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For any fixed parameter✝✟✞✡✠ , a ✝ –spannerof a graph☛ is a spanning subgraph in which the distance between every
pair of vertices is at most✝ times their distance in☛ . A minimum✝ –spanner is a✝ –spanner with minimum total edge
weight or, in unweighted graphs, minimum number of edges. General✝ –spanners and their variants have multiple
applications in the field of communication networks, distributed systems, and network design. In this paper, we prove
the ☞✍✌ –hardness of finding minimum✝ –spanners for planar weighted graphs and digraphs if✝✎✞✑✏ , and for planar
unweighted graphs and digraphs if✝✒✞✔✓ . We thus extend results on that problem to the interesting case where the
instances are known to be planar. We also introduce the related problem of finding minimumplanar ✝ –spanners and
conclude its☞✍✌ –hardness for similar fixed values of✝ .
Keywords: graph spanners, planar graphs,☞✍✌ –completeness

1 Introduction
A ✕ –spannerof a graph✖ is a spanning subgraph✗ in which the distance between every pair of vertices
is at most✕ times their distance in✖ . The main idea of this concept is to find a subgraph of a given graph✖ that is sparse, but still guarantees a so–calledstretch factoron the vertex–to–vertex distances of✖ . The
stretch factor will be bounded by a constant independent of the size of✖ . Observe that the minimum
spanning tree does not necessarily meet this specification.

The concept of spanners has been introduced by Peleg and Ullman in [12], where they used spanners
to synchronize asynchronous networks. One of many other applications for spanners are communication
networks, where one is interested in finding a sparse subnetwork that nevertheless guarantees constant
delay factors. A survey of some results on the existence and efficient constructibility of (sparse) spanners
is given in [11]. Further results and discussions concerning✕ –spanners and variants thereof can be found
in [13].

In most applications, the sparseness of a spanner is crucial. The problem of finding✕ –spanners with a
minimum number of edges has been shown to be✘✑✙ –hard for most values of✕ by Cai in [2]. Therefore,✚
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subsequent efforts have concentrated on finding spanners that are maybe not minimum, but sufficiently
sparse (see for example [1]). Very recently, [14] have proven the✘✑✙ –hardness of the problem even for
restricted, unweighted graph classes such as chordal, split, bipartite, or degree-constraint graphs. Several
authors consider variants of✕ –spanners. In [3], Cai and Corneil deal withtree ✕ –spanners(i.e. ✕ –spanners
that are trees) and also examine the complexity status of the corresponding decision problem. Liestman
and Shermer introduce the notion ofadditivespanners, which employ an additive instead of multiplicative
stretch function on the distances [8].

Here we consider general spanners inplanar graphs (either weighted or unweighted, directed or undi-
rected), i.e. we restrict the set of input instances. We thereby (partially) settle a question raised in [2]. We
also introduce the notion ofplanar ✕ –spanners. These are subgraphs, which are not only✕ –spanners, but
also planar, no matter whether the original graph is planar or not.

This paper is organized as follows: After introducing some basic notation and the examined problems,
our results of✘✑✙ –completeness are stated in Sect. 2. Proofs of these in unweighted, weighted, and
directed graphs make up for Sects. 3, 4, and 5, respectively.

2 Problems and Results
In what follows ✖✣✢✥✤✧✦✩★✫✪✭✬✫✮✰✯ (respectively,✖✱✢✥✤✧✦✩★✫✲✳✬✴✮✰✯ ) denotes a simple, weighted undirected
(directed) graph with vertex set✦✵★ edge set✪ (arc set✲ ), and edge weights✮✷✶✸✪✺✹ IR ✻ ( ✮✷✶✸✲✼✹ IR ✻ ).
If all edges have unit weight, i.e. all weights are equal to 1, the graph is said to beunweighted. A directed
graph (digraph) is said to be anorientedgraph, if it does not contain a cycle of two arcs. For simplicity,
we will use the terminology for undirected graphs throughout most of this paper. The terms are naturally
extended to digraphs. Since spanners of each connected component can be determined independently, we
only consider connected graphs. Thelengthof a path is the sum of the weights of its edges. Thedistance
between two vertices✽ and ✾ in ✖✿★ i.e. the length of the shortest (directed) path, is denoted by❀❂❁❃✤❄✽❅★✴✾❆✯ .
2.1 Minimum t–Spanners in Planar Graphs
Definition 1 ( ❇ –spanner) For any parameter✕✰❈✺❉ , a spanning subgraph✗✑✢❊✤✧✦✩★✫✪✳❋✧✬✫✮✰✯ with ✪●❋✵❍✼✪
is a ✕ –spannerof an edge-weighted graph✖■✢❏✤✧✦✩★✫✪✭✬✫✮✰✯ , if ❀▲❑❅✤❄✽❅★✴✾❆✯◆▼❖✕❅P◗❀ ❁ ✤❄✽❅★✴✾❆✯ for all ✽❘★✫✾✭❙❚✦ .

The parameter✕ is calledstretch factor. We say that an edge❯●❙❱✪ is covered(by an edge❲❳❙❚✗ ), if in✗ there exists a path of length at most✕✟P◗✮✳✤✧❯❨✯ (and containing❲ ) that connects the endpoints of❯ . Note
that in unweighted graphs every✕ –spanner is also a❩❬✕❪❭ –spanner, while there is no such correspondence in
weighted graphs, even if all edges have integer weights. In order to prove that a given spanning subgraph
is a ✕ –spanner, we do not have to consider all pairwise distances of the vertices. It is sufficient to only
look at edges of the original graph that are not part of the spanning subgraph (see [3]).

A ✕ –spanner is called aminimum✕ –spanner of a weighted graph✖✿★ if it has minimum total edge weight
among all✕ –spanners of✖ . The corresponding decision problem is defined as follows:

Minimum ❇ –Spanner Problem (MinS❫ )
Given: A graph ✖ with associated (positive) edge weights and a positive value❴ .
Problem: Does✖ contain a✕ –spanner with total edge weight at most❴ ?

Obviously, for an unweighted graph, the only 1–spanner is the graph itself. For a weighted graph,
Hakimi and Yau [4] proved that there is a unique 1–spanner with a minimal number of edges. From
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[3], we know that this must also be the unique minimum 1–spanner, and that it can be determined in
polynomial time. The✘✑✙ –completeness of MinS❜ for the remaining values of✕ has been established in
[2] and [3]. Here we will show that the problem remains✘✑✙ –complete for most values of✕ when ✖ is
restricted to be planar. In particular, we prove the following theorem.

Theorem 2
1. For any fixed integer✕✎❈❞❝ , MinS❜ is ✘✑✙ –complete for undirected, unweighted, planar, biconnected

graphs.
2. For any fixed integer✕✒❈❢❡ , MinS❜ is ✘✑✙ –complete for undirected, weighted, planar, biconnected

graphs with edge weights equal to 1 or 2.
3. For any fixed integer✕❣❈❤❝ ( ✕❣❈✐❡ ), MinS❜ is ✘✑✙ –complete for unweighted (weighted) planar

oriented graphs.

The proofs of the three parts of the theorem are given in the next sections. All three of them are
transformations from the Planar Satisfiability Problem with three literals in each clause, and they can be
viewed as modifications of each other. At the end of Sect. 4 it will be easy to see how our construction can
be adjusted to allow arbitrary rational values of✕❥❈❦❡ in the weighted case. Thus Theorem 2 also holds
for rational stretch factors.

2.2 Minimum Planar t–Spanners
Instead of restricting the input graph we now consider restrictions on the spanning subgraph by introducing
planar✕ –spanners:

Definition 3 (planar ❇ –spanner) For any parameter✕✳❈❧❉ , a spanning subgraph✗❦✢❤✤✧✦✩★✫✪●❋♠✬✫✮✰✯ with✪●❋❥❍♥✪ is a planar ✕ –spannerof a weighted graph✖♦✢♣✤♠✦✵★q✪✭✬✴✮✰✯ , if ❀ ❑ ✤r✽❘★✫✾▲✯s▼❧✕tP❂❀✉❁❃✤r✽❘★✫✾▲✯ for all✽❘★✫✾✈❙❱✦ , and ✗ is planar.

The correspondingMinimum Planart–Spanner Problemis denoted by MinPS❜ . First, consider the
unweightedcase: Using a linear time planarity test, it is clear that MinPS✇ is in ✙ for unweighted graphs.
On the other hand, it is✘✑✙ –complete to decide whether an unweighted graph contains a tree✕ –spanner,
i.e. a ✕ –spanner which is a tree, if✕✰❈■① [3]. Observe that spanning trees are planar spanning subgraphs
with the least possible number of edges.

For weighted graphs the situation is different: As mentioned above, the unique 1–spanner with a mini-
mal number of edges also is the unique minimum 1–spanner, and can be determined in polynomial time.
Since all edge weights are positive, and every subgraph of a planar graph is planar, a minimum planar
1–spanner has a minimal number of edges. Therefore a minimum planar 1–spanner has to be identical
to the minimum 1–spanner, and we can conclude that MinPS✇ is in ✙ for weighted graphs by testing the
minimum 1–spanner for planarity.

In [3], the ✘✑✙ –completeness of the Treet–Spanner Problem for✕③②④❉ in weighted graphs is proven.
By a close look at the transformation used there and by an appropriate choice of the bound on the total
weight of a planar✕ –spanner, the proof can be modified to show the✘✑✙ –completeness of MinPS❜ for✕✎②❦❉ in weighted, undirected graphs. Altogether, we get the following corollary:

Corollary 4
1. For any fixed rational number✕◆❈⑤① , MinPS❜ is ✘✑✙ –complete for unweighted graphs.
2. For any fixed rational number✕◆②✼❉ , MinPS❜ is ✘✑✙ –complete for weighted graphs.

Observe that MinS❜ and MinPS❜ are the same for planar instances.
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MinS ❜ , general graphs MinPS ❜ , general graphs Min(P)S ❜ , planar graphs
[2, 3]

✕ unweighted weighted unweighted weighted unweighted weighted

1 ✙ ✙ ✙
(1,2)

✙ ✘✑✙⑦⑥ ✙ ✘✑✙⑦⑥ ✙
?

[2,3) ✘✑✙⑦⑥ ✘✑✙⑦⑥ ? ✘✑✙⑦⑥ ? ?
[3,4) ✘✑✙⑦⑥ ✘✑✙⑦⑥ ? ✘✑✙⑦⑥ ? ✘✑✙⑦⑥
[4,5) ✘✑✙⑦⑥ ✘✑✙⑦⑥ ✘✑✙⑦⑥ ✘✑✙⑦⑥ ? ✘✑✙⑦⑥⑧ ❝❆★⑩⑨⑤✯ ✘✑✙⑦⑥ ✘✑✙⑦⑥ ✘✑✙⑦⑥ ✘✑✙⑦⑥ ✘✑✙⑦⑥ ✘✑✙⑦⑥

Tab. 1: The complexity status of MinS❶ and MinPS❶ in undirected graphs

2.3 Summary of Results
Table 1 summarizes the results for the complexity status of the problems considered in this paper for
undirected graphs in comparison to MinS❜ (as shown in [2] and [3]). The results are listed for both the
weighted and the unweighted case. A question mark indicates that the complexity status is unknown.

Very recently, Kortsarz has shown in [5] that, for general undirected, unweighted graphs and every✕✡❈✱❷ , the Minimum t–Spanner Problem is as hard to approximate as the Set Cover Problem. The
approximability status of the problems considered here is still open. For one of the open cases, MinS❸
on planar graphs, the❹ ✦❺❹ ❻❼❹ ✪❺❹ –approximation algorithm of Kortsarz and Peleg [7] for general undirected,
unweighted graphs results in a constant approximation algorithm for planar input graphs.

3 MinSt for Unweighted, Planar Graphs
In this section, we prove part 1 of Theorem 2, so all graphs are unweighted and planar. The other parts
are proven along the same lines. Part of the proof modifies ideas of [2].

Let ✕✭❈❽❝ be an arbitrary fixed integer. Clearly, MinS❜ is in ✘✑✙✈★ since the test whether a spanning
subgraph✗ is a ✕ –spanner can be done in polynomial time. To show the✘✑✙ –completeness we transform
the Planar 3–Satisfiability Problem to MinS❜ :
Planar 3–Satisfiability Problem (P3SAT)
Given: A set ❾ of variables, and a collection❿ of clauses over❾ with ❹ ➀✸❹✉✢➁❡ for all ➀③❙❳❿ . Furthermore

the bipartite graph✖✷✢✺✤♠✦✵★q✪✳✯ where ✦✺✢❦❾✑➂s❿ and ✪✷✢✷➃✸➃➅➄➆★q➀➈➇⑦✶➉➄ or ➄ occurs in➀➈➇ is planar.
Problem: Is there a satisfying truth assignment for❿ ?

The ✘✑✙ –completeness proof for this problem can be found in [9]. We use the planarity of the un-
derlying graph of P3SAT to construct a planar graph in which we can easily determine the minimum✕ –spanner.

3.1 Forcing Edges into a Minimum t–Spanner
For the construction of the instance of MinS❜ , we use the fact that we can force edges to be in every
minimum ✕ –spanner by adding some additional edges. This concept has appeared in [2] and will be used
extensively.



❵❚❛
–Completeness Results for Minimum Planar Spanners 5

Lemma 5 Let ❯ be an arbitrary edge of an unweighted graph✖✿★ and let ✖⑦❋ be the graph constructed
from ✖ by adding two distinct paths

❛ ✇ and
❛ ❸ of length ✕ (all internal vertices of

❛ ✇ and
❛ ❸ are new

vertices) between the ends of❯ . Then for any minimum✕ –spanner✗ of ✖⑦❋♠★ edge❯ belongs to✗ .

The two auxiliary paths
❛ ✇ and

❛ ❸ are calledforcing paths, edge ❯ is calledforced edge. A forced
l–componentis a simple path of length➊ consisting of➊ forced edges together with their forcing paths. A
minimum ✕ –spanner of a forced➊ –component contains exactly➊➋P✸✤✧❷✰P✸✤r✕➆➌✑❉➅✯➎➍✔❉➈✯✵✢➁➊✫✤✧❷➉✕➏➌⑤❉➈✯ edges: the➊ forced edges and✕❅➌✑❉ edges from each forcing path.

3.2 Construction of the Instance

We start from the planar, embedded graph underlying the given instance✤❪❾t★q❿⑦✯ of P3SAT, and extend
the variable and clause vertices to formvariable componentsandclause components. These components
are combined to formtruth assignment testing componentswhich reflect the relationship between the
satisfiability of a clause and the existence of a minimum✕ –spanner. Finally, we compute a bound on the
number of edges for the Minimumt–Spanner Problem.

Variable Components. The key idea behind the variable component is that each of its possible mini-
mum ✕ –spanners reflects exactly one truth assignment for its corresponding variable. For each variable➄➐❙✍❾ , we construct a variable component➑➎➒ as follows. Let➓ be the number of (positive and negative)
occurrences of the variable➄ in all clauses.

1. Create a central vertex➄→➔ .
2. For each occurrence of➄ in a clause➀ , create in this order a block of four new vertices➄➏➣↕↔❪➙✇ ★ ➄➏➣↕↔❪➙✇ ★➄ ➣↕↔❪➙❸ ★ and ➄ ➣➛↔❪➙❸ . The resulting①❂➓ new vertices are calledliteral vertices. The blocks are arranged

circularly around➄→➔ according to the embedding of the underlying graph of the instance of P3SAT.

3. Connect each pair of neighboring literal vertices by a forced✤❄✕➜➌✔❉➈✯ –component such that a circle
of ①❂➓ forced ✤r✕❅➌✑❉➅✯ –components is formed altogether.

4. Connect➄→➔ with all literal vertices by an edge, calledliteral edge. An edge ➃➅➄ ➣↕↔❪➙➝ ★✫➄→➔➉➇ is called

positiveliteral edge, an edge➃ ➄ ➣↕↔❪➙➝ ★✴➄ ➔ ➇ is callednegativeliteral edge.

5. Create①❂➓ new auxiliary vertices, one between each pair of neighboring literal edges. Connect
each of these by anauxiliary edge with ➄ ➔ and by two distinct forced✤❄✕t➌❦❉➅✯ –components with
its neighboring literal vertices. Their literal edges are then calledassociatedliteral edges of the
auxiliary edge and vice versa.

Figure 1 illustrates this construction. For readability, the symbolic representation in Figure 1(b) is used
later on when larger portions of the graph are drawn. The following lemma shows that the literal edges in
a minimum✕ –spanner areconsistent. As a consequence, the number of edges of a minimum✕ –spanner of➑→➒ is ①⑦P◗❡❂➓●P❂✤❄✕✟➌✑❉➅✯❅P✸✤♠❷❨✕✟➌❖❉➈✯➏➍⑤❷✉➓ .

Lemma 6 Any minimum✕ –spanner of a variable component➑➎➒ contains either all positive or all negative
literal edges.

Proof: Let ✗ be an arbitrary minimum✕ –spanner of➑ ➒ . Then ✗ contains all forced edges and✕➋➌➞❉ edges
from each forcing path. Observe that these edges together with either all❷✸➓ positive or all ❷✸➓ negative
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Fig. 1: (a) Part of the variable component➟➡➠ for the variable➢ occurring in clause➤ , (b) its symbolic representation

literal edges form a✕ –spanner. Thus✗ can contain at most❷✸➓ edges out of the➥❂➓ literal and auxiliary
edges.

By construction of the variable component, both associated auxiliary edges and both neighboring neg-
ative (resp. positive) literal edges are covered by a positive (resp. negative) literal edge in✗ . But, by an
auxiliary edge in✗ , only the associated literal edges are covered.

Now assume that✗ contains an auxiliary edge. Then✗ also contains either the next auxiliary edge,
too, or the next not associated literal edge. In total, this leads to more than❷✸➓ additional edges and thus
contradicts the minimality of✗ . Similarly, assume that✗ contains two inconsistent literal edges. Then
there must be at least one auxiliary edge belonging to✗ or more than❷✉➓ literal edges to cover all other
edges. Again, this contradicts the minimality of✗ . Thus ✗ contains exactly every other literal edge.➦
Clause Components. The clause component for each clause➀⑦❙➐❿ is basically a quadrilateral consist-
ing of fourclause vertices1, 2, 3, and 4, where the sides are formed by distinct forced✤r✕❨➌✳❷✸✯ –components.
Vertices 1 and 3 are connected by an additional edge, called theclause edge. See Fig. 2(a) for an example.
Our construction is a bit more complex than actually needed in the unweighted case, but will not have to
be changed much when being modified for the weighted and the directed case. Observe that any minimum✕ –spanner for✕◆❈✔❝ of such an isolated clause component must contain the clause edge.

Truth Assignment Testing Components. We combine the clause components with the variable com-
ponents according to the given clauses by identifying vertices. Three sides of the quadrilateral in the
clause component each correspond to a literal in the corresponding clause. The fourth side is used to

(a)
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*

* *
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y
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z z

zz
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x
x

x

forced (t-2)-component
forced (t-1)-component
literal edge
clause edge

Fig. 2: (a)A clause component, and (b) the truth assignment testing component for clause➤✒➧❞➢⑦➨✿➩✒➨ ➫ using the
symbolic representation for relevant blocks of the variable components
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make the arguments symmetrical. The endpoints of each such side of the quadrilateral are thus identified
with the two corresponding literal vertices of the corresponding block in the variable component: if clause➀ contains the positive literal we use the positive literal vertices➄➏➣↕↔❪➙➝ , and ➄➆➣↕↔❪➙➝ otherwise. See Fig. 2(b) for
an example. Note that the combination of the variable components with the clause components does not
affect the validity of Lemma 6.

Lemma 7 For any fixed integer✕❃❈➁❝ , a minimum✕ –spanner✗ of a truth assignment testing component
contains the clause edge if and only if✗ contains no pair of consistent literal edges that is adjacent to the
clause edge.

Proof: If ✗ does not contain a pair of literal edges that is adjacent to the clause edge then every path
connecting the endpoints of the clause edge in✗ either uses the clause edge or has length at least❷➡✤❄✕➭➌❥❷✸✯✎②✕ , if ✕◆❈✔❝ .

For the other direction, assume that✗ contains a pair of adjacent consistent literal edges. Then this
provides a shortcut for one of the forced✤❄✕➅➌⑦❷✸✯ –components, and thus there is a path of length❷❼➍❺✤❄✕➅➌⑦❷✸✯✵✢✕ in ✗ connecting the endpoints of the clause edge. Hence the clause edge is covered. ➦

Thus, the number of edges in a minimum✕ –spanner of such a truth assignment testing component
reflects the truth value of the corresponding clause. This completes the construction of the graph. All
isolated components are planar, and since we start from an instance of P3SAT, the whole graph is planar.
It is also easily seen that the instance is biconnected, and can be constructed in polynomial time.

Choice of W. According to Lemmas 6 and 7, we set❴➞★ the bound on the number of edges in a✕ –
spanner, to❴➯✢❦➲✸➳④➍❖❡✸➲➉➳➞✤✧❷➉✕❘➌✔❉➈✯➵✤❄✕➜➌✔❉➈✯➆➍⑤①✸➳➞✤✧❷❨✕❅➌✔❉➅✯➭✤❄✕✟➌✡❷✸✯⑩★ where ➳ is the number of clauses of
the instance of P3SAT.

3.3 Equivalence of the Problems

In this subsection, let✤❪❾t★q❿⑦✯ be an instance of P3SAT, and✤r✖✿★➸❴✷✯ the instance for MinS❜ constructed as
described above. We will show that there is a satisfying truth assignment for✤❪❾t★q❿⑦✯ , if and only if ✖ has
a ✕ –spanner with at most❴ edges.

Lemma 8 If the set of clauses❿ of ✤❪❾t★➸❿⑦✯ is satisfiable, then there exists a planar✕ –spanner of✖ with
at most❴ edges.

Proof: Suppose that the set of clauses❿ is satisfiable, and let➺ be a satisfying truth assignment. From
this we construct the subgraph✗ of ✖ as follows:

1. ✗ contains all forced edges.

2. ✗ contains✕✟➌❖❉ arbitrarily chosen edges from each forcing path.

3. For each variable➄➻❙➻❾ , ✗ contains all positive literal edges if➺➡✤r➄➋✯ is true, and all negative literal
edges otherwise.

By this construction,✗ trivially is a spanning subgraph.✗ consists of forced edges from the variable
components, edges from the forcing paths of the variable components, forced edges from the clause
components, edges from the forcing paths of the clause components, and literal edges. Altogether✗
contains exactly❴■❋➼✢✼➲➉➳④➍⑤❡✸➲✸➳✍✤♠❷❨✕❘➌❖❉➈✯➵✤❄✕❅➌✑❉➅✯➆➍✡①✸➳➞✤✧❷➉✕➆➌✑❉➅✯➵✤r✕✟➌➞❷✉✯✵✢➁❴ edges.
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It remains to prove that✗ is a ✕ –spanner of✖ : We have to show that for every edge not contained in✗✟★ there exists a path of length at most✕ connecting the endpoints of that edge. This is obvious for the
variable components. For the clause edges observe that, since➺ is a satisfying truth assignment, there is at
least one literal in each clause that is true. Due to the construction of✗ we thus have at least one adjacent
pair of literal edges in each clause component. From Lemma 7 it follows that✗ is a ✕ –spanner. ➦

Using the next lemma, Lemma 10 completes the proof of part 1 of Theorem 2.

Lemma 9 Any minimum✕ –spanner✗ of ✖ contains at least❴ edges.

Proof: Any ✕ –spanner✗ of ✖ must contain all forced edges and✕➜➌✔❉ edges from each forcing path. By
Lemma 6,✗ contains at least either all positive or all negative literal edges for each variable component.
This sums up to❴ . ➦
Lemma 10 If ✖ has a ✕ –spanner with at most❴ edges, then there exists a satisfying truth assignment
for ✤❪❾t★q❿⑦✯ .
Proof: Suppose✗ is a ✕ –spanner of✖ with at most ❴ edges. Then by Lemma 9,✗ is a minimum ✕ –
spanner and contains exactly❴ edges. All forced edges and the corresponding edges from the forcing
paths must be in✗ . Hence, there remain only➲✸➳ further edges which can only be consistent literal edges
(by Lemma 6). Thus, we can uniquely define a truth assignment➺ by setting, for each➄❚❙❚❾t★⑩➺➡✤r➄➋✯◆✢ true,
if ✗ contains the positive literal edges of➑➎➒ , and ➺➡✤❄➄→✯✩✢ falseotherwise.

Since✗ is a ✕ –spanner and✗ contains no clause edge it follows from Lemma 7 that there is at least one
adjacent pair of literal edges for every clause edge. Hence,➺ satisfies all clauses. ➦
4 MinSt for Weighted, Planar Graphs
For the proof of the second part of Theorem 2, we again transform an instance of P3SAT to an instance
of MinS❜ by extending variable and clause vertices to appropriate components. The assignment of edge
weights of value 2 helps lowering the bound on✕ , thus yielding a stronger result than in the unweighted
case. But we cannot expect to reduce the gap by this technique even further.

The variable components are the same with all edges having unit edge weight, and the results about
minimum ✕ –spanners for these components remain valid (Lemma 6). The clause components again consist
of four clause vertices, but now three sides of the quadrilateral remain unconnected. Only one side is
connected by two consecutive forced✤r✕❼➌❚❉➅✯ –components with unit edge weights. As before, we have one
clause edge, now having edge weight 2. We combine the components to form the truth assignment testing
components as we did in the unweighted case by identifying the corresponding vertices (see Fig. 3 for an
example). Using similar arguments as in Sect. 3, we get an equivalent of Lemma 7 now for all values of✕✎❈✔❡ .

It is easily seen that the constructed graph is again planar and biconnected. By choosing❴➽✢❏➲➉➳❽➍❡✸➲➉➳➞✤❄✕✉➌❺❉➈✯➵✤✧❷➉✕✸➌s❉➅✯❨➍✈❷➉➳✍✤r✕✸➌❺❉➈✯➵✤♠❷❨✕✸➌s❉➅✯ , the arguments of the previous section can be repeated to complete
the proof of part 2 of Theorem 2.

Theorem 2 can be easily generalized to allow rational numbers for✕✳❈❏❡ by using forced✤➅❩❬✕❪❭❥➌✼❉➅✯ –
components in the construction described above. All results about minimum✕ –spanners then keep valid.
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Fig. 3: The truth assignment testing component in the weighted case

5 MinSt for Planar Digraphs
To show the✘✑✙ –completeness for digraphs, we again use a modification of the reduction of the previous
sections. Here we only show details of the construction for the unweighted case, since the weighted case
is then straightforward from what has been established so far.

Forcing Arcs into a Minimum t–Spanner. Similar to the undirected case, an arc✤r➾➋★q➚➵✯ of a digraph
can be forced to be in every minimum✕ –spanner as described in [2]. For this purpose we create two new
vertices➀ and ❀ , add two arcs✤✧➀❨★q➚➭✯ and ✤✧❀➡★➸➚➵✯ , and then add two distinct directed paths of length✕✩➌✼❉
from ➀ to ➾ and from ❀ to ➾ , respectively. Then, a minimum✕ –spanner of this component consists of arc✤r➾➋★q➚➵✯ and all arcs of the paths of length✕❅➌❖❉ .
Construction of the Instance. For the construction of the instance see Figure 4. Thevariable com-
ponents(see Figure 4(a)) again consist of literal and auxiliary vertices, as well as literal and auxiliary
arcs. The orientation of these arcs depends on the orientation of the corresponding clause arc. As in the
undirected case this construction guarantees that every minimum✕ –spanner of such a variable component
only contains consistent literal arcs (cf. Lemma 6).

Theclause componentsare analogous to the undirected case, where the clause arc and the forced✤❄✕➅➌⑦❷✸✯ -
components are oriented such that they start and end at the same vertices of the quadrilateral. Figure 4(c)
shows an example of a directed truth assignment testing component. It is easily seen that the graph is
planar and oriented. Choosing❴➪✢➁➲✸➳■➍✍❡✉➲➉➳➞✤❄✕→➌➞❉➅✯➵✤♠❷❨✕→➌➶❉➅✯➼➍➻①✸➳➞✤❄✕→➌➐❷✸✯➭✤✧❷❨✕→➌➞❉➅✯ , as in the undirected
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directed forced (t-2)-component

directed forced (t-1)-component

literal arc

clause arc
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Fig. 4: (a) Part of the variable component for the variable➢ occurring in clause➤ , (b) its symbolic representation, and
(c) the truth assignment testing component for unweighted digraphs
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case, the proof of the equivalence of P3SAT and MinS❜ is straightforward as before.

Weighted Digraphs. In the weighted, directed case the same variable components (unit arc weights)
are used. The clause components are the ones from the weighted, undirected case, and orientations are
determined analogously.
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