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The PERMUTATION PATTERN MATCHING problem, asking whether a pattern permutationπ is contained in a text
permutationτ , is known to beNP-complete. We present two polynomial time algorithms for special cases. The first
is applicable if bothπ andτ are321-avoiding while the second is applicable if both permutations are skew-merged.
Both algorithms have a runtime ofO(kn), wherek is the length ofπ andn the length ofτ .
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1 Introduction
In this paper, a permutation is a bijective function from[n] to itself, wheren is a positive integer and
[n] = {1, 2, . . . , n}. Therefore, a permutation,π : [n] → [n] is the set of ordered pairs(i, π(i)). We
occasionally write specific permutations in the usual one line notation, e.g.,321 represents the permutation
of [3] equal to{(1, 3), (2, 2), (3, 1)}. Thesizeof π is just the cardinality of this set, and we denote the
elements, also called points, of a permutation by variablessuch asx andy. We adopt the usual conventions
with respect to order of such points, i.e.,(i, π(i)) lies to the left of(j, π(j)) if i < j and above(k, π(k))
if π(i) > π(k), with corresponding definitions for ‘to the right of’ and ‘below’. Given an elementx in a
permutationπ, we define (wherever possible):
x the element immediately to its left,
x the element immediately to its right,
x the element immediately above it, and
x the element immediately below it.
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We use the symbol⊥ to represent ‘undefined’. Any operator applied to⊥ also yields⊥. For example, in
the permutation31254 and forx = 3 we have:x = ⊥, x = 1, x = 4 andx = 2.

Let π andτ be two permutations. An injective function,f , from π into τ is anembeddingif, for all
elementsx andy of π, the elementsf(x) andf(y) of τ are in the same relative order asx andy (e.g., ifx
lies below and to the right ofy, thenf(x) also lies below and to the right off(y)). If there is an embedding
from π into τ then we say thatτ containsπ. If not, then we say thatτ avoidsπ. The following problem,
analogous to problems related to detecting occurrences of patterns in words, is central with respect to
these concepts:

PERMUTATION PATTERN MATCHING (PPM)

Input: A text permutationτ of sizen and a patternπ of sizek.
Question: Doesτ containπ?

Bose, Buss, and Lubiw [5] showed in 1998 that the PPM problem isNP-complete(i).
The recent work of Guillemot and Marx [9] shows that the PPM problem can be solved in time

2O(k2 log k)n, i.e., linear-time inn whenk is viewed as a constant. In particular, this implies that the
PPM problem isfixed-parameter tractable (fpt)with respect to the size of the patternk. Work prior to this
breakthrough result achieved runtimes ofO(n1+2k/3 · logn) [2] andO(n0.47k+o(k)) [1]. Usingrun(τ) as
parameter, i.e., the number of alternating runs ofτ , Bruner and Lackner [6] present an fpt algorithm with
runtimeO(1.79run(τ) · kn).

A permutation class, C, is a set of permutations with the property that ifτ ∈ C andτ containsπ then
π ∈ C. In other words,C is closed downwards with respect to the partial ordering of permutations given
by the relation “is contained in”. A permutation class is proper if it does not contain every permutation.
Permutation classes are frequently defined in terms of avoidance conditions, namely, for any setB of
permutations, the setAv(B) consisting of those permutations which avoid every elementof B is a per-
mutation class (and it is always proper ifB is non-empty). Conversely, every permutation class is equal to
the class of permutations avoiding its complement, or even avoiding the minimal elements (with respect
to the partial ordering mentioned above) of its complement.For an overview of results on permutation
classes, we refer to the corresponding chapter in theHandbook of Enumerative Combinatorics[15].

This leads to two natural ways in which one might restrict thePPM problem. One is to impose ad-
ditional structure on the pattern, most naturally, to insist that the pattern belongs to a particular (proper)
permutation class. One example which has been studied is theclass ofseparablepermutations, which
are those avoiding both3142 and2413. If the pattern is separable, PPM can be solved in polynomial
time [2, 5, 11, 13, 16]. The fastest algorithm for this case isby Ibarra [11] with a runtime ofO(kn4).
Formally, we define this class of problems as follows:

C-PATTERN PERMUTATION PATTERN MATCHING (C-PATTERN PPM)

Input: A text permutationτ of sizen and a patternπ of sizek, whereπ belongs to
a fixed proper permutation classC.

Question: Doesτ containπ?

A second and more restrictive specialisation of the PPM problem is to insist that both the pattern and
text belong to a (proper) permutation class. This is the version of the problem that we study.

(i) Note that because both the pattern and text are regarded as input, the size of the input isn+ k. Were we to regard the size of the
pattern as fixed, then the trivialO

((

n

k

)

· k
)

algorithm would be polynomial time.
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C PERMUTATION PATTERN MATCHING (C-PPM)

Input: A text permutationτ of sizen and a patternπ of sizek, both belonging to a
fixed proper permutation classC.

Question: Doesτ containπ?

Clearly, for a fixedC, polynomial time algorithms forC-PATTERN PPM apply toC-PPM as well.
Consequently, the separable case, i.e.,Av(3142, 2413)-PPM, can be solved inO(kn4) time [11]. Note
that if the pattern avoids132, 231, 213 or 312 then it is automatically separable and thus theC-PATTERN

PPM problem for all four classesAv(132), Av(231), Av(213) or Av(312) can be solved in polynomial
time. Most relevant to our work is a result by Guillemot and Vialette [10] that establishes anO(k2n6)-time
algorithm forAv(321)-PPM. In Sections 2 and 3, we improve their approach to give the following.

Theorem 1.1. Given321-avoiding permutationsτ of sizen and π of sizek, there is anO(kn)-time
algorithm which determines whetherτ containsπ.

In Section 4 we show how to adapt this approach to the class of skew-merged permutations, which are
those permutations whose elements can be partitioned into an increasing subsequence and a decreasing
subsequence. Skew-merged permutations can also be characterised as those permutations that avoid both
3412 and2143 [14].

Theorem 1.2. Given skew-merged permutationsτ of sizen and π of sizek, there is anO(kn)-time
algorithm which determines whetherτ containsπ.

The following elementary observation will be used repeatedly.

Lemma 1.3. Letπ andτ be permutations andf : π → τ . Thenf is an embedding ofπ into τ if and only
if for every elementx of π:
• if x 6= ⊥ thenf(x) lies strictly to the right off(x ) and
• if x 6= ⊥ thenf(x) lies strictly abovef(x ).

Proof: Suppose thatx andy are points ofπ and that, without loss of generality,y lies strictly to the left
of x. Theny occurs in the sequencex , x , x , . . . . So, by inductive use of the first property,f(x) lies
strictly to the right off(y). Similarly, inductive use of the second property establishes that the vertical
relationship betweenf(x) andf(y) is the same as that betweenx andy, and the result follows.

The other direction follows directly from the definition of embeddings given on page 2:x is an element
strictly to the left ofx and thusf(x) lies strictly to the right off(x ) for an embeddingf . In the same
way,x is an element strictly belowx and thusf(x) lies strictly abovef(x ).

2 The Lattice of Rigid Embeddings of 321-Avoiding Permutations
It is easy to see that the elements of any321-avoiding permutationπ can be partitioned into two increasing
subsequences. This partition is in general not unique but inany such partition, one of these subsequences
will contain all those elements which participate as the ‘2’ in a copy of21—called theupper elements
of π and denotedUπ— and the other will contain all those elements which participate as the ‘1’ in a
copy of21—called thelower elementsof π and denotedLπ. Elements that are neither upper nor lower
elements, i.e., those that are not involved in a copy of21, can be part of either of the two subsequences.
Let us formalise these definitions: An elementx of π is an upper element if there is some embedding of
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upper
lower
fluid

rigid

Fig. 1: The decomposition of the321-avoiding permutationπ = 3 1 2 4 5 9 6 7 10 8 11 13 12 into rigid and fluid
elements.

21 = {(1, 2), (2, 1)} intoπ such thatx is the image of(1, 2) and a lower element if there is an embedding
of 21 such thatx is the image of(2, 1).

Following Albert, Atkinson, Brignall, Ruškuc, Smith, andWest [3], elements which are either upper
or lower elements ofπ are referred to asrigid elements, andπ is called arigid permutationif all of its
elements are rigid (i.e., ifπ = Uπ ∪ Lπ). The remaining elements will be calledfluid elements. For an
example of a321-avoiding permutation and its decomposition into rigid andfluid elements, see Figure 1.

Note that it can be determined in linear time which elements are upper, lower and fluid in a permutation.
For this purpose one simply needs to scan the permutation from left to right and record the largest element
encountered so far, denoted byℓ, and the smallest element yet to come at the right, denoted bys. When
we read an elementx, three cases can occur:
• x > s: In this casex s forms a21-pattern and thusx is an upper element.
• x < ℓ: In this caseℓ x forms a21-pattern and thusx is a lower element
• x ≤ s andx ≥ ℓ (which implies thatx = s ands > ℓ): In this casex does not occur in a21-pattern

and is thus a fluid element.
The existence of fluid elements in a pattern will be the sourceof some difficulty in solving theAv(321)-

PPM problem, and will be addressed in the next section. For the remainder of this section we consider
a rigid patternπ of sizek and a321-avoiding textτ of sizen. Since an embedding preserves relative
locations of points, the image of any rigid element must be rigid. More precisely, we have the following:

Observation 2.1. Letπ be a rigid pattern andτ be an arbitrary321-avoiding permutation. If there exists
an embedding ofπ into τ , then it must map upper (resp., lower) elements ofπ to upper (resp., lower)
elements ofτ and the fluid elements ofτ will never occur in an embedding.

In order to look for such embeddings we must widen our search space. A mapf : π → τ is called
a rigid mappingif f maps upper (resp., lower) elements ofπ to upper (resp., lower) elements ofτ . As
noted above, becauseπ is rigid, every embedding ofπ into τ is a rigid mapping, but the converse is far
from true since, among other reasons, rigid mappings need not be injective.

Given two points,x andy, in Uπ, we sayx ≤ y if y lies above and to the right ofx. This is a linear
order onUπ, and we have similar linear orders (all denoted≤) onLπ, Uτ andLτ . This makes the set of
all rigid mappings ofπ into τ into a partially ordered set using point-wise comparison; that is, given rigid
mappingsf, g : π → τ , we writef ≤ g if f(x) ≤ g(x) for all elementsx of π. In fact, it is easy to see
that this partially ordered set is a distributive lattice; given two rigid mappingsf, g : π → τ their meet
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andjoin can be defined, respectively, by

(f ∧ g)(x) = min{f(x), g(x)},

(f ∨ g)(x) = max{f(x), g(x)}

for all elementsx of π.
It is notable that these observations also hold for embeddings. That is, the set of embeddings fromπ

into τ is a sublattice of the lattice of rigid mappings:

Theorem 2.2. bruner [[3, Theorem 2]] Given a rigid patternπ and a321-avoiding textτ , the set of
embeddings ofπ into τ forms a distributive lattice under the operations of meet and join defined above.

It follows from Theorem 2.2 that ifπ is contained inτ then there is aminimum embeddingof π into τ
which we denote byemin.

Given an elementx of some321-avoiding permutationσ we definexU to be the rightmost element of
Uσ that is to the left ofx. Of course, we have corresponding notations such asxL, xU and so on. In all
cases, if no such element exists we get⊥ as usual. We also define thetypeof x, T (x) to beU if x ∈ Uσ

andL if x ∈ Lσ. The following result forms the core of our algorithm for determining whether there is
an embedding ofπ into τ , at least for the case whereπ is rigid. It will allow us to turn an arbitrary rigid
mapping into an embedding, if possible.

Proposition 2.3. Suppose thate : π → τ is an embedding,f : π → τ is a rigid mapping, and, for all
x ∈ π, f(x) ≤ e(x). Then, for allx ∈ π:

max{f(x )T (x), f(x )T (x)} ≤ e(x),

where we definemax{y,⊥} = y andmax{⊥} = 0.

Proof: We first establish thatf(x )T (x) ≤ e(x). Sincex lies strictly to the right ofx (ande is an
embedding),e(x) lies strictly to the right ofe(x ) and is of the same type asx, so, it does not lie to the left
of e(x )T (x). Consequently,e(x )T (x) ≤ e(x). Butf(x ) ≤ e(x ) and sof(x )T (x) ≤ e(x )T (x) ≤ e(x).
The arguments for the other case are exactly the same.

Applying the proposition above in the case wheref = e, we see that for any embedding,e, from a rigid
π into τ , and anyx ∈ π:

max{e(x )T (x), e(x )T (x)} ≤ e(x).

Now suppose thatf is any rigid mapping fromπ to τ . We say thatx is a problemif it violates the above
condition, i.e.,x is a problem if

f(x) < max{f(x )T (x), f(x )T (x)}. (1)

Intuitively , x is a problem iff(x) is too low compared withf(x ) or too far left compared withf(x ).
We letP (f) be the set of problems forf , for which the following holds:

Corollary 2.4. Letπ be a rigid permutation andτ a 321-avoiding permutation. A rigid mappingf is an
embedding ofπ into τ if and only if the set of problemsP (f) is empty.
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Proof: If f is an embedding, it follows from Proposition 2.3 that no elementx ∈ π fulfills condition (1).
ThusP (f) is empty.

For the other direction, assume thatf is not an embedding. From Lemma 1.3 we know that there exists
anx ∈ π such thatf(x) is below or equal tof(x ) or such thatf(x) is left of or equal tof(x ). First, if
f(x) is below or equal tof(x ) this implies thatf(x) is strictly belowf(x )T (x) and hencex ∈ P (f).
Second, iff(x) is left of or equal tof(x ), we have thatf(x) is strictly left off(x )T (x). Now note that
for f(x), f(y) ∈ τ of the same type,f(x) is left of f(y) if and only if f(x) is belowf(y). Moreover
we know thatf preserves types and thusf(x) andf(x )T (x) have the same type. We conclude that
f(x) < f(x )T (x) and thusx ∈ P (f).

We now describe an algorithm, displayed as Algorithm 1. Given as input a rigid permutationπ and a
321-avoiding permutationτ , it returns the minimum embeddingemin of π into τ when it exists, and fails
otherwise. The algorithm constructs and updates a rigid mappingf , ensuring thatf ≤ emin at all times
(if an embedding exists). Letf0 be the map that sends all the elements ofUπ to the least element ofUτ

and all elements ofLπ to the least element ofLτ .

Algorithm 1 Find a minimum embedding ofπ into τ , or demonstrate that no embeddings exist.
Initialise: f ← f0.
Compute:P (f).
while f is defined everywhere, andP (f) is non-emptydo

Choosex ∈ P (f).
Update:f(x)← max{f(x )T (x), f(x )T (x)}

Recompute:P (f).
end while
Return: f , which, if everywhere defined, equalsemin.

The correctness of this algorithm is easy to establish. Within the while loop, iff is everywhere defined,
P (f) is non-empty, andx is chosen for the update step, then the updated version off is strictly greater
than the original atx, and has the same value elsewhere. Since the set of rigid mapsis finite, the loop
can be executed a bounded number of times, and the algorithm halts. In the case whereemin exists, we
certainly havef0 ≤ emin. So, by Proposition 2.3, it is always the case thatf ≤ emin. Therefore, when
the loop terminates, the algorithm returns an embedding that is less than or equal toemin, and hence must
equalemin. Shouldemin not exist, then termination can only occur becausef is not everywhere defined,
and so the algorithm fails as required in this case.

We can further combine the correctness analysis with a run-time analysis to obtain the following.

Proposition 2.5. Given a rigid321-avoiding permutationπ of sizek and a321-avoiding permutationτ of
sizen there is an algorithm which determines an embedding ofπ into τ if one exists, and fails otherwise,
whose run-time isO(kn).

Proof: The algorithm in question is Algorithm 1, and it remains to show that we can achieve the bound
claimed for the run-time. As noted, each execution of the loop increases the value off(x) for at least one
x (in the linear ordering,≤, of eitherUτ or Lτ ). Since there are at mostn possible values anyf(x) can
take, and onlyk distinctx, the loop certainly executes not more thankn times. So, if we can establish
that the computation in the loop can be carried out in constant time, the claim follows.
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In an initialisation phase (not part of the algorithm proper) we can certainly compute tables of all the
valuesxa

b for x in bothπ andτ , a ∈ { , , , } andb either absent or equal to one ofL or U . Forπ this
can be done inO(k) time, and forτ in O(n) time, so this initialisation can be absorbed into the claimed
run-time. This ensures that the “Update” operations in the loop can be carried out in constant time. We
can maintainP (f) as a queue, and separately maintain an array of boolean values that indicate whether or
notx ∈ P (f). To start the loop, we dequeue somex. The update operation ensures thatx is no longer a
problem, so we can set its value in the array tofalse. Moreover, the update operation only changes the
value off(x), and increases it. So it cannot “solve” any existing problem(other than that ofx) and the
only other way that it could change the problem set would be iff(x) moved to the right off(x ) or above
f(x ). Therefore, in the recompute phase we only need to check those two possibilities, and enqueuex
and/orx (setting their boolean values in the array totrue) if necessary. By making reference to the
array, we can ensure that we never have duplicate elements inthe queue – so every iteration of the loop
really does result in a proper update.

Let us end this section by providing a simple example illustrating how the presented algorithm works.

Example 2.6. Let us consider the text permutationτ = 3 1 2 4 5 9 6 7 10 8 11 13 12 represented in Figure 1
and the patternπ = 2 1 4 5 3. Note thatπ is indeed rigid, whereasτ is not; we can however ignore the
fluid elements when looking for an embedding ofπ into τ as explained above. The upper elements inπ
are2, 4 and5 and the lower elements are1 and3. We now describe a possible run of the algorithm (the
order in which problems are resolved is not determined):

1. We start with the initial rigid mappingf = f0 defined as follows:f0(1) = f0(3) = 1 andf0(2) =
f0(4) = f0(5) = 3. By checking the condition in equation (1) we see that all elements except1
and2 are problems:P (f0) = P0 = {3, 4, 5}.

2. We resolve the problemx = 4 for which we havemax{f(x )U , f(x )U} = 9 and updatef such
thatf(4) = 9. In order to recomputeP (f), we only need to checkx = x = 5. We cannot possibly
have resolved the problem5 at the same time, so it remains inP (f) and we haveP (f) = {3, 5}.

3. We resolve the problemx = 5 for which we havemax{f(x )U , f(x )U} = 10 and updatef such
thatf(5) = 10. In order to recomputeP (f), we only need to checkx = 3 (5 is not defined). We
cannot possibly have resolved the problem3 at the same time, so it remains inP (f) and we have
P (f) = {3}.

4. We resolve the last problemx = 3 for which we havemax{f(x )L, f(x )L} = 8 and updatef
such thatf(3) = 8. In order to recomputeP (f), we only need to checkx = 4 (3 is not defined).
The element4 is no longer a problem since it is large enough and thusP (f) is empty.

5. The algorithm terminates successfully sinceP (f) is empty and has found the minimal embedding
e = emin of π into τ defined as follows:e(2) = 3, e(1) = 1, e(4) = 9, e(5) = 10 ande(3) = 8.

3 Fluid Elements and the O(kn) Algorithm for 321-Avoiding Per-
mutations

In this section we aim to complete the proof of Theorem 1.1 andto do so we must face the issue of fluid
elements in the patternπ. Since a fluid element participates in no21, each other element ofπ is either



8 Michael Albert, Marie-Louise Lackner, Martin Lackner, andVincent Vatter

below and left of it, or above and right of it. This is represented most easily using another notational
convention. Suppose thatσ andθ are two permutations of sizem andn respectively. Thenσ ⊕ θ is the
permutation whose points are:

σ ∪ {(i+m, θ(i) +m) : i ∈ [n]}.

Informally, to formσ ⊕ θ we just placeθ above and to the right ofσ. Clearly⊕ is associative, though of
course not commutative.

For any321-avoiding permutationπ there is a unique decomposition:

π = π1 ⊕ π2 ⊕ · · · ⊕ πt

where, for1 ≤ i ≤ t, πi is either rigid or a singleton, and it is never the case that both πi andπi+1

are rigid. The singleton elements of this representation correspond precisely to the fluid elements ofπ.
For an example, consider again Figure 1 where the black squares correspond to the blocksπi of this
representation.

Givenπ of sizek we can easily compute this representation inO(k) time, simply by finding the fluid
elements ofπ (which are those elements that are both left-to-right maxima and right-to-left minima).
Henceforth, we assume that this representation is given.

In the algorithm to determine whetherπ embeds inτ we will construct, for each1 ≤ i ≤ t at most two
embeddings ofπ1 ⊕ · · · ⊕ πi into τ in such a way that, if any embedding ofπ into τ exists, then at least
one of the two partial embeddings can be extended to a full embedding.

So we first consider the following question: given an embedding, ei, of π1 ⊕ · · · ⊕ πi into τ that
extends to an (unknown) embedding,e, of π into τ , how can we construct a pair of embeddings of
π1 ⊕ · · · ⊕ πi ⊕ πi+1 into τ , at least one of which extends to an embedding ofπ into τ?

We distinguish three cases forπi+1. For this purpose, letTi denote the set of elements that lie above
and to the right of the image ofei. Then, the image ofe restricted to the elements corresponding to
πi+1 is contained inTi. Let us first consider the case whereπi+1 is rigid. Then the image ofe on the
elements corresponding toπi+1 must be greater than or equal to (point by point), the image ofπi+1 under
its minimum embedding intoTi. Thus, if we choose the minimal embedding ofπi+1 intoTi, the resulting
embeddingei+1 extends to an embedding ofπ into τ . ThoughTi is, strictly speaking, not a permutation
all of its associated operators are the same as those ofτ (except some are undefined, e.g., the leftmost
element ofTi has no left neighbour inTi but may well have one inτ ). So, in this case we can use
Algorithm 1 in order to find the minimal embedding ofπi+1 into Ti and hereby obtain a single extension
of ei with the required property.

A similarly easy case is whereπi+1 is a singleton, i.e., a fluid element andTi begins with its least
element (which is a fluid element as well). Then nothing can belost by mappingπi+1 to that element.

The only remaining case is whereπi+1 is a singleton and the first element ofTi is not its minimum.
Since every element ofTi lies above its first element, or above and to the right of its minimum, we can
extendei in two ways – one sendingπi+1 to the leftmost element ofTi (which is an upper element) and
one to its minimum (which is a lower element), and one of thesemust be extensible.

Now it seems that we might have a problem – given two partial embeddings ofπ1 ⊕ · · · ⊕ πi might
they not extend to three or four candidate embeddings ofπ1 ⊕ · · · ⊕ πi ⊕ πi+1? Indeed this is the case,
but only if πi+1 is a singleton. If it has four possible images, two belong toUτ and two toLτ . Since all
further elements ofπ lie above and to the right of this fluid element, we only need toretain the embeddings
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where its image is the lesser of the two in each of these sets. Likewise, if it has three possible images
(one of which might be fluid), at least one of them can be ignored. Another way to say this is that because
π1 ⊕ · · · ⊕ πi ⊕ πi+1 ends with its maximum element, so do its images under the embedding. Among
three or more elements of a321-avoiding permutation there are at least one and at most two elements that
do not participate as the2 in a 12 pattern. We need retain only those embeddings whose maximumis not
such a2, as otherwise they could be replaced by an embedding with a smaller maximum in forming a full
extension.

Since the sum of the size of the rigid permutations in the representation ofπ is at most the total size
of π, the parts of the algorithm where we construct minimal rigidembeddings still require at mostO(kn)
time in total. Dealing with singletons (fluid elements) clearly requires only constant time since we can
find the next (to the right) fluid/upper/lower element inτ in constant time. Also, filtering out non-optimal
extensions can be done in constant time since only the maximal elements of these extensions have to
be compared and at most four extensions exist at the same time. We conclude that the total cost of the
algorithm is stillO(kn). If τ containsπ the algorithm terminates successfully and returns one or possibly
two embeddings.

What if no embedding exists? Then, following the plan above as if it did (beginning from an empty
map, i.e., the casei = 0) we must at some point reach a failing case of Algorithm 1, or possibly encounter
an emptyTi. In either case, we fail since we have demonstrated that no embedding can be possible.

This completes the proof of Theorem 1.1.
Again, let us provide an example demonstrating how the algorithm for arbitrary321-avoiding patterns

works.

Example 3.1. As in Example 2.6, we consider the text permutationτ = 3 1 2 4 5 9 6 7 10 8 11 13 12 rep-
resented in Figure 1. The pattern isπ = 2 1 3 4 5 7 6 8. The upper elements inπ are2 and7, the lower
ones are1 and6, and the fluid elements are3, 4, 5 and8. The algorithm proceeds block by block in the
decomposition ofπ.

1. It starts with the rigid block consisting of the elements2 and1. Algorithm 1 takes care of this block
and, as in Example 2.6,e(2) = 3 ande(1) = 1.

2. The next blockπ2 is the singleton element3. T1, the set of elements that lie above and to the right
of the image ofe starts with a fluid element and thus we can sete(3) = 4.

3. We have the same situation forπ3 which consists of the singleton element4 and sete(4) = 5.

4. The blockπ4 is again a singleton element. However,T3 does not start with its minimal element and
thus two choices are possible fore(5): we can either send5 to the leftmost upper element inT3 or
to the leftmost lower element. We store these two possibilities: eU (5) = 9 andeL(5) = 6.

5. The next blockπ5 is rigid and we thus apply Algorithm 1 which is not detailed here. For the choice
eU (5) = 9 it leads toeU (7) = 13 andeU (6) = 12 whereas foreL(5) = 6 it leads toeL(7) = 10
andeL(6) = 8. These two partial embeddings are rigid and thus comparable: eL ≤ eU and we can
disregardeU . This is a good choice, sinceeU cannot be extended to an embedding ofπ into τ since
the last element8 cannot be mapped anywhere.

6. It remains to determinee(8). SinceT5 starts with its minimal element we can choose this one and
sete(8) = 11.
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NENW

SW SE

centre

Fig. 2: The decomposition of a skew-merged permutation into its centre and four corners.

7. The algorithm terminates successfully and returns an embedding ofπ into τ : e(2) = 3, e(1) = 1,
e(3) = 4, e(4) = 5, e(5) = 6, e(7) = 10, e(6) = 8 ande(8) = 11.

4 Skew-Merged Permutations
The permutations avoiding321 can be partitioned into two monotone increasing sequences.Of course the
permutations avoiding123 can be similarly partitioned (into decreasing sequences) and the results of the
previous section apply to them as well. However, the class ofskew-merged permutations, those that can
be partitioned into an increasing and a decreasing sequence, requires further analysis, though as we shall
see the analogue of Theorem 1.1 is also true in this context.

Towards this goal, we first identify a set ofrigid elements of a skew-merged permutation. In Figure 2
these are the elements lying in the corner regions. Specifically we say that an element of a skew-merged
permutation is of type:

NE if it participates as a3 in a213;
NW if it participates as a3 in a312;
SW if it participates as a1 in a132;
SE if it participates as a1 in a231,

and we call any other element of a skew-merged permutationcentral. We first verify that the illustration
of a skew-merged permutation shown in Figure 2 is correct. This is a result due to Atkinson [4], and so
we only sketch part of the proof to give its flavour.

Proposition 4.1. The elements of a skew-merged permutation decompose by typeas shown in Figure 2.
Moreover, the central elements form a monotone subsequence.

Proof: Recall that another characterisation of skew-merged permutations is the following: they are those
permutations that do not contain either3412 or 2143.

Let a skew-merged permutationπ be given, and suppose thatπ = I ∪ D is a partition ofπ into a
monotone increasing and monotone decreasing sequence. Consider first elements of type NE (all other
types can be handled by parallel arguments due to symmetry).Since any such participates as a3 in a213,
it must belong toI (otherwise, the elements participating as the2 and1 would both belong toI which is
of course impossible). So the elements of type NE form a monotone increasing sequence.

Suppose thatC is of type NE, withBAC an occurrence of213 anda is of type SW withacb an
occurrence of132. Thena ∈ I for similar reasons to the preceding ones. IfC precededa (and hence was
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also smaller than it) then,BAcb would be an occurrence of2143. So, all elements of type SW lie below
and to the left of those of type NE. Now suppose thatz is of type NW, withzxy an occurrence of312. If
C were to precedez we would have various cases: first ifC lay belowy thenBAzy would be2143, if C
lay abovey but belowz thenCzxy would be3412, if C lay abovez andB abovey, thenBCxy would be
3412, but if B lay belowy thenBAzy would be2143. As all these cases lead to contradictions,C must
follow z.

All other cases can be dealt with similarly. Finally, to see that the central elements form a monotone
sequence observe that they must certainly avoid all of132, 213, 231, and312 lest some of them be non-
central. But, only monotone permutations (of either type) avoid these four permutations.

This decomposition can be computed in linear time:

Lemma 4.2. Given a skew-merged permutation of sizen, there is an algorithm that computes its partition
into types inO(n)-time.

Proof: Let θ be an arbitrary skew-merged permutation. Notice that the part of θ to the left of the leftmost
element of type NE or SE avoids231 and213. Such permutations have a characteristic> shape since
any element must not be intermediate in value between two to its right. We are interested in finding the
maximum prefix ofθ which has this characteristic shape, or what amounts to the same thing, the leftmost
element ofθ such that the prefix ending at that element involves231 or 213.

This can be accomplished in linear time: we scanθ from left to right and determine for every position
i whether it is an ascent (θ(i) < θ(i + 1)) or a descent (θ(i) > θ(i + 1)). At any moment we only store
the last encountered ascenta and descentd. The elementθ(i) plays the role of a1 in a 231 pattern, if
θ(i) < θ(a); it plays the role of a3 in a 213, if θ(i) > θ(d). If either of the two conditions apply to
positioni, we have identified the leftmost element of type NE or SE. Thatis, we have found the boundary
line between the centre region and the Eastern region ofθ.

In a similar manner we can find all of the boundary lines: by scanningθ from right to left we find the
boundary between West and centre, by scanning from bottom totop we find the boundary between South
and centre and by scanning from top to bottom we find the boundary between North and centre. We can
thus compute the partition ofθ into types by scanningθ four times.

We will now describe an algorithm for skew-merged patterns and texts and provide the necessary the-
oretic background. This algorithm consists of two main parts: In the first part, the non central elements
of the patternπ are embedded intoτ using a similar approach as for rigid permutations and adapting
Algorithm 1 which will deliver a minimal embedding of the non-central elements. In the second part, we
will extend this minimal embedding to the central elements of π.

In this sense, the non-central elements of a skew-merged permutation correspond to the rigid elements
of a 321-avoiding permutation. Since they are defined by the occurrence of certain patterns and since
embeddings preserve such patterns it is immediately clear that if e : π → τ is an embedding of one
skew-merged permutation into another, thene must preserve the type of all non-central elements.

In order to be able to speak of minimal embeddings in the context of skew-merged permutations, we
need to introduce some new notation. For two non-central elements of the same type we writex ✁ y if x
lies strictly further out from the center thany (x✂ y will mean that eitherx✁ y or x = y). The minimum
with respect to this relation✁ is denoted byouterand the maximum byinner. For two embeddings,e1
ande2 of the non-central elements ofπ into τ that preserve types we can define their meet by

e1 ∧ e2(x) = outer{e1(x), e2(x)}



12 Michael Albert, Marie-Louise Lackner, Martin Lackner, andVincent Vatter

for all non-centralx ∈ π. Then, just as in the321-avoiding case,e1 ∧ e2 is also an embedding of the
non-central elements ofπ into those ofτ :

Lemma 4.3. Letπ be a skew-merged pattern with no central elements andτ be an arbitrary skew-merged
permutation. Then the following holds: Ife1 ande2 are embeddings ofπ intoτ then their meetf := e1∧e2
as defined above is an embedding as well.

Proof: Let x 6= y be two elements inπ and let us assume thatx lies to the left ofy in π. We need to
show thatf(x) lies to the left off(y) in τ and that the horizontal relation betweenx andy is preserved
as well. The key argument is that taking the minimum of the elements in the above sense automatically
translates into taking their actual minimum or maximum (equivalently, the leftmost or rightmost element),
depending on the type of element. In order to give a formal proof, we distinguish between three cases.

• If x andy are of the same type. We detail the case of SW elements here, asthe other ones are
analogous (one simply needs to replace “minimum” by “maximum” and/or “left of” by “right
of” depending on the type). In this case, taking the minimum of the elements in the sense de-
fined earlier is nothing else than taking their actual minimum, which again is the same as tak-
ing the left-most element. Since we have thatf(x) ≤ e1(x) < e1(y) (andf(x) is to the left
of e1(y)) as well asf(x) ≤ e2(x) < e2(y) (and f(x) is to the left ofe2(y)), it follows that
f(x) < outer(e1(y), e2(y)) = f(y) (andf(x) is to the left off(y)).

• If x andy lie in opposite corners of the diagram. In this case the statement follows immediately
from the fact that an embedding preserves types. Indeed, allSW elements are to the left of and
smaller than NE ones and all NW elements are to the left of and larger than SE ones. Thus both the
vertical as well as the horizontal relation betweenx andy is preserved.

• The remaining cases, wherex andy are not of the same type, but are both elements in the south,
north, east or west. We detail the case of two elements in the north, i.e.,x is a NW element andy a
NE one. The other cases can be dealt with analogously (by interchanging minimum with maximum
or vertical with horizontal positions). Without loss of generality, we further assume thatx < y.
First, it is clear thatf(x) lies strictly to the left off(y) since types are preserved. Second, regarding
the horizontal relation betweenx andy, let us note that taking the element that is furthest away
from the centre translates into taking the maximum. Thus, wehave thatf(y) ≥ e1(y) > e1(x) as
well asf(y) ≥ e2(y) > e2(x) which implies thatf(y) > f(x).

The consideration of these cases completes the proof.

Observe the following: if eithere1 or e2 was the restriction of an actual embedding,e, of π into τ to
the non-central elements then we can extend the mappinge1 ∧ e2 to central elements usinge there, and
thereby obtain an embedding. So, among all embeddings ofπ into τ there is one whose effect on the
non-central elements is the minimum of all the embeddings ofthe non-central elements ofπ into those of
τ . We will see later on how such an extension to the central elements ofπ can be found.

This minimum embedding of the non-central elements can be found by modifying the definition of the
problem set and the update rule of Algorithm 1. The only thingwe need to do in order to reflect the new
notion of minimum/maximum in this definition, is to redefine the notation introduced in the Introduction.
Given a non-central elementx in a skew-merged permutationπ, we denote by (wherever possible):
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xoh the next non-central element further out from the center in horizontal direction,
xih the next non-central element towards the center (inwards) in horizontal direction,
xiv the next non-central element towards the center (inwards) in vertical direction, and
xov the next non-central element further out from the center in vertical direction.

For example, in the skew-merged patternπ depicted in Figure 3 andx = 7, we have:xoh = 1, xih = ⊥,
xiv = 6, andxov = ⊥.

We also define the type of a non-central elementx in a skew-merged permutation,T (x), to be the
corner in whichx lies, i.e.,T (x) can be NW, SW, NE or SE. Moreover, we extend the notation introduced
above as follows: Fora ∈ {oh, ih, iv, ov} andb ∈ {NE,SE, SW,NW}, we definexa

b to be the next
non-central element inπ according to directiona that is of typeb. In other words,xa

b is the first element
in the sequence(xa, (xa)a, . . . ) of typeb. If there is no such element, i.e., no element in(xa, (xa)a, . . . )
is of typeb, then we setxa

b = ⊥. For example, in the skew-merged patternπ depicted in Figure 3 and
x = 5, we havexov

NW = 7, xov
NE = 6, whereasxoh

SE = ⊥ andxiv
SE = ⊥.

With this new notation, one can see that an analogue of Proposition 2.3 holds for skew-merged permu-
tations:

Proposition 4.4. Suppose thate is an embedding of the non-central elements ofπ into τ , f is a mapping
of the non-central elements ofπ into τ that preserves types, and, for all non-centralx ∈ π, f(x) ✂ e(x).
Then, for all non-centralx ∈ π:

inner
{

f(xoh)ihT (x), f(x
ov)ivT (x)

}

✂ e(x).

The proof of this Proposition is analogous to the one of Proposition 2.3.
We thus say that a non-central elementx of a skew-merged permutation is aproblemif:

f(x)✁ inner
{

f(xoh)ihT (x), f(x
ov)ivT (x)

}

, (2)

for a mappingf of the non-central elements ofπ into τ that preserves types. Moreover, when we re-
solve the problemx by updating the value off(x) this is done analogously to the case of321-avoiding

permutations and we setf(x) = inner
{

f(xoh)ihT (x), f(x
ov)ivT (x)

}

.

This finishes the description of the necessary modificationsof Algorithm 1. As for Algorithm 1 we
assume thatxa andxa

b for a ∈ {oh, ih, iv, ov} andb ∈ {NE,SE, SW,NW} is precomputed and thus
can be found in constant time. Given the decomposition ofπ andτ into types, these precomputations can
be done in linear time. Both the steps required for the updateof f and the recomputation of the problem
setP (f) can be carried out in constant time.

To complete the proof of Theorem 1.2 we must show that, havingfound a minimum embedding of
the non-central elements ofπ to those ofτ , the existence of a full embedding can also be determined
sufficiently quickly. We need to determine whether or not thecentral part ofπ can be embedded into the
remainder ofτ , i.e., the set of elements inτ which consists of central elements and all adjacent elements
that have not yet been used in the minimum embedding. The central part ofπ is a monotone pattern of a
certain size at mostk, and the remaining part ofτ is a skew-merged permutation of size at mostn (whose
endpoints we know).

In general, finding a longest increasing (or decreasing) subsequence of sizek in a permutation of size
n can be done in timeO(n log log k) [7]. Thus, checking whether the central part can be embeddedinto
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π = 1 7 3 4 2 5 6 τ = 10 1 9 3 5 4 6 2 7 8

Fig. 3: Decomposition of the skew-merged permutationsπ andτ into their centres and four corners.

the remaining part ofτ can be done within theO(nk) runtime bound of our algorithm. In the special case
of skew-merged permutations, finding a longest increasing (resp., decreasing) subsequence can even be
done inO(n) time. To be more precise,O(n) time is only required for obtaining the partition into five
types as represented in Figure 2 (which is already availablein our case); the remaining steps require only
constant time.

Indeed, for longest increasing subsequences the followingobservations can be made (the case of de-
creasing subsequences can be treated analogously): The elements of type SW and NE will always con-
tribute to a longest increasing subsequence. Moreover, such a subsequence also contains as many elements
as possible from the centre, i.e., if the center is increasing then all elements contribute to a longest increas-
ing subsequence and if the center is decreasing we can arbitrarily pick one centre element. Note that it is
never advantageous to include elements of type NW or SE. Thiscan be seen as follows: At most one NW
or SE element can be part of an increasing subsequence. Thus,if the centre is non-empty, it is certainly
not advantageous to include a NW or SE element. Let us assume that the centre is empty. An element of
type NW occurs as a3 in a 312 pattern. Among the elements playing the role of the1 and the2, at least
one element (and possibly both of them) is of type SW or NE. Thus, including an element of type NW
would force us to exclude one or two elements of type SW or NE. In other words, we cannot increase
the size of an increasing subsequence by adding an element oftype NW. A similar argument holds for
elements of type SE. We conclude that for the size of the longest increasing subsequence we only have to
add the number of elements of type SW and NE as well as the size of the longest increasing subsequence
in the central part. Let us end this section by providing a simple example illustrating how this modified
version of Algorithm 1 works.

Example 4.5. Let us consider the text permutationτ = 10 1 9 3 5 4 6 2 7 8and the patternπ = 1 7 3 4 2 5 6.
Both permutations and their decomposition into types are shown in Figure 3. We start by describing a
possible run of the algorithm (the order in which problems are resolved is not determined) finding the
minimal embedding of the non-central elements ofπ into τ :

1. We start with the initial mappingf = f0 that sends all non-central elements of one type inπ to the
minimal element of this type inτ (i.e., the element that is furthest out from the center). It is defined
as follows:f(1) = 1, f(7) = 10, f(5) = f(6) = 8 andf(2) = 2. We compute the problem set
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using the condition in equation (2) and obtainP (f) = {5, 7}.

2. We resolve the problemx = 5 for which we haveinner
{

f(xoh)ihNE , f(x
ov)ivNE

}

= 7 and update
f such thatf(5) = 7. In order to recomputeP (f), we only need to checkxih = 2 sincexiv is
not defined. The choicef(2) = 2 does not create a problem with this new choice forf(5). We
cannot possibly have resolved the problem7 at the same time, so it remains inP (f) and we have
P (f) = {7}.

3. We resolve the problemx = 7 for which we haveinner
{

f(xoh)ihNW , f(xov)ivNW

}

= 9 and update
f such thatf(7) = 9. In order to recomputeP (f), we only need to checkxiv = 6 sincexih is not
defined. The choicef(6) = 8 does not create a problem with this new choice forf(7).

4. The algorithm has found the minimal embeddinge = emin of the non-central elements ofπ into τ
defined as follows:f(1) = 1, f(7) = 9, f(2) = 2, f(5) = 7 andf(6) = 8.

5. We need to map the central elements3 and4 of π into the remaining part ofτ (marked by a dotted
line in Figure 3). Since the central elements ofπ consist of an increasing subsequence of size two,
we can choose any such subsequence within the dotted area inτ . We decide to setf(3) = 3 and
f(4) = 5 which finally gives an embedding ofπ into τ .

5 Concluding Remarks
We conclude by mentioning some open problems related to thiswork. We have seen in Theorem 1.1
thatAv(321)-PPM can be solved inO(kn) time. Guillemot and Vialette showed that the more general
Av(321)-PATTERN PPM problem can be solved inO(kn4

√

k+12) time. It is an open problem whether
Av(321)-PATTERN PPM can be solved in polynomial time. Note that if the patternavoids132, 231,
213 or 312 then it is automatically separable and thus theC-PPM problem and theC-PATTERN PPM
problem for all four classesAv(132), Av(231), Av(213) or Av(312) can be solved in polynomial time.
Consequently theAv(321)-PATTERN PPM—which is equivalent to theAv(123)-PATTERN PPM—is the
only open case forAv(β)-PATTERN PPM whereβ has size3.

In caseAv(321)-PATTERN PPM turns out to beNP-complete,Av(β)-PATTERN PPM will also be
NP-complete ifβ is any permutation of size four other than2143, 3142, 2413, or3412. Interestingly, this
list contains exactly those patterns that define the classesof skew-merged and of separable permutations.
Moreover,NP-completeness ofAv(321)-PATTERNPPM would imply thatAv(β)-PATTERNPPM isNP-
complete forβ of size five or more, since by Erdős–Szekeres Theorem [8] every permutation of size at
least five contains123 or 321.

Looking at the big picture, Theorems 1.1 and 1.2 show thatC-PPM can be solved in polynomial time for
Av(321) andAv(2143, 3412), respectively. It might be thatC-PPM is always polynomial-time solvable
for a fixed, proper classC. It would be of considerable interest to either establish this statement or to
prove a dichotomy theorem that distinguishes permutation classes for whichC-PPM is polynomial-time
solvable and those that yield hardC-PPM instances. The same question can be asked forC-PATTERN

PPM, although it seems rather unlikely that this problem is polynomial time solvable for every fixed,
proper classC.
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Note added in proof. After a draft of this paper was posted on the arXiv, Jelı́nek and Kynčl [12] estab-
lished that theAv(β)-PATTERN PPM problem is indeedNP-complete for every

β /∈ {1, 12, 21, 132, 213, 231, 312}.

They further showed that theAv(4321)-PPM problem isNP-complete, even when the pattern is restricted
to be321-avoiding.
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