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We study two different objects attached to an arbitrary quadrangulation of a regular polygon. The first one is a
poset, closely related to the Stokes polytopes introduced by Baryshnikov. The second one is a set of some paths
configurations inside the quadrangulation, satisfying some specific constraints. These objects provide a generalisation
of the existing combinatorics of cluster algebras and nonnesting partitions of type A.
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Introduction
The research leading to this article started with the desire to understand the apparition of associahedra
in an article of Baryshnikov (2001) and in an article of Kapranov and Saito (1999). Associahedra, also
known as Stasheff polytopes, are classical in algebraic topology, where they are used to define and study
associativity up to homotopy, see Stasheff (1963). More recently, they have made their way into the theory
of cluster algebras, in which they control the combinatorial aspects of the type A cluster algebras, see
Fomin and Zelevinsky (2003). It was not clearly obvious how to relate the contexts used by Baryshnikov
and Kapranov-Saito to either associativity or cluster algebra theory. Moreover both articles were seeing
associahedra as members of a larger family of polytopes, all closely tied together, whereas associahedra
usually stand alone.

Another strand of research then came into play, centred on the Tamari lattices (see the reference Müller-
Hoissen et al. (2012)). The Tamari lattices are closely related to associahedra and associativity, and can be
defined by orienting the associativity relation from left-bracketing to right-bracketing. They are also well-
understood in the context of cluster algebras, where they are just one among several Cambrian lattices of
type A, depending on the choice of an orientation of the Dynkin diagram, see Reading (2006); Reading
and Speyer (2009). It is remarkable that all the Cambrian lattices attached to type An share the same
underlying graph, which is nothing else that the graph of vertices and edges of the associahedra. This is
also the flip graph of triangulations and the mutation graph of cluster algebras of type A.

The Tamari lattices have yet another, maybe less well-known, interpretation. They can be seen as
a special case of the partial orders defined by Happel and Unger (2005) and Riedtmann and Schofield
(1991) on the sets of tilting modules over quivers.
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One can consider the notion of module over the Tamari lattices, defined for example using their in-
cidence algebras. It turns out that there is a very interesting subset of modules, indexed by the set of
quadrangulations of a regular polygon. It would be too long to tell here how precisely these modules were
stumbled upon, but it involved an anticyclic operad made with all Tamari lattices, and a mysterious map
from the K0 of Tamari lattices to rational functions, see Chapoton (2007). All this seems in fact to take
place naturally in the Tamari lattices seen as partial orders on tilting modules.

Anyway, these modules indexed by quadrangulations can be seen as living in the derived categories
of modules over the Tamari lattices. A natural question to ask was then: what are the morphisms be-
tween these modules ? It appeared that they may be described using flips of quadrangulations, under the
condition that a flip should not be repeated twice.

At this point, the connection was made with the work of Baryshnikov, which also involved quadrangu-
lations and their flips. It turned out that the match was perfect. This is essentially the story behind the
content of the article, which concentrates on the combinatorial side and leaves most of the representation
theory aspects aside.

Let us now describe what is done, and then comment on the results.
In section 1, a poset is associated with every quadrangulation in a regular polygon. This is done us-

ing the compatibility relation between quadrangulations introduced by Baryshnikov. First, one defines
directed graphs (digraphs) by orienting the allowed flips in a specific way. Then it takes some work to
show that these digraphs are Hasse diagrams of posets, that we choose to call the Stokes posets. The main
tool is an inductive description of the digraphs, relating a quadrangulation and a smaller one with a leaf
square removed. One also shows that the associated undirected graphs are connected and regular.

In the articles of Baryshnikov and his collaborators on the subject (Baryshnikov (2001); Baryshnikov
et al. (2012); Hickok et al. (2011)), no digraphs were considered, but instead polytopes were associated
with quadrangulations. Their graphs of vertices and edges coincides by definition with the associated
undirected graphs of our digraphs.

In the rest of the first section, one proposes a conjectural manner to define the same digraphs without
having to use the compatibility condition. The proof that this works is sadly missing.

In section 2, one considers examples and properties of the Stokes posets. In particular, one proves that
the Tamari lattice is recovered as a special case, for a very regular quadrangulation.

It is then shown that the posets attached to some quadrangulations can be written as Cartesian products
of smaller posets of the same kind. This happens under the condition that there is a bridge in the quad-
rangulation. One then says a few words about the simplicial complexes attached to the quadrangulation,
which can be thought of as the dual of Baryshnikov’s Stokes polytopes. In particular, enumerative aspects
of this simplicial complex can be encoded into an F -triangle.

Next, a conjecture is proposed about what happens when a quadrangulation is twisted along an edge,
namely that the undirected graph, simplicial complex and F -triangle should not change.

Then section 3 is a rather sketchy proposal for a vast generalisation of the theory of Stokes posets to
other root systems and finite Coxeter groups. This is stated first in the setting of exceptional sequences,
and then using factorisation of Coxeter elements into reflections, or equivalently maximal chains in the
noncrossing partition lattices.

In the next section 4, one introduces combinatorial configurations fitting inside quadrangulations. They
are made of elementary pieces called serpents, and therefore named serpent nests. These combinatorial
objects should be closely related to the posets introduced in the first section. For every quadrangulation
Q, there should be as many elements in the poset attached to Q as there are serpent nests in Q. The
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serpent nests should be thought of as playing the same role as nonnesting partitions play for classical root
systems.

After their definition, the section contains various results about serpent nests, that sometimes are similar
to some statements or conjectures about the Stokes posets made in the previous sections.

First, it is shown that serpent nests do factorise in presence of a bridge, just as Stokes posets do.
Then an enumerative study is made, by introducing h-vectors and H-triangles that counts serpent nests
according to their ranks. A duality is obtained, that implies a symmetry of the h-vector. The H-triangle
is conjectured to be related to the F -triangle, by the same formula that work between clusters F -triangles
and nonnesting partitionsH-triangles for all root systems (see for example Thiel (2014) and the references
therein).

It is then shown that, for the same regular quadrangulation already considered in the first section, the
serpent nests are in a simple bijection with nonnesting partitions of type A. Another interesting family of
examples is considered, for which the number of serpent nests is given by a Lucas sequence. This gives
essentially the (bridge-less) quadrangulations with the smallest possible numbers of serpent nests.

A paragraph is devoted to an interesting strategy to count serpent nests, namely cut quadrangulations in
two parts along one edge, compute something related to open serpent nests for every half, and reconstitute
the result from that. This seems also to be related to the Dynkin type B and the usual folding procedure
of simply-laced Dynkin diagrams.

Then section 5 deals with an algebraic structure that gathers all the quadrangulations together, namely
a commutative algebra endowed with a derivation. Product is disjoint union or union along a bridge and
the derivative is given by cutting at inner edges. This is analogue to the parabolic structure on quivers and
Dynkin diagrams.

The last section 6 contains elementary enumerative results about various sorts of quadrangulations. The
equivalence classes under twisting are also counted, as they should correspond to the distinct undirected
graphs of Stokes posets and do describe quadrangulations with the same serpent nests. For some rea-
son related to fans and not studied in this article, quadrangulations that do not contain a cross are also
considered.

Let us now summarise the article and give further comments. Taking as input a quadrangulation, one
defines a poset and a finite set. For some special quadrangulations, one recovers the Tamari lattices and the
nonnesting partitions associated to the Dynkin type A by the theory of cluster algebras and root systems. It
is in fact expected that all the posets will be lattices, and also that other Cambrian lattices can be obtained
for other ribbon quadrangulations.

It is therefore very tempting to make an analogy where quadrangulations play the role of quivers, and
quadrangulations up to twist that of Dynkin diagrams. Then one gets analogues of clusters, positive
clusters, exchange graphs, but only at a combinatorial level. It seems that most of the properties known
in the combinatorial side of cluster theory do extend. It would be interesting to see if analogues of cluster
variables could make sense.

As explained before, the article Kapranov and Saito (1999) was one source of motivation. The relation-
ship with our results is not as direct as in the case of Baryshnikov, but should exist. It would probably be
best seen using the noncrossing trees and exceptional sequences point of view explained in section 3.

Flips in quadrangulations have been considered also in the context of m-analogues of cluster theory for
m = 2. The 2-Cambrian lattices introduced recently in Stump et al. (2015) are defined by allowing two
consecutive flips inside an hexagon, but not three. The precise relationships with this article remain to be
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explored.
As a side remark, one can note that very similar combinatorial objects as the ones involved here (quad-

rangulations and noncrossing trees) have appeared in the study of multiple zeta values, see Ecalle (2011);
Dupont (2014). Whether there is a connection or not remains to be settled.

The name of Stokes polytopes was used by Baryshnikov because of the relation of his work with the
Stokes phenomenon. In the article Iwaki and Nakanishi (2014), the Stokes phenomenon is also connected
to cluster algebras. It is not clear if these connections are the same or at least could fit in a common
framework.

Let us finish by saying that there are several aspects missing in the present article, the most important
ones being the in-depth study of related fans and polytopes, only sketched in Baryshnikov (2001), and
also the closely related question to check that the posets are indeed lattices. These questions are left for
future work.

1 Stokes posets
Informally, a quadrangulation is a partition of the interior of a regular polygon into quadrilaterals. This is
possible if and only if the regular polygon has an even number of vertices.

More formally, one considers a regular polygon with vertices numbered from 0 to 2n+1 in the negative
(clockwise) direction. A quadrangulation is defined as a collection of pairs of (not consecutive) vertices
of this polygon, such that the associated edges do not cross and define only quadrilateral regions.

Figure 1: Two views of the same quadrangulation (n = 6)

It will sometimes be convenient to depict quadrangulations by deforming the quadrilaterals so that they
become more regular and of similar area. The boundary is then no longer a regular polygon, but a simple
polygonal closed curve, as in the right of Figure 1.

The number of distinct quadrangulations inside the polygon with 2n+ 2 vertices is also the number of
ternary trees with 2n+ 1 leaves and is classically given by

1

2n+ 1

(
3n

n

)
. (1)

The bijection is the obvious planar duality, after a boundary edge has been chosen as root.
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Let us fix some terminology. A quadrangulation in the regular polygon with 2n+ 2 vertices is made of
2n + 2 boundary edges and n − 1 inner edges. The n quadrilateral regions will be called squares. The
word edge will generally be used to designate both inner and boundary edges, unless the context make it
clear that it must be of one kind only.

1.1 Compatibility
Y. Baryshnikov has introduced a compatibility condition between quadrangulations. Let us describe this
precisely.

It will be convenient for us to consider a fixed quadrangulation Q drawn inside a regular polygon with
2n + 2 vertices, and to define only compatibility with Q. Let us choose an alternating black and white
colouring of the vertices of the regular polygon. This choice is arbitrary, and the compatibility condition
will not depend on it.

The quadrangulation Q is seen as a (blue = dashed) theatre backdrop, on which one superimposes
another (red = plain) regular polygon, slightly rotated in the negative (clockwise) direction by an angle of

2π
4n+4 , so that the vertices interlace. The black-and-white colouring of the vertices of the rotated polygon
is inherited from the initial colouring.

Figure 2: Backdrop Q (blue and dashed) and two Q-compatible Q′ and Q′′ (red and plain)

By convention, all the edges (red/plain or blue/dashed) are oriented from white vertices ◦ to black
vertices •.

An edge i in the red polygon is said to be compatible with an edge j of Q if

• either they do not cross,

• or they do cross and the pair (red oriented edge i, blue oriented edge j) defines the positive orienta-
tion of the plane.

For clarity, let us express the second condition in another way. At their crossing point p, the two oriented
edges define two oriented rays starting at p. One requires that the angle from the red ray to the blue ray is
between 0 and π.
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An edge i in the red polygon is said to be Q-compatible if it is compatible with all edges of Q. This is
equivalent to say that i is compatible with all inner edges of Q, because the condition is always satisfied
with respect to boundary edges of Q.

Moreover, compatibility with Q is also automatic for the boundary edges of the red polygon.
A quadrangulation Q′ is Q-compatible if and only if all its edges are Q-compatible. This is equivalent

to require that every inner edge of Q′ is compatible with all inner edges of Q.
Note that Q-compatibility is unchanged under switching the choice of the black and white colouring of

the vertices, as this changes the orientation of all edges.

It is clear that there is a finite number of Q-compatible quadrangulations. This number depends on Q.
By rotating the blue backdrop quadrangulation Q by ± 2π

4n+4 , one defines two quadrangulations that are
easily seen to be compatible with Q. Abusing notation, let us call Q the quadrangulation obtained in this
way by a small negative rotation, and let τ(Q)(i) be the other one.

1.2 Flips
Proposition 1.1 LetQ be a fixed quadrangulation. LetQ′ be aQ-compatible quadrangulation. For every
inner edge i of Q′, there exists exactly one other inner edge j such that Q′ \ {i} ∪ {j} is a Q-compatible
quadrangulation.

Proof: This follows from Lemma 1.2 below. 2

Lemma 1.2 Let Q be a fixed quadrangulation. Consider an hexagon H made of six Q-compatible edges.
Then there are exactly two Q-compatible inner edges in the interior of H .

Proof: Let a0, b0, a1, b1, a2, b2 be the vertices of the hexagonH in clockwise order, with indices in Z/3Z.
One can assume without restriction that the colours are white for a vertices and black for b vertices. It
follows from the Q-compatibility of H that inner edges of Q can only enter H by crossing a inner edge
ai+1 → bi of H and can only exit by crossing a inner edge ai → bi of H . If there is no inner edge in Q
entering H through ai+1 → bi and leaving H through ai+2 → bi+2 for some i (call it a long inner edge),
thenQ contains an empty hexagon, which is absurd. Therefore there is at least a long inner edge inQ, say
from a2 → b1 to a0 → b0. All long inner edges must then enter and exit H by crossing the same edges
of H , for otherwise they would cross. Then among the three possible inner edges inside the hexagon H ,
one can check that a0 → b1 and a2 → b0 are Q-compatible, but that a1 → b2 is not. 2

1.3 Flip graphs
Proposition 1.1 implies that one can move betweenQ-compatible quadrangulations by removing any inner
edge and inserting another one. These moves between quadrangulations will be called flips.

This defines a graph with vertices theQ-compatible quadrangulations and edges the flips. This is clearly
a regular graph where every vertex has arity n − 1. Let us denote it by γQ and call it the flip graph of
Q-compatible quadrangulations. Later on, one will show that this graph is connected.

Let us now describe how one can orient the edges of the flip graph γQ.

(i) This notation is chosen to remind of the Auslander-Reiten translation.
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Figure 3: Simple example of flip, oriented from left (id) to right (op)

Consider a flip relating two quadrangulations Q′ and Q′′. Only the inner edge inside the modified
hexagon H is changed. The two possible inner edges i′ and i′′ can be distinguished as follows. Recall
from the proof of Lemma 1.2 that there must be at least one long inner edge j in Q entering the hexagon
and leaving it through the opposite side. The starting vertex of the inner edge of H is adjacent

(id) either to the starting vertex of the long inner edge j,

(op) or to the ending vertex of the long inner edge j.

Let us orient the flips from the case of adjacent starting vertices (id) to the case of far-away starting
vertices (op).

This is illustrated in Figure 3, with the (id) case on the left and the (op) case on the right.
For an oriented flip from Q′ to Q′′, one says that it is an out-flip for Q′ and an in-flip for Q′′. For every

Q-compatible quadrangulation Q′, the number of in-flips plus the number of out-flips is n − 1, as every
inner edge corresponds either to an in-flip or to an out-flip.

This allows to define an orientation of the flip graph γQ. Let us call this oriented graph ΓQ.

To study properties of the graph ΓQ, one will proceed by induction on the size n of the quadrangulation
Q, which is its number of squares.

In any quadrangulation with n ≥ 2 squares, one can always find a boundary edge e of Q that bounds
a square s with exactly one neighbour square(ii). Up to switching black and white, one can assume that
the edge e goes from white to black in counterclockwise order along the boundary. Let s be the square
bordering the chosen edge e and let f be the unique inner edge of the square s. This situation is illustrated
in Figure 4. Let Q\s be the quadrangulation obtained from Q by removing s.

Let Q′ be any Q-compatible quadrangulation. The underlying red polygon has two white vertices i and
i+ 2 (modulo 2n+ 2) that lie just before and just after the chosen blue boundary edge e. Recall that the
vertices are numbered in clockwise order.

One can associate with Q′ a Q\s-compatible quadrangulation θs(Q′) as follows. Pictorially, one col-
lapses the boundary section of the red polygon between white vertices i and i+ 2 to a single white vertex
(ii) This is because a quadrangulation is a tree of squares, hence has at least one leaf.
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f e

i

i+ 2

s

Figure 4: Sketch of configuration near boundary edge e

in a smaller red polygon. Edges of Q′ then get identified if they happen to coincide after the collapsing.
Note that there can be no inner edges inQ′ incident to the black vertex i+1, as it would not be compatible
with the edge f .

Let us describe now the fibres of the map θs. If there are k inner edges in θs(Q′) starting at the collapsed
vertex, then there must be k+ 1 inner edges in Q′ starting either at i or i+ 2. There are k+ 2 choices for
the distribution of these k+ 1 starting points between i and i+ 2. Therefore the fibre has k+ 2 elements.

Moreover, these k + 2 elements are naturally totally ordered by oriented flips, as there is a unique
sequence of k + 1 oriented flips going from the case where all k + 1 edges start at i to the case where all
k + 1 edges start at i+ 2. This gives a natural total order on every fibre of θs.

Oriented flips between Q-compatible quadrangulations are of two kinds.

Proposition 1.3 Let Q′ −→ Q′′ be a flip of Q-compatible quadrangulations. Then exactly one of the
following holds:

(inFib) θs(Q′) = θs(Q
′′) and the flip goes down one step in this fibre of θs,

(outFib) θs(Q′) −→ θs(Q
′′) is a flip between Q\s-compatible quadrangulations.

Proof: Let H the red hexagon that contains and defines the flip. Let f be the inner blue edge bounding
the square s.

Assume first that f is a long inner edge in H . Then H must have two opposite sides made of an edge
starting from i and an edge starting from i + 2. There is at most one such hexagon where an out-flip is
possible, and this flip does not change the image by θs, but moves down by one step in the total order
inside the fibre. This is the situation (inFib).

Otherwise, f is not a long inner edge in H . In this case, the hexagon H remains an hexagon in the
reduced quadrangulation Q\s, hence the flip induces a flip inside Q\s. This is the situation (outFib). 2

We will say that these are in-fibre flips and out-fibre flips.

Lemma 1.4 For every sequence of two flips Q′
(inFib)−→ Q′′

(outFib)−→ Q′′′, one can find a quadrangulation Q]

and flips

Q′
(outFib)−→ Q]

(inFib)−→ . . .
(inFib)−→ Q′′′. (2)
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Proof: If the two hexagons involved in the two consecutive flips do not overlap, the flips do just commute.
One can simply exchange them.

Otherwise everything happens inside an octagon. There are essentially just two cases to consider: there
can be either 4 or 5 ways to fill the octagon. In both cases, one can find the expected sequence of flips by
inspection. It will involve 1 or 2 final in-fibre flips. 2

Proposition 1.5 For every pair of quadrangulations Q′ to Q′′ related by a sequence of flips, one can find
a sequence of flips from Q′ to Q′′ starting with out-fibre flips and ending with in-fibre flips.

Proof: This follows from the previous lemma 1.4, by repeated application at the first possible place in
the sequence. This rewriting preserves the number of out-fibre flips. This process is finite, because at
every reduction step, the first out-fibre flip not already packed at the beginning get strictly closer to the
beginning of the sequence. 2

Using these tools, one can now proceed to proofs by induction on n.

Proposition 1.6 Every sequence of oriented flip moves is finite.

Proof: By induction on the number of squares n. This is obvious for the case n = 1, where there is no
flip at all.

Otherwise, let us consider an infinite sequence of flips. One can map it to a sequence made either of
flips in the smaller quadrangulation Q\s or a down-step in the total order of a fibre of θs. Because these
fibres are finite, one can obtain an infinite sequence of flips in Q\s. This is absurd by induction. 2

It follows that there cannot be any oriented cycles in ΓQ.

Theorem 1.7 The flip graph ΓQ is the Hasse diagram of a partial order.

Proof: The proof is by induction on n. One has to show that the graph is transitively reduced.
This means that for a single flip Q′ −→ Q′′, there should be no longer sequence of flips starting at Q′

and ending at Q′′. Here longer means having at least 2 steps.
Assume first that the flip Q′ −→ Q′′ is inside a fibre of θs. Then any flip exiting this fibre would never

come back to this fibre by induction. So it is only possible to look for the longer sequence inside the fibre.
But there cannot be any longer path between two consecutive elements of a total order.

Assume now that the flip Q′ −→ Q′′ induces a flip θs(Q′) −→ θs(Q
′′). Assume moreover that there

is some longer sequence of flips from Q′ −→ Q′′. By proposition 1.5, one can suppose that it starts with
out-fibre flips and ends with in-fibre flips.

If the longer sequence starts with an out-fibre flip, this must be the flip Q′ −→ Q′′, otherwise one
cannot reach Q′′, by induction hypothesis. It must then stop, otherwise it will just stop at some lower
point in the fibre. So in fact, it was not longer, which is absurd.

If the longer sequence starts with an in-fibre flip, it can only contain in-fibre flips, and therefore can
never reach Q′′ which is in a different fibre. This is a contradiction. 2

By convention, the partial order will be decreasing along the edges of the oriented graph ΓQ.

Proposition 1.8 The map θs is a morphism of posets.
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Proof: This is clear by the description of flips using θs in proposition 1.3. 2

Recall the definition of two special Q-compatible quadrangulations Q and τ(Q) at the end of subsec-
tion 1.1.

Proposition 1.9 The unique Q-compatible quadrangulation with only out-flips is Q. The unique Q-
compatible quadrangulation with only in-flips is τ(Q).

Proof: Let us first note that Q has only out-flips. This follows from its definition by a small negative
rotation. Similarly, τ(Q) has only in-flips, because it is defined by a small positive rotation.

It remains to show the converse statements. Let us prove that for Q and out-flips, the case of τ(Q) and
in-flips being similar. The proof is illustrated in Figure 5.

Let Q′ be a Q-compatible quadrangulation with only out-flips.
Let s = (i, j, k, `) be a square of Q that is a leaf in the tree structure of Q, where the boundary edges

are i− j, j−k and k− `. One can assume without restriction that j is a black vertex and k a white vertex.
Let ĵ, k̂, ˆ̀be the boundary edges of Q′ corresponding in the obvious way to the vertices j, k, `. If the

unique square ofQ′ containing ĵ and k̂ also contains ˆ̀, then one can remove the boundary edges i−j, j−k
and k − ` from Q and the boundary edges ĵ, k̂, l̂ from Q′ and proceed by induction. It then follows that
Q′ is equal to Q.

Otherwise, there are inner edges of Q′ starting at the common vertex of k̂ and ˆ̀. One of them is
bounding the square of Q′ containing ĵ and k̂. Let H be the hexagon containing this edge in its interior.
One can check that the inner edge of H is an in-flip for Q′, which is absurd.

i

j

k `

i

j

k `

m

Figure 5: Induction using a leaf of Q

2

Proposition 1.10 The oriented flip graph ΓQ is the Hasse diagram of a connected poset. The undirected
flip graph γQ is connected.

Proof: This follows from the existence of a unique minimal element τ(Q) (and a unique maximal element
Q) in the poset, proved in proposition 1.9. 2
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From now on, ΓQ will denote both the poset and its Hasse diagram. Note that these posets are not
graded, as one can see already with the pentagon that one can obtain starting with some of the quadran-
gulations of an octagon.

1.4 Another description ?
Let us now consider another potential way to define the directed graph ΓQ. This is only conjectural for
the moment.

Fix an initial quadrangulationQ. Consider the directed graphD with vertices all quadrangulations, and
edges defined by counter-clockwise rotation inside hexagons (where the edge extremities are moved to
adjacent vertices). This large directed graph D obviously contains ΓQ.

One would like to find another way to recover ΓQ, by keeping only some vertices and edges of D,
without having to use the compatibility relation.

The idea is that the set of vertices of ΓQ should have the following equivalent description. Let us say
that a path in D is repetition-free if no quadrangulation occurs twice. A quadrangulation Q′ is said to be
reachable from Q if no repetition-free path in D from Q to Q′ contains two consecutive flips inside the
same hexagon. Then quadrangulations reachable from Q should be exactly the same as elements of ΓQ.

If this holds, then one can build the set of reachable quadrangulations step by step, using for example
the following algorithm.

• Start from the singleton set S = {Q}.

• Assume that some set S of reachable quadrangulations have been found. Then either

1. there exists a quadrangulation Q′ not in S, obtained from an element of S by a flip, reachable,
and such that all quadrangulations on all repetition-free paths in D from Q to Q′ are already
in S,

2. or there is no such Q′ and the algorithm stops.

To see what this algorithm does inside ΓQ, let us fix a linear extension of ΓQ, starting with Q and
ending with τQ. Then the algorithm would succeed by adding the elements of ΓQ according to this linear
extension.

This would allow to define the graph ΓQ without using the compatibility condition introduced by
Baryshnikov, at the price of a somewhat greater complexity. This could be useful in more general contexts
where no analogue of compatibility is known.

This description of ΓQ would be summarised by the following sentence: do not rotate twice in the same
hexagon.

2 Examples and properties of Stokes posets
2.1 Catalan and other examples
Let us first consider the special case of the quadrangulations Cn with inner edges

(0, 3), (0, 5), . . . , (0, 2n− 1) (3)

inside the polygon with 2n+ 2 vertices. They have n squares. An example is depicted in Figure 6.
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*

Figure 6: The quadrangulation C6 of the Catalan family

Let us choose the border edge of the red polygon corresponding to the vertex 0 of the blue polygon as
a root. Recall that choosing such a root allows to identify quadrangulations with rooted ternary trees, by
planar duality. The root is marked by ∗ in the figure.

Proposition 2.1 The Cn-compatible quadrangulations are in bijection with rooted ternary trees with
no middle branch, and therefore also with rooted binary trees. The flips correspond to the left-to-right
rotation moves of rooted binary trees. In-flips correspond to right-branches and out-flips to left branches.

Proof: This description holds at the starting quadrangulation, which has only left branches. It remains to
show that this correspondence is preserved under flips. Details are left to the reader. 2

Therefore, in this case, the number of Q-compatible quadrangulations is the Catalan number

1

n+ 1

(
2n

n

)
, (4)

and the poset ΓQ is the Tamari lattice (see for example Müller-Hoissen et al. (2012) for its usual definition
using rotation of binary trees).

More generally, for ribbon quadrangulations (defined as quadrangulations where no square has neigh-
bour squares on opposite sides), the posets ΓQ are expected to match with the Cambrian lattices of type
A.

Figure 7 illustrates the directed flip graph ΓQ for a quadrangulation with 4 squares, having 12 compati-
ble quadrangulations. This is the simplest example of a Stokes poset that is really new, as the quadrangu-
lation is not a ribbon one.

See Figure 8 for the numbers ofQ-compatible quadrangulations for some (connected) quadrangulations
with up to 6 squares.

2.2 Factorisation property
Let us now describe a factorisation property, that allows to restrict the attention to a special class of
quadrangulations.

A square s in a quadrangulation is called a bridge if it has exactly two neighbour squares and these
squares are attached to opposite edges of s. A quadrangulation is called connected if it does not contain
any bridge. See Figure 9 for a quadrangulation with several bridges.

Let Q be a quadrangulation. Assume that s is a bridge in Q. Let Q1 (resp. Q2) be the quadrangulation
obtained from Q by removing all squares from one side of s (resp. from the other side). Equivalently, Q1

and Q2 are obtained by cutting along one edge of s and keeping the part that contains s.
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Figure 7: A quadrangulation Q and the flip graph of its 12 Q-compatible quadrangulations

Figure 8: Quadrangulations with up to 6 squares and number of compatible quadrangulations.

Proposition 2.2 The directed graph ΓQ is the direct product of the directed graphs ΓQ1 and ΓQ2 .

Proof: The hypothesis on Q says that in the polygon there are four vertices i, i+ 1 and j, j + 1 that form
the given square s of Q. Because the edges (i, j + 1) and (j, i + 1) are oriented in opposite directions,
no Q-compatible edge can cross them both. This implies that Q-compatible quadrangulations can be
described as pairs made of one Q1-compatible quadrangulation and one Q2-compatible quadrangulation.
One can check that the flips occur in each factor independently. 2

2.3 Simplicial complex and F -triangle

Let Q be a fixed quadrangulation. Let GQ be the simplicial complex whose simplices are the sets of
non-crossing Q-compatible inner edges. Every Q-compatible quadrangulation correspond to a maximal
simplex in GQ.
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b
bb

Figure 9: A quadrangulation with 3 bridges (marked with b).

This simplicial complex is pure, because every partial Q-compatible quadrangulation can always be
completed into a Q-compatible quadrangulation. To see this, one can observe that a set of Q-compatible
edges cuts the polygon into pieces, and each piece behave with respect to compatibility as a smaller
polygon, with an underlying quadrangulation inherited from Q.

The simplicial complex GQ is the flag complex, on the ground set of Q-compatible inner edges, for the
compatibility given by being non-crossing.

Let I−Q be the set of inner edges in Q (seen as Q-compatible inner edges), and let Φ+
Q be the set of all

other Q-compatible inner edges.
Let us define the F -triangle as the polynomial in two variables

FQ(x, y) =
∑
f∈GQ

x#f∩Φ+
Qy#f∩I−Q . (5)

When evaluated at (x, x), this reduces to the usual f -vector of the simplicial complex GQ.
There is some kind of parabolic structure inQ-compatible quadrangulations, akin to the classical theory

of roots systems or Coxeter groups. The role of simple roots is played by the inner edges of Q.

Proposition 2.3 There holds
y∂yFQ = y

∑
e∈Q

FQ−e FQ+
e
, (6)

where the sum runs over inner edges of Q, and Q−e , Q
+
e are the quadrangulations obtained by cutting Q

along e.

Proof: The left hand side is counting simplices in the simplicial complex GQ, with a marked initial inner
edge. These are clearly in bijection with the disjoint union, over inner edges of Q, of pairs of simplices in
the simplicial complexes GQ+

e
and GQ−e . 2

Let now s be a bridge in a quadrangulation Q, as defined in subsection 2.2.
Let Q1 (resp. Q2) be the quadrangulation obtained from Q by removing all squares from one side of s

(resp. from the other side).

Proposition 2.4 The simplicial complex ΓQ is the direct product of the simplicial complexes ΓQ1
and

ΓQ2
. The F -triangle of Q is the product of the F -triangles of Q1 and Q2.

Proof: This follows from the same basic properties of the compatibility relation as prop. 2.2. 2

In the article Baryshnikov (2001), all the simplicial complexes GQ are described as the dual of simple
polytopes. In particular, they are all spherical, and we will use here this result. It would certainly be
interesting to study the fans and the polytopes that are involved.
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The F -triangle has a nice symmetry.

Proposition 2.5 There holds

FQ(−1− x,−1− y) = (−1)nFQ(x, y). (7)

Proof: This is a simple consequence of the fact that GQ are spherical simplicial complexes, see (Chapo-
ton, 2004/05, Prop. 5) for the proof of this equation in a very similar context. 2

2.4 Twisting along an edge
Let Q be a quadrangulation, and e be a inner edge of Q. Let Q′e and Q′′e be the two quadrangulations
defined by cutting Q along e. Let Q′′e be the image of Q′′e by a reflection in the plane (the mirror image of
Q′′e ).

The twist ofQ along e (on theQ′′e side) is the quadrangulation defined by gluing backQ′e andQ′′e along
their boundary edges corresponding to e.

Twisting twice on the same side gives back Q. Twisting successively on opposite sides give the mirror
image of Q.

Let Q and Q′ be quadrangulations related by twisting along one inner edge. One expects the following
enumerative invariance.

Conjecture 2.6 The F -triangles of GQ and GQ′ are equal.

In particular, the number of Q-compatible quadrangulations should be the same as the number of Q′-
compatibles ones.

Under a strong additional hypothesis, a more structural property seems to hold.

Conjecture 2.7 Assume that every square in Q′e has at most 2 neighbors in Q but is not a bridge. The
undirected flip graphs γQ and γQ′ are isomorphic. The simplicial complexesGQ andGQ′ are isomorphic.

It should be noted that the oriented flip-graphs are not the same under this hypothesis.
In an earlier version of this article, conjecture 2.7 was proposed without the additional hypothesis. But

a minimal counterexample for this original conjecture (with 8 squares) has recently been found by Pilaud
and Manneville.

Let us comment briefly on these two conjectures.
First they have been checked by computer for a lot of examples. They are both directly motivated by

similar results known to hold for all Cambrian lattices of finite Weyl groups. Let us fix a finite Weyl
group W and a Coxeter element c. All Coxeter elements in W can be connected through a sequence of
conjugations by simple reflections.

In that case, the directed graph is the Hasse diagram of the Cambrian lattice of (W, c). The undirected
flip graphs does not change when changing the Coxeter element c because of the identification with the
flip graph coming from mutations in the cluster algebra of type W .

For the conjecture about F -triangles, in the case of cluster complexes, the invariance under change of
Coxeter element c is also known, and follows from the explicit relation with M -triangles or H-triangles,
as explained just before section 4.1.



16 F. Chapoton

3 Noncrossing trees and exceptional sequences
In this section, which does not contain much details, some generalisations of the flip graphs are proposed,
using exceptional sequences on Dynkin diagrams or equivalent objects for Coxeter groups. Beware that
the correctness of this proposal depends on the unproven alternative description of ΓQ in subsection 1.4.

Let us start by a simple combinatorial reformulation of the flip graphs of quadrangulations in terms of
other combinatorial objects.

A noncrossing tree in the regular polygon with n + 1 vertices is a set of edges between vertices of the
polygon, with the following properties

• edges do not cross pairwise,

• any two vertices are connected by a sequence of edges,

• there is no loop made of edges.

Note that boundary edges are allowed in the set, and a typical noncrossing tree will contain only some of
them.

There is a simple bijection between quadrangulations of the 2n + 2-polygon and noncrossing trees in
the n + 1-polygon. Assume that vertices of the 2n + 2-polygon have been coloured black and white
alternating. Then every quadrangle contains a unique black-black diagonal (one of its two diagonals).
The collection of these diagonal edges can be seen to form a noncrossing tree. Conversely, by drawing a
noncrossing tree using the black vertices of the 2n + 2-polygon, one can consider all black-white edges
that do not cross edges of the noncrossing tree. This gives back the quadrangulation.

Figure 10: Bijection between quadrangulations and noncrossing trees

Passing through this bijection, one can translate the flips of quadrangulations into a simple operation
on noncrossing trees. It is in fact enough to consider what happens for the flip inside an hexagon, as every
flip will behave locally the same.

The result is as follows. A flip of noncrossing trees will change just one edge of the noncrossing tree.
Assume that there are edges i − j and k − j in the noncrossing tree T , with i < j < k in the clockwise
cyclic order, and that there is no other edge incident to j between them inside the ambient polygon. Then
the flip consists in replacing i− j by i− k.

Flipping twice in the same hexagon of a quadrangulation translates into flipping again along two other
sides of the same triangle (i, j, k) of a noncrossing tree.
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Using the conjectural alternative description of subsection 1.4, one would therefore be able to restate
the digraph ΓQ in terms of flips of noncrossing trees, not flipping twice consecutively along two sides of
the same triangle.

3.1 From noncrossing trees to exceptional sequences
For short, let An denote in this section the equi-oriented quiver of type An.

The noncrossing trees in the n+1-polygon have been related in Araya (2013) to exceptional sequences
(up to shifts and reordering) in the derived category DmodAn.

The correspondence goes as follows. By numbering the vertices of the n + 1-polygon from 0 to n
clockwise, every inner edge gets a label (i, j) with i < j. Let the inner edge (i, j) correspond to the
indecomposable module over An with support [i+ 1, j].

Then Araya proved that a noncrossing tree is sent by this map to a collection of indecomposable mod-
ules that can be ordered into an exceptional sequence and, conversely all the underlying sets of indecom-
posable modules coming from exceptional sequences are obtained in this way. Let us call such a collection
of indecomposable modules an exceptional set(iii).

Given the description above of the flips acting on noncrossing trees, one can readily check that they
correspond, after the bijection to exceptional sets, to the action of the braid group on exceptional sequences
(see for example Crawley-Boevey (1992) for the braid group action). More precisely, given an exceptional
set, pick an ordering into an exceptional sequence, act by one generator si of the braid group to get another
exceptional sequence, and then forget about the ordering. This describe what the flips are.

Then moving twice consecutively in a same triangle gets translated to acting twice by the same si at
the same place.

This would allow to generalise the definition of the flip graphs to any finite Dynkin diagram, provided
that the conjectural description of subsection 1.4 holds.

3.2 From exceptional sequences to chains of noncrossing partitions
In fact, it is even possible to get from here to the more general setting of finite Coxeter groups.

It has been known since the article Ingalls and Thomas (2009) (see also Igusa and Schiffler (2010)) that
exceptional sequences in derived categories of representations of Dynkin quivers are closely related to the
corresponding lattices of noncrossing partitions.

More precisely, let W be a finite crystallographic Coxeter group, and c be a Coxeter element in W . As
is well-known, this data can be translated into a quiver Q with underlying graph the Dynkin diagram.

There is a bijection between maximal chains in the noncrossing partition lattice attached to c, and
exceptional sequences of modules over Q. One can label each cover relation in the noncrossing partition
lattice by a reflection(iv). Using this labelling, maximal chains in the noncrossing partition lattice are
identified with factorisations of the Coxeter element c as a product of n reflections, where n is the rank.

In this new language, the action of the braid group on exceptional sequences get translated to a sim-
ilar action of the braid group on maximal chains of the noncrossing partition lattice(v). When maximal
(iii) It could also be called an exceptional collection, but there is no universal agreement on the meaning of that.
(iv) In the set of all reflections, not only simple ones.
(v) Sometimes named the Hurwitz action.



18 F. Chapoton

chains are considered as factorisations of the Coxeter element into reflections, this is given by a simple
conjugation action.

This interpretation would allow to extend the definition of the flip graphs to all finite Coxeter groups,
where quadrangulations are replaced by maximal chains in the noncrossing partition lattice, up to reorder-
ing.

In these generalisations, some properties are lost. In particular, the flip graphs are no longer regular, as
one can see already for some examples in type D4.

4 Serpent nests
In this section, we turn to another aspect of quadrangulations, that should in fact be related to the previous
one.

Let us start by some combinatorial definitions.
A serpent(vi) in a quadrangulation Q is a set of two distinct squares s, s′ such that the unique path from

s to s′ in Q is made of a sequence of right-angle turns. This means that following this path, one never
enters and leaves a square through opposite sides. Abusing notation, one will also consider that the path
is the serpent. By convention, the path starts and ends at the centre of the squares. See the leftmost part
of Figure 12 for a visual example.

A serpent nest is a set of serpents inside a quadrangulation, satisfying an extra condition and modulo
an equivalence relation:

• The extra condition is the following: two serpent extremities s1 and s2 can share the same square
if and only if the serpents do not leave this square by the same side.

• The equivalence relation is the following: two sets of serpents are considered equivalent if the
pattern of paths inside every square is the same in both.

Let us explain in more details the meaning of this equivalence relation. Inside every square, there can
be 8 kinds of path segments: 4 kinds entering by an edge and stopping at the centre (these can appear
at most once), and 4 kinds entering by an edge and leaving by an adjacent edge (these can appear any
number of times). The pattern of paths just remembers how many paths segments of each kind there are.

Figure 11: An example of the pattern of paths in a square

Another way to describe this equivalence relation is the following. Consider two serpents that cross the
same edge. Cut both of them into two pieces along this edge, and glue them back after swapping them.
This gives another set of serpents that also satisfies the extra condition. The equivalence relation is the
closure of this kind of move.
(vi) The word “serpent” is a synonym for “snake”, which is already used for something else in the context of cluster algebras.
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Figure 12: A serpent and two representatives of the same serpent nest of rank 5

The extra condition implies that every square can contain at most 4 serpent extremities. Therefore,
there are only a finite number of different serpent nests in each quadrangulation.

Let SNQ be the set of serpent nests in a quadrangulation Q.
Let us define the rank rk(σ) of a serpent nest σ as the number of serpents in it. By a well-known

principle, this is half the number of serpent extremities.
LetQ be a quadrangulation. Assume that s is a bridge inQ (as defined in subsection 2.2). LetQ1 (resp.

Q2) be the quadrangulation obtained from Q by removing all squares from one side of s (resp. from the
other side).

Theorem 4.1 There is a bijection between serpent nests in Q and pairs of serpent nests in Q1 and Q2.

Proof: In fact, no serpent can cross the bridge, by definition, because they must make right-angle turns
at every step. Therefore every serpent in Q is either in Q1 or in Q2. The extra condition and equivalence
relation are also compatible with this decomposition. 2

Let now Q and Q′ be quadrangulations related by twisting along some inner edge e, as defined in 2.4.
Every serpent in Q can be mapped to a serpent in Q′ by just twisting it. This is clearly a bijection.

Theorem 4.2 This bijection induces a bijection between serpent nests in Q and in Q′, that preserves the
rank.

Proof: The extra condition in the definition of serpent nests is obviously preserved. Compatibility with
the equivalence relation is easy. 2

For a quadrangulation Q, let hQ be the generating polynomial for the rank of serpent nests:

hQ(x) =
∑

σ∈SNQ

xrk(σ). (8)

Abusing notation, this is called the h-vector.

Let us now define a duality on serpent nests.
For this we need the following definition. A short serpent is a serpent whose extremities are adjacent

squares. We say that a serpent nest σ contains a short serpent at the edge e if one set of serpents in the
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equivalence class of σ contains a short serpent at this edge. Equivalently, there are serpent extremities in
each square adjacent to e that both leave their respective squares through e.

Let σ be a serpent nest. The dual σ is another serpent nest, defined as follows.
Consider an edge e between two squares s and s′ of Q. If both s and s′ contains a serpent extremity

leaving through e, remove them both. If neither s nor s′ contains a serpent extremity leaving through e,
add both. Otherwise (exactly one of s or s′ has a serpent extremity leaving through e), do nothing.

This change has to be performed for every inner edge of Q.
This is clearly an involution on serpent nests. This amounts to remove all existing short serpents, and

introduce some wherever possible.

Proposition 4.3 The rank of the dual of a serpent nest σ is n− 1− rk(σ), where n− 1 is the number of
inner edges of the quadrangulation.

Proof: The quadrangulation has n squares and n− 1 inner edges.
Consider a serpent nest σ containing k serpents among which ` short serpents. There are k − ` long

serpents, and therefore 2k − 2` inner edges where the duality does nothing (near the extremities of the
long serpents). The duality changes something around n − 1 − 2k + 2` inner edges. So in the dual σ,
there are n− 1− 2k + ` short serpents. Therefore σ contains n− 1− k serpents. 2

This implies that the h-vector is palindromic:

hQ(x) = xn−1hQ(1/x). (9)

For the four examples of size 5 in Figure 8, one finds the following h-vectors

x4 + 8x3 + 15x2 + 8x+ 1, (10)

x4 + 8x3 + 16x2 + 8x+ 1, (11)

x4 + 9x3 + 17x2 + 9x+ 1, (12)

x4 + 10x3 + 20x2 + 10x+ 1. (13)

From the description of the duality, fixed points are serpent nests where each inner edge is adjacent to
exactly one serpent extremity that crosses this edge.

It seems that the number of fixed points is (up to sign) the value of the h-vector at x = −1. This could
be related to the Charney-Davis conjecture about h-vectors of simplicial spheres, see Reiner and Welker
(2005); Charney and Davis (1995); Leung and Reiner (2002).

Let us now define a refinement of the h-vector.
A serpent in a serpent nest σ is called a simple serpent if two conditions hold. The first condition is

that its extremities are adjacent squares. The second condition is that there is no other serpent crossing
the same edge. This is a stronger restriction than just being a short serpent.

The h-triangle of a quadrangulation Q is defined as the following polynomial in two variables:

HQ(x, y) =
∑

σ∈SNQ

xrk(σ)ys(σ), (14)

where s(σ) is the number of simple serpents in the serpent nest σ.
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Given an inner edge e in a quadrangulation Q, one can define two quadrangulations by cutting Q along
this edge. Let us call them Q′e and Q′′e . This will be called a parabolic decomposition.

The H-triangle has a simple property with respect to parabolic decomposition.

Proposition 4.4 There holds

y∂yHQ = xy
∑
e∈Q

HQ′eHQ′′e
. (15)

Proof: The left hand side is counting pairs made of a serpent nest in Q with a marked simple serpent.
Each term of the right hand side is counting pairs of serpent nests in Q′e and Q′′e . The equality is given by
the bijection that cuts along the unique edge crossed by the simple serpent. 2

There seems to be a close relation with the F -triangle defined in subsection 2.3. Let n be the number
of inner edges.

Conjecture 4.5 There holds the equation

HQ(x, y) = (x− 1)nFQ

(
1

x− 1
,

1 + (y − 1)x

x− 1

)
. (16)

This would imply in particular a relation between the f -vector and the h-vector, that is exactly the usual
relation defining the h-vector from the f -vector for simplicial complexes.

Given prop. 2.5, this would imply the following symmetry.

Conjecture 4.6 There holds

HQ(x, y) = xnHQ(1/x, 1− x+ xy). (17)

The very same relationship (16) between F -triangles and H-triangles has first been conjectured in
Chapoton (2004/05) in the context of Catalan combinatorics of finite Weyl groups and Coxeter groups.
In this case, the F -triangle is related to cluster algebras (counting cones in the cluster fan according to
the number of spanning positive and negative simple roots) and the H-triangle to nonnesting partitions
(counting antichains in the root poset according to cardinality and number of simple roots). A similar
formula was conjectured in Chapoton (2006) to relate the H-triangle to a third triangle, called the M -
triangle, defined as a generating series for the Möbius numbers of the lattices of noncrossing partitions.

These conjectures have later been generalised in (Armstrong, 2009, Ch. 5) to the Fuss-Catalan combi-
natorics of Coxeter groups, where one more parameter m appears. The interested reader can find a lot of
material on this subject in this reference.

This story is now completely proved, but maybe not fully understood, after the works of several authors,
see Athanasiadis (2007); Krattenthaler (2006, 2005/07); Tzanaki (2008) and Thiel (2014).

In fact, all the statements proved about these triangles in the Catalan setting seems to extend to our
current context, where the initial data is a quadrangulation instead of a Coxeter type. The M -triangle is
missing, as there is no known analogue of the noncrossing partitions here. Note that the symmetry above
gets a nice explication in the Catalan world by the self-duality of the lattices of noncrossing partitions.
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4.1 Examples
Recall the quadrangulations Cn introduced in subsection 2.1, with inner edges

(0, 3), (0, 5), . . . , (0, 2n− 1) (18)

inside the polygon with 2n+ 2 vertices, see Figure 6.
In this case, every pair of squares define a serpent and every serpent nest is uniquely determined by the

set of serpent extremities. In one square, there can be at most two serpent extremities.
Recall that a nonnesting partition of the set {1, . . . , n−1} is a set of segments (i, j) with 1 ≤ i ≤ j ≤ n,

such that no segment contains another one.
By looking at serpent extremities as opening or closing parentheses, one can find a simple bijection

between serpent nests and nonnesting partitions of {1, . . . , n − 1}, that maps the number of serpents to
the number of segments.

It follows that the number of serpent nests inside Cn is the Catalan number and the h-vector of Cn is
given by the Narayana numbers.

Another nice family of examples is given by the quadrangulations of the general shape displayed in
Figure 13, namely a linear string of n+ 1 squares, with one square attached below each of them excepted
the two extremes. Let us denote by Ln this quadrangulation, which has 2n squares. We call them the
Lucas family, for reasons explained below. Let us also denote by Kn the quadrangulation obtained from
Ln by removing the rightmost square in the linear string of n+ 1 squares.

Figure 13: The quadrangulation L8 of the Lucas family and the quadrangulation K8

Let us denote by `n and kn the h-vectors hLn
and hKn

. Recall that they are polynomials in x counting
the serpent nests according to their rank.

Proposition 4.7 The sequence `n satisfies the recurrence

`n+2 = (1 + 4x+ x2)`n+1 + x(1 + x+ x2)`n, (19)

with initial conditions `0 = 0 and `1 = 1 + x.

Proof: One can obtain the following coupled recursions for `n and kn by a combinatorial reasoning on
serpent nests:

`n = (1 + x)kn + x`n−1 and kn = (1 + x)`n−1 + xkn−1 + x(1 + x)`n−2. (20)

By elimination, one finds the required formula. 2 With more care, a similar recursion can be found for

the H-triangles.
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It follows that the `n form a Lucas sequence, and therefore that there exist polynomials (Zn)n≥1 such
that

`n =
∏
d|n

Zd, (21)

for all n ≥ 1. Apparently, the Zn have positive coefficients. There is no combinatorial explanation
of this factorisation so far. One may speculate that this could be explained by some generalisations of
noncrossing partitions lattices.

The first few numbers of serpent nests in Ln are

2, 12, 78, 504, 3258, 21060, 136134, 879984, 5688306, . . . (22)

(twice sequence A090018 of oeis.org) and the first few values of Zn at x = 1 are

2, 6, 39, 42, 1629, 45, 68067, 1746, 72927, 1881, 118841823, 1737, 4965759189, . . . (23)

4.2 Counting serpent nests
A natural question to ask is, given a quadrangulation, how many serpent nests does it afford ? Even better,
one would like to know the h-vector that counts serpent nests according to their rank.

This does not seem to be easy. There is nevertheless an idea that allows to compute these numbers or
polynomials for some large quadrangulations. It consists of

1. cutting a quadrangulation along one edge,

2. counting what could be called open serpent nests in both half-quadrangulations

3. and gluing the results back.

Let us call open quadrangulation a quadrangulation together with a distinguished boundary edge, that
will be considered to be open. An open serpent nest inside an open quadrangulation is defined in the same
way, except that now some of the serpents can end on the open edge. They are considered up to the same
equivalence relation as serpent nests. Clearly, there is a finite number of such configurations.

The rank rk(σ) of an open serpent nest σ is the number of (closed) serpents. Let op(σ) be the number
of open serpents in σ, namely those that end on the open edge.

Given an open quadrangulation Q, define its open h-vector as

hQ(x, t) =
∑

σ∈SNQ

xrk(σ)top(σ). (24)

One will glue back two open h-vectors to get an h-vector. The gluing is defined by the following rule.
Let A and B be two polynomials in x and t. Define a polynomial A#B in x by

A#B =
∑
k≥0

AkBkx
k, (25)

where Ak and Bk are the coefficients of tk in A and B (when considered as polynomials in t with
coefficients in Z[x]).

Let Q be a quadrangulation, e be an inner edge of Q. Let Q′e and Q′′e be the open quadrangulations
obtained by cutting Q along the edge e.

https://oeis.org/A090018
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Proposition 4.8 The h-vector of Q is given by hQ = hQ′e#hQ′′e .

Proof: Cutting along e gives a bijection between serpent nests in Q and pairs of open serpent nests in Q′e
and Q′′e with the same number of open serpents. This implies the formula. 2

To give just a very simple example, consider the quadrangulation of an hexagon. Its h-vector is 1 + x.
On the other hand, for the open quadrangulation of a square, one find that the open h-vector is 1 + t. One
can recover 1 + x as (1 + t)#(1 + t).

This method allows for example to compute the number of serpents nests for quadrangulations made
by gluing a large open Catalan-type quadrangulation (or a large open Lucas-type one) to any small open
quadrangulation.

5 Parabolic algebras of quadrangulations and cross-trees
Consider the free commutative algebra F generated by all quadrangulations (considered up to rotation).
Let A be its quotient by the relations

Q = Q1Q2 (26)

when there is a bridge s in a quadrangulation Q defining two quadrangulations Q1 and Q2 as in subsec-
tion 2.2.

Then A is a graded commutative algebra, where the degree is the number of inner edges.
On this algebra, let us define an operator ∂ : A → A. It is given on a quadrangulation Q by

∂Q =
∑
e∈Q

Q′eQ
′′
e (27)

where the right hand side is the product of the two pieces obtained by cutting along the edge e. This
extends uniquely as a derivation of the free commutative algebra F , which then descends to the quotient
algebra A.

The operator ∂ is a derivation with respect to the product, and homogeneous of degree −1.
Let ∆ be the operator exp(∂). This is a well-defined automorphism of A. It does not preserve the

grading, but does preserve an increasing filtration by the number of inner edges.
Recall the F -triangle of a quadrangulation was defined in 2.3 as a polynomial in x, y.

Proposition 5.1 The F -triangle is a morphism of commutative algebra from A to Z[x, y]. It sends the
derivation ∂ to ∂y and ∆ to the substitution operator y 7→ y + 1.

Proof: The fact that it is a morphism follows from Prop. 2.4. The derivation part follows from Prop. 2.3.
The statement about ∆ is a consequence of the statement about ∂. 2

Let us call a cross-tree the equivalence class of a quadrangulation under the moves of twisting along an
edge as defined in subsection 2.4.

Cross trees can also be considered as abstract sets of squares, glued together along their sides so as to
form a tree-like shape, but where the two possible gluings along an edge are not distinguished.

The notion of bridge introduced in subsection 2.2 still make sense for cross-trees, as well as the associ-
ated notion of connectedness.
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By the theorem 4.2, the set of serpent nests inside a quadrangulation really only depends on the cross-
tree.

One can define an algebra similar toA using cross-trees instead of quadrangulations. This is a quotient
algebra of A.

If conjecture 2.6 holds, the F -triangle only depends on the cross tree, and therefore is defined on this
quotient algebra.

6 Enumerative aspects of quadrangulations
We shall compute here the number of connected quadrangulations up to rotation and the number of con-
nected cross-trees, up to isomorphism.

This is done using the classical language of species, see Bergeron et al. (1998) for the basics of this
fundamental theory.

Let X be the species of singletons. Let E2 be the species of unordered pairs. Let C4 be the species of
oriented cycles of length 4.

6.1 Connected quadrangulations up to rotation
Let T be the species of all connected quadrangulations, T2 the species of those pointed in a square, T i the
species of those pointed along an inner edge, and T2,i the species of those pointed along a pair (square,
adjacent inner edge).

Let T b be the species of quadrangulations that can be obtained from a connected quadrangulation by
cutting along an inner edge, keeping one of the two halves and marking the cut edge. The species T b is
an auxiliary one, in which it is not allowed that the square next to the marked edge has exactly one other
neighbour opposite to the edge, but where it is allowed that this square has only two opposite neighbours.

One has the following combinatorial relations:

T2 + T i = T + T2,i,

T i = E2(T b),

T2,i = (T b)2,

T2 = X(1 + T b + (T b)2 + (T b)3 + C4(T b))),

T b = X(1 + 2T b + 3(T b)2 + (T b)3).

The first equation is an instance of the dissymetry equation for trees, see (Bergeron et al., 1998, Chap.
4) for the general principle behind it. Other equations are just obvious recursive descriptions. The last
equation determines T b and the other ones in turn determines the other species.

From these equations, one can compute the first few terms of the associated generating series:

T b : 1, 2, 7, 27, 114, 507, 2342, . . .

T : 1, 1, 1, 4, 11, 42, 155, 659, 2810, . . .

T i : 0, 1, 2, 10, 41, 196, 924, . . .

T2 : 1, 1, 3, 12, 52, 231, 1079, . . .

T2,i : 0, 1, 4, 18, 82, 385, 1848, . . .
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It is also interesting to consider the sub-species TB of T b where the square near the marked boundary
edge does not have exactly two opposite neighbours. In some sense, this condition is a stronger form of
connectedness. By removing one term in the equation defining T b, one gets that

TB = X(1 + 2T b + 2(T b)2 + (T b)3), (28)

which gives the first few terms

TB : 1, 2, 6, 23, 96, 425, 1957, 9277, . . .

6.2 Connected cross-trees up to isomorphism
Let us compute here the number of connected cross-trees.

Let T be the species of all connected cross-trees, T2 the species of those pointed in a square, Ti the
species of those pointed along an inner edge, and T2,i the species of those pointed along a pair (square,
adjacent inner edge).

Let Tb be the species of cross-trees that can be obtained from a connected cross-tree by cutting along
an inner edge, keeping one of the two halves and marking the cut edge. The species Tb is an auxiliary
one, in which it is not allowed that the square next to the marked edge has exactly one other neighbour
opposite to the edge, but where it is allowed that this square has only two opposite neighbours.

One has the following combinatorial relations:

T2 + Ti = T + T2,i,

Ti = E2(Tb),

T2,i = (Tb)2,

T2 = X(1 + Tb + E2(Tb) + TbE2(Tb) + E2(E2(Tb))),

Tb = X(1 + Tb + (Tb)2 + E2(Tb) + TbE2(Tb)).

The first equation is again an instance of the dissymetry equation for trees. Other equations are just
obvious recursive descriptions. As before, the last equation determines Tb and the other ones in turn
determines the other species.

From these equations, one can compute the first few terms of the associated generating series for the
number of isomorphism classes:

Tb : 1, 1, 3, 7, 20, 58, 178, 557, . . .

T : 1, 1, 1, 2, 4, 9, 21, 56, 153, . . .

Ti : 0, 1, 1, 4, 10, 33, 99, 324, . . .

T2 : 1, 1, 2, 5, 14, 39, 120, . . .

T2,i : 0, 1, 2, 7, 20, 63, 198, . . .

Just as for quadrangulations, it is also interesting to consider the sub-species TB of Tb where the square
near the marked boundary edge does not have exactly two opposite neighbours. By removing one term in
the equation defining Tb, one gets that

TB = X(1 + Tb + (Tb)2 + TbE2(Tb)), (29)
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which gives the first few terms

TB : 1, 1, 2, 6, 16, 48, 145, 458, . . .

The first few terms of sequence T are illustrated in Figure 8.

6.3 Connected quadrangulations with no cross
For reasons related to fans (that are not considered in this article), it is also interesting to count quadran-
gulations and cross-trees avoiding the cross (which means that no square has four neighbours). We will
abuse notation by keeping the same names for these new species.

Let us start with quadrangulations. Using similar notations for various species of connected quadran-
gulations avoiding the cross, one has the following combinatorial relations:

T2 + T i = T + T2,i,

T i = E2(T b),

T2,i = (T b)2,

T2 = X(1 + T b + (T b)2 + (T b)3),

T b = X(1 + 2T b + 3(T b)2).

The first equation is an instance of the dissymetry equation. Other equations are just obvious recursive
descriptions. The last equation determines T b and the other ones in turn determines the other species.

From these equations, one can compute the first few terms of the associated generating series:

T b : 1, 2, 7, 26, 106, 452, 1999, . . .

T : 1, 1, 1, 4, 10, 40, 141, . . .

T i : 0, 1, 2, 10, 40, 186, 846, . . .

T2 : 1, 1, 3, 12, 50, 219, 987, . . .

T2,i : 0, 1, 4, 18, 80, 365, 1692, . . .

6.4 Connected cross-trees with no cross
Using the same notations as before, one has the following combinatorial relations:

T2 + Ti = T + T2,i,

Ti = E2(Tb),

T2,i = (Tb)2,

T2 = X(1 + Tb + E2(Tb) + TbE2(Tb)),

Tb = X(1 + Tb + (Tb)2 + E2(Tb)).

The first equation is an instance of the dissymetry equation for trees. Other equations are just obvious
recursive descriptions. The last equation determines Tb and the other ones in turn determines the other
species.
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From these equations, one can compute the first few terms of the associated generating series for the
number of isomorphism classes:

Tb : 1, 1, 3, 6, 17, 44, 128, 365, 1091, . . .

T : 1, 1, 1, 2, 3, 8, 16, 42, 102, . . .

Ti : 0, 1, 1, 4, 9, 29, 79, 244, 727, . . .

T2 : 1, 1, 2, 5, 12, 34, 95, 280, 829, . . .

T2,i : 0, 1, 2, 7, 18, 55, 158, 482, 1454, . . .

The reader can check the first few terms of sequence T in Figure 8.
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