are 2n−2(n− i)(i− 1)(n− 2)! such type B permutations.

All in all, the number of elements in c(PT Bn ) is given by

n−1∑
i=1

2n−2
{
(n− 1)! + (n− i)(n− 1)! + (i− 1)(n− 2)! + (n− i)(n− 2)! + (n− i)(i− 1)(n− 2)!

}
= 2n−2(n− 1)!

n−1∑
i=1

{
1 + (n− i)

}
+ 2n−2(n− 2)!

n−1∑
i=1

{
(i− 1) + (n− i) + (n− i)(i− 1)

}
= 2n−1 × (n− 1)!× 4n2 + 7n− 12

12
.

This completes the proof. 2

By Proposition 1.2 and Theorem 4.3, we can enumerate the non-occupied corners in symmetric tree-like
tableaux of size 2n+ 1.

Corollary 4.4 The number of non-occupied corners in symmetric tree-like tableaux T sym2n+1 of size 2n+1
is given by

2n × n!× 4n+ 1

12
.

4.2 Bijection between corners and runs of size 1
In this subsection, we give an alternative proof of the enumeration of corners, by constructing a bijection
between corners in tree-like tableaux and ascending runs of size 1 in permutations. This answers to a
question raised in Gao et al. (2015). Ascending run is also called increasing run, which was first studied
deeply by Gessel (1977). Recently, Zhuang studied further on runs and generalized Gessel’s results to
allow for a much wider variety of restrictions on increasing run lengths, for more details, see Zhuang
(2016). There is a closed formula counting the number of ascending runs of size r in permutations of size
n (Sloane et al., 2011, A122843), for 0 < r < n we have

n! · [(n(r(r + 1)− 1)− r(r − 2)(r + 2) + 1]

(r + 2)!
(1)

In particular, for r = 1, we get the sequence enumerating corners in tree-like tableaux.
An ascending run of length r of a permutation σ = σ1 · · ·σn, is a sequence (σm, . . . , σm+r−1) such

that
σm−1 > σm < σm+1 < · · · < σm+r−2 < σm+r−1 > σm+r,

with the convention that σ0 = n + 1 and σn+1 = 0. In particular, σ has a run of size 1 means that there
exists i ∈ [n] such that σi−1 > σi > σi+1.

In order to build the bijection, we need a preliminary result about non-ambiguous trees due to Aval
et al. (2014). They correspond to rectangular shaped tree-like tableaux. The height (resp. width) of a
non-ambiguous tree is its number of row (resp. column) minus 1. We have the following result about
these objects (it is a reformulation of Proposition 1.16 in Aval et al. (2015)).
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Proposition 4.5 Non-ambiguous trees of height h and width w are in bijection with permutations σ of
{1, 2, . . . , w, 0̇, 1̇, . . . , ḣ}, finishing by a pointed element and such that if two consecutive elements σi and
σi+1 are both pointed or not pointed, then σi < σi+1.

Proof: The initial result is that, non-ambiguous trees of height h and width w are in bijection with pairs
(u, v) of 2-colored words, with blue letters on [w] and red letters on [h], where each letter appear exactly
once (in u or in v), letters in blocks of the same colors are decreasing, u (resp. v) ends by a red (resp.
blue) letter.

In order to obtain the Proposition 4.5, we turn pairs (u, v) into the desired permutations σ. Let us
consider a non-ambiguous tree nat and its corresponding pair (u, v). We start by constructing a pair
(u′, v′) by replacing the blue (resp. red) letters i of u and v by the uncolored (resp. uncolored pointed)
letters w − i+ 1 (resp. h− i+ 1). The permutation σ corresponding to nat is v′0̇u′. 2

The bijection between corners and ascending runs of size 1 is decomposed into two steps: Lemma 4.6
and Lemma 4.7.

Lemma 4.6 For n > 1, there is a bijection between corners in Tn and triplets (Tl, Tr, nat) such that

• Tl is a tree-like tableau of size nl,

• Tr is a tree-like tableau of size nr,

• nl + nr + 1 = n,

• nat is a non-ambiguous tree of height left(Tr) + 1 and width top(Tl) + 1.

Proof: The proof is based on the l-cut procedure defined in Aval et al. (2014). Let T be in Tn and c one
of its corners. We start by cutting T along the lines corresponding to the bottom and the right edges of
c, as shown in Figure 9a. We denote by L the bottom part, M the middle part and R the right part. In
order to obtain Tl we add to L a first row whose length is equal to the number of columns of M minus 1.
There is exactly one way to add dots in this first row for Tl to be a tree-like tableau: we put them inside
the cells corresponding to non empty columns in M . In a similar way, we obtain Tr from R by adding a
dotted first column. Tl and Tr are two tree-like tableaux, and the sum of their length is equal to the length
of T , hence nl + nr + 1 = n. Finally, removing the empty rows and columns of M we obtain nat. This
procedure is illustrated in Figure 9b. It should be clear that the construction can be reversed and that Tl,
Tr and nat verifies the desired conditions. 2

Lemma 4.7 The triplets (Tl, Tr, nat) satisfying all the conditions in Lemma 4.6 are in bijection with runs
of size 1 in permutations of size n.

Proof: The idea of the proof is the following: from a triplet (Tl, Tr, nat) we construct a permutation σ
of size n which have a run of size 1 (σk) such that σk = nl + 1 for some k. Tl gives the ordering of the
values smaller than σk, Tr the ordering of the values bigger than σk, and nat tells us how we mix them
and where we put σk.

Tree-like tableaux of size n with k points in the first column are in bijection with permutations of size
n with exactly k cycles. Indeed, by Proposition 1.3 in Aval et al. (2013b), they are in bijection with
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c

(a) The cutting of T defined by the corner c.

Tl

nat

Tr

(b) The three parts obtained from T . (To obtain
nat, the gray cells should be removed.)

Fig. 9: An example of the bijection of Lemma 4.6.

permutation tableaux of size n with k unrestricted rows. Moreover, by Theorem 1 in Corteel and Nadeau
(2009), they are in bijection with permutations of size nwith k right-to-left minimum. Finally, the statistic
of right-to-left minimum is equi-distributed with the statistic left-to-right maximum, which is itself equi-
distributed with the statistic of the number of cycles as shown by the “transformation fondamentale” of
Foata-Schützenberger (Proposition 1.3.1 in Stanley (2012) or Section 1.3 in Foata and Schützenberger
(1970)). Using an axial symmetry with respect to the main diagonal of the underlying diagram of T ,
we deduce the same result for tree-like tableaux of size n with k points in the first row. We denote by
h and w the height and the width of nat respectively. Let lσ (resp. rσ) be the permutation associated
to Tl (resp. Tr) by this bijection. We denote by L1, · · · , Lw (resp. R1, · · · , Rh) the disjoint cycles of
lσ (resp. rσ), such that if i < j, then the maximum of Li (resp. Ri) is smaller than the maximum
of Lj (resp.Rj). In addition, we shift the values of the Ri by nl + 1. We will write a cycle without
parenthesis and with its biggest element at the first position. For example, suppose lσ = (6)(7523)(9184)
and rσ = (423)(5)(716)(98), then L1 = 6, L2 = 7 5 2 3, L3 = 9 1 8 4, R1 = 14 12 13, R2 = 15,
R3 = 17 11 16 and R4 = 19 18. Let m be the word corresponding to nat. If 0̇ is not the last letter of m
and if the letter after 0̇ is not pointed, we can uniquely represent m as

m = u0̇a1ḃ1a2ḃ2 · · · apḃp,

where u can be empty, and the words ḃi (resp. ai) consist of a non empty increasing sequence of pointed
(resp. non pointed) letter. In this case, we replacem by swapping subwords ai and ḃi for all i (1 6 i 6 p),
i.e.,

m∗ = u0̇ḃ1a1ḃ2a2 · · · ḃpap.
Obviously, this operation is bijective.
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We finish the general construction by substituting nl + 1 for 0̇, Li for i̇ and Ri for i. For example, if

m = 232̇3̇140̇1̇

then we obtain the run of size one

15 17 11 16 7 5 2 3 9 1 8 4 14 12 13 19 18 10 6.

Another example, if
m = 1̇40̇122̇33̇

then
m∗ = 1̇40̇2̇123̇3

and thus we get
6 19 18 10 7 5 2 3 14 12 13 15 9 1 8 4 17 11 16.

In order to reverse the construction from a run of size one (σk), we use the “transformation fondamentale”
in each maximal sequence of integers smaller (resp. larger) than σk. This way, we are able to identify the
Li (resp. Ri), so that we can recover lσ, rσ and nat. For example, if we consider the run

4 2 6 11 9 12 8 3 7 1 5 10,

we obtain
4 2︸︷︷︸
L2̇

6︸︷︷︸
L3̇

11 9︸︷︷︸
R2

12︸︷︷︸
R3

8︸︷︷︸
0̇

3︸︷︷︸
L1̇

7 1 5︸︷︷︸
L4̇

10︸︷︷︸
R1

,

hence
lσ = (3)(4 2)(6)(7 1 5), rσ = (2)(3 1)(4), m∗ = 2̇3̇230̇1̇4̇1,m = 2̇3̇230̇11̇4̇.

2

As a consequence of Lemma 4.6 and Lemma 4.7, we have the following theorem.

Theorem 4.8 For n > 1, corners in Tn are in bijection with runs of size 1 in Sn.

Even if we send corners to runs of size 1, the two statistics does not have the same distribution. For
example, the permutation 321 have 3 runs of size 1 while a tree-like tableau of size 3 cannot have 3
corners.

From Theorem 4.8 and Equation (1) we deduce the enumeration of corners.

Corollary 4.9 The number of corners in Tn is n! · n+4
6 for n > 2 and 1 for n = 1.

4.3 Polynomial analogues
In this subsection, we present two conjectures that generalise the enumeration of corners in tree-like
tableaux and in symmetric tree-like tableaux, by giving polynomial analogues.
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4.3.1 (a,b)-analogue of the average number of non-occupied corners in tree-
like tableaux

To refine the enumeration of corners, the two statistics over tree-like tableaux we consider are: top and
left, that were defined in Aval et al. (2013b). They count the number of non-root points in the first row
and in the first column, respectively. They are interesting statistics since they correspond to the parameters
α and β respectively in the PASEP.

As explained in Section 4 of Laborde-Zubieta (2015), computing the average number of corners gives
us the average number of locations where a particle may jump to the left or to the right in the PASEP
model, in the case α = β = q = 1 and δ = γ = 0. Computing the (a,b)-analogue of average number of
corners

cn(a, b) :=
∑
T∈Tn

c(T ) · w(T ),

where w(T ) = atop(T )bleft(T ), would extend the result to the case q = 1 and δ = γ = 0, if we replace a
by α−1 and b by β−1.

The (a,b)-analogue of the average number of tree-like tableaux, was computed in Aval et al. (2013b), it
is equal to

Tn(a, b) :=
∑
T∈Tn

w(T ) = (a+ b)(a+ b+ 1) · · · (a+ b+ n− 2).

It turns out that the (a,b)-analogue of the average number of occupied corners is also Tn(a, b). In order
to prove this, we just need to redo the short proof of Section 3.2 in Laborde-Zubieta (2015) via keeping
track of left and top points. As a consequence of this result, computing the (a,b)-analogue for corners or
for non-occupied corners, is equivalent. In this section, we focus on non-occupied corners, because their
study seems easier. We denote by nocn(a, b) the (a,b)-analogue of the average number of non-occupied
corners, i.e.,

nocn(a, b) :=
∑
T∈Tn

noc(T )w(T ),

where noc(T ) is the number of non-occupied corners of T . In particular, Corollary 4.2 implies that
nocn(1, 1) = n! · n−26 . Using an implementation of tree-like tableaux in Sage Developers (2015), the
following conjecture has been experimentally confirmed until n = 10.

Conjecture 4.10 For n > 3, the (a,b)-analogue of the enumeration of non-occupied corners is

nocn(a, b) =

(
(n− 2)ab+

(
n− 2

2

)
(a+ b) +

(
n− 2

3

))
· Tn−2(a, b)

In order to obtain the conjecture about corners, we just have to add Tn(a, b) to nocn(a, b). So, cn(a, b)
can be rewritten as follows:

cn(a, b) =

(
a2 + b2 + nab+

(n2 − n− 4)(a+ b)

2
+

(n+ 2)(n− 2)(n− 3)

6

)
· Tn−2(a, b).

Let X(s) be the random variable counting the number of locations of a state s of size n of the PASEP,
where a particle may jump to the right or to the left. We can compute the conjectural expected value of X



20 Alice L.L. Gao, Emily X.L. Gao, Patxi Laborde-Zubieta, Brian Y. Sun

by using the formula of Section 4 in Laborde-Zubieta (2015),

E(X) =
1

Tn+1(a, b)

∑
T∈Tn+1

w(T )(2c(T )− 1).

=
2 · (a2 + b2 + (n+ 1)ab+ (n2+n−4)(a+b)

2 + (n+3)(n−1)(n−2)
6 )

(a+ b+ n− 1)(a+ b+ n− 2)
− 1

=
6[a2 + b2 + (n+ 1)ab] + 3(n2 + n− 4)(a+ b) + (n+ 3)(n− 1)(n− 2)

3(a+ b+ n− 1)(a+ b+ n− 2)
− 1

=
3(a2 + b2) + 6nab+ 3(n2 − n− 1)(a+ b) + n(n− 1)(n− 2)

(a+ b+ n− 1)(a+ b+ n− 2)
.

Instead of studying nocn(a, b) as a sum over tree-like tableaux, we will study it as a sum over non-
occupied corners in Tn. Let noc be a non-occupied corner of a tree-like tableau T , we define the weight
of noc as

w(noc) := w(T ).

Let NOC(Tn) be the set of non-occupied corners in Tn, we can rewrite nocn(a, b) as

nocn(a, b) =
∑

noc∈NOC(Tn)

w(noc).

The study of this conjecture brings a partitioning of non-occupied corners. We denote by NOCa,b(Tn)
the set of non-occupied corners with no point above them, in the same column, except in the first row and
no point at their left, in the same row, except in the first column. The set of non-occupied corners with no
point above them, except in the first row, or no point at their left, except in the first column, but not both
in the same time, are denoted by NOCa,1(Tn) and NOC1,b(Tn) respectively. The remaining corners are
regrouped in NOC1,1(Tn). The different types of non-occupied corners are illustrated in Figure 10.

∅

∅

(a) NOCa,b(Tn)

not empty

∅

(b) NOCa,1(Tn)

∅

no
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em
pt

y

(c) NOC1,b(Tn)

not empty

no
t

em
pt

y

(d) NOC1,1(Tn)

Fig. 10: Partitioning of non-occupied corners in Tn. ( means that the cell can be either empty or occu-
pied.)
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Proposition 4.11 For n > 3, the (a, b)-analogue of the enumeration of NOCa,b(Tn) is∑
noc∈NOCa,b(Tn)

w(noc) = (n− 2) · ab · Tn−2(a, b).

Proof: In order to show that, we put in bijection non-occupied corners of Tn of this shape and the set
of pairs (T, i) where T is a tree-like tableau of size n − 2 and i is an interstice between two consecutive
border edges of T . Let noc ∈ NOCa,b(Tn) and T ′ be its tree-like tableau of size n. Let j be the integer
such that noc is the cell at the intersection of row j and column j + 1. We obtain a tree-like tableau T of
size n − 2 by removing the row j and the column j + 1. The North-West corner i of noc corresponds to
an interstice between two consecutive border edges of T , we associate to noc the pair (T, i). Conversely,
let us consider a pair (T, i). We construct a tree-like tableau T ′ as follows, we add to T a row and a
column ending a common cell c with i as its North-West corner, and we had a point to the left-most (resp.
highest) cell of the new row (resp. column). In particular, c is in NOCa,b(Tn). The bijection is illustrated
in Figure 11a.

i

T

noc

(a) Bijection between NOCa,b(Tn) and pairs
(T, i).

nocr

T
(b) Bijection between pairs (T, r) and
NOCa,b(Tn)

⋃
NOCa,1(Tn) .

Fig. 11

For each tree-like tableau T of size n− 2, there are n− 2 choices of interstice i, in addition, the weight
of noc is equal to ab · w(T ). As a result,∑
noc∈NOCa,b(Tn)

w(noc) =
∑

T∈Tn−2

i interstice of T

ab ·w(T ) = (n− 2) · ab
∑

T∈Tn−2

w(T ) = (n− 2) · ab · Tn−2(a, b).

2

We are also able to give an (a, b)-analogue of the enumeration of NOCa,1(Tn) and NOC1,b(Tn). In
order to do that, we need an (a, b)-analogue of the enumeration of tree-like tableaux of size n with a fixed
number of rows k,

Aa,b(n, k) =
∑
T∈Tn

T has k rows

atop(T )bleft(T ).

From Proposition 3.4 of Aval et al. (2013b), we already know that A1,1(n, k) is the Eulerian number
and satisfies

A1,1(n+ 1, k) = kA1,1(n, k) + (n+ 2− k)A1,1(n, k − 1).
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In the general case, the linear recurrence satisfied by Aa,b(n, k) is

Aa,b(n+ 1, k) = (a− 1 + k)Aa,b(n, k) + (b+ n+ 1− k)Aa,b(n, k − 1). (2)

As in Aval et al. (2013b), we consider the Eulerian polynomial:

An(t) :=

n∑
k=1

Aa,b(n, k)t
k.

Lemma 4.12 For n > 2,

An(1) = Tn(a, b) and A′n(1) = (a+ bn+

(
n

2

)
− 1)Tn−1(a, b).

Proof: The first identity is a consequence of the definition of An(t). For the second one, we deduce from
(2) that An(t) satisfies the recurrence relation

An(t) = (a− 1)An−1(t) + tA′n−1(t) + (b+ n− 1)tAn−1(t)− t2A′n−1(t)
= (a− 1)An−1(t) + (b+ n− 1)tAn−1(t) + t(1− t)A′n−1(t),

with initial condition A1(t) = t. Hence, by differentiating and evaluating at t = 1, we get the following
recurrence relation for A′n(1)

A′n(1) = (a− 1)A′n−1(1) + (b+ n− 1)(A′n−1(1) +An−1(1))−A′n−1(1)
= (a+ b+ n− 3)A′n−1(1) + (b+ n− 1)An−1(1).

For n > 3, dividing by Tn−1(a, b), we get

A′n(1)

Tn−1(a, b)
=

A′n−1(1)

Tn−2(a, b)
+ (b+ n− 1).

Since A′2(1) = a+ 2b, for n > 2,

A′n(1) = (a+ bn+

(
n

2

)
− 1)(a+ b+ n− 3) · · · (a+ b).

2

We can now prove the following result,

Proposition 4.13 For n > 3, the (a, b)-analogue of the enumeration of NOCa,1(Tn) is

fn(a, b) :=
∑

noc∈NOCa,1(Tn)

w(noc) =

(
n− 2

2

)
· a · Tn−2(a, b),

and the (a, b)-analogue of the enumeration of NOC1,b(Tn) is

gn(a, b) :=
∑

noc∈NOC1,b(Tn)

w(noc) =

(
n− 2

2

)
· b · Tn−2(a, b).



Corners in Tree-like Tableaux 23

Proof: In order to compute fn(a, b) we put in bijection elements of NOCa,1(Tn)
⋃
NOCa,b(Tn) with

pairs (T, r) where T is a tree-like tableaux of size n− 1 and r is a row of T , different from the first one.
Let noc ∈ NOCa,1(Tn) and T ′ its tree-like tableau of size n. Let j be the integer such that noc is the cell
at the intersection of row j and column j + 1. We obtain T by removing the column j + 1, r corresponds
to the row j. It should be clear that this operation is revertible. The bijection is illustrated in Figure 11b.
Using the previous notations, w(noc) = a · w(T ). As a result,

fn(a, b) =
∑

T∈Tn−1

r a row of T

a · w(T )−
∑

noc∈NOCa,b(Tn)

w(noc)

= a ·
n−1∑
k=1

(k − 1) ·Aa,b(n− 1, k)− (n− 2) · ab · Tn−2(a, b)

= a · (A′n−1(1)−An−1(1))− (n− 2) · ab · Tn−2(a, b)

= a

[
(a+ (n− 1)b+

(
n− 1

2

)
− 1)− (a+ b+ n− 3)− (n− 2)b

]
· Tn−2(a, b)

= a

(
n− 2

2

)
· Tn−2(a, b)

The axial symmetry with respect to the main diagonal of the underlying diagram gives a bijection
betweenNOCa,1(Tn) andNOC1,b(Tn), a top point becomes a left point and conversely. Hence, gn(a, b)
can be deduced from fn(a, b) by the identity gn(a, b) = fn(b, a). Since Tn−2(a, b) is a symmetric
polynomial, gn(a, b) = b

(
n−2
2

)
· Tn−2(a, b). 2

To prove the conjecture, we miss the (a, b)-analogue of the enumeration of NOC1,1(Tn). The main
issue is how to link these non-occupied corners with tree-like tableaux of smaller size.

4.3.2 A conjectural x-analogue for symmetric tree-like tableaux
In the case of symmetric tree-like tableaux, top and left are always equal, moreover, there is always a
non-root point in the first row and in the first column, therefore we will consider left∗(T ) = left(T )−1.
It gives a nice x-analogue of the enumeration of symmetric tree-like tableaux. Indeed, Section 2.4 in Aval
et al. (2013b) tells us that

T sym2n+1(x) :=
∑

T∈T sym
2n+1

xleft
∗(T ) = 2n · (x+ 1) · · · (x+ n− 1)

(We believe that there is a mistake in Section 2.4 of Aval et al. (2013b), we should take the definition

T sym2n+1(x, y, z) :=
∑

T∈T sym
2n+1

xleft
∗(T )ytop

∗(T )zdiag(T ),

in order to get,

T sym2n+1(x, y, z) = (1 + z)n(x+ y)(x+ y + 1) · · · (x+ y + n− 2).)
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It turns out that in the case of the enumeration of corners in symmetric tree-like tableaux, the x-analogue
might be nice as well. As in the non-symmetric case, the x-analogue of the enumeration of occupied cor-
ners is equal to TSym2n+1(x). Thus conjecturing an x-analogue for non-occupied corners and unrestricted
corner is equivalent. A computer exploration using Sage Developers (2015), gives us the following ex-
pression:

Conjecture 4.14 The x-analogue of the enumeration of non-occupied corners in symmetric tree-like
tableaux is

∑
T∈T sym

2n+1

noc(T )xleft
∗(T ) =

[
2nx2 + 2(2n2 − 4n+ 1)x+

(n− 2)(n− 1)(4n− 3)

3

]
· T sym2n−3(x).

Using Sage Developers (2015), we can confirm this x-analogue until n = 7:

n = 2, 4x+ 2
n = 3, (6x2 + 14x+ 6) ∗ 2
n = 4, (8x2 + 34x+ 26) ∗ 4(x+ 1)
n = 5, (10x2 + 62x+ 68) ∗ 8(x+ 2)(x+ 1)
n = 6, (12x2 + 98x+ 140) ∗ 16(x+ 3)(x+ 2)(x+ 1)
n = 7, (14x2 + 142x+ 250) ∗ 32(x+ 4)(x+ 3)(x+ 2)(x+ 1)

In the non-symmetric case, we were only able to prove the coefficients of x2. It also corresponds to the
empty corners such that the only point above them is in the first row and only point to their left is in the
first column.

5 Conclusion and Remarks
We computed the number of corners in (type B) permutation tableaux, (symmetric) alternative tableaux
and (symmetric) tree-like tableaux, by interpreting the number of corners as a statistic on (signed) per-
mutations. Moreover, we gave a bijection between corners in tree-like tableaux and ascending runs of
size one in permutations. Finally, we partially proved a conjectural (a,b)-analogue and x-analogue of the
enumeration of corners, in tree-like tableaux and symmetric tree-like tableaux respectively.

It is worthy noting that the number of non-occupied corners in tree-like tableaux of size n + 1 occurs
in (Sloane et al., 2011, A005990), which enumerates the total positive displacement of all letters in all
permutations on [n], i.e, ∑

π∈Sn

n∑
i=1

max{πi − i, 0},

the number of double descents in all permutations of [n − 1] and also the sum of the excedances of all
permutations of [n]. We say that i is a double descent of a permutation π = π1π2 · · ·πn if πi > πi+1 >
πi+2, with 1 6 i 6 n− 2 and an excedance if πi > i, with 1 6 i 6 n− 1. Besides, they are also related
to coefficients of Gandhi polynomials, see Tuenter (2002). To find the relationship between both of them
is also an interesting problem.
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