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The FERMUTATION PATTERN MATCHING problem, asking whether a pattern permutatiois contained in a text
permutationr, is known to beNP-complete. We present two polynomial time algorithms fa@al cases. The first
is applicable if bothr andr are321-avoiding while the second is applicable if both permutatiare skew-merged.
Both algorithms have a runtime 6f(kn), wherek is the length ofr andn the length ofr.
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1 Introduction

In this paper, a permutation is a bijective function frdm to itself, wheren is a positive integer and
[n] = {1,2,...,n}. Therefore, a permutation, : [n] — [n] is the set of ordered pairg, 7(7)). We
occasionally write specific permutations in the usual ametiotation, e.g321 represents the permutation
of [3] equal to{(1,3),(2,2),(3,1)}. Thesizeof r is just the cardinality of this set, and we denote the
elements, also called points, of a permutation by variahleh as: andy. We adopt the usual conventions
with respect to order of such points, i.&.,7(¢)) lies to the left of(j, 7(j)) if « < j and abovék, 7 (k))
if 7(¢) > w(k), with corresponding definitions for ‘to the right of’ and foe/’. Given an element in a
permutationr, we define (wherever possible):

z* the element immediately to its left,

2> the element immediately to its right,

2*  the elementimmediately above it, and

2" the element immediately below it.
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We use the symbal to represent ‘undefined’. Any operator appliedlt@lso yieldsL. For example, in
the permutatio31254 and forx = 3we havex* = 1,2 =1, 2* = 4 andz” = 2.

Let 7 andr be two permutations. An injective functiofi, from 7 into 7 is anembeddindf, for all
elementse andy of 7, the elementg (z) and f(y) of 7 are in the same relative orderasndy (e.g., ifz
lies below and to the right af, thenf (z) also lies below and to the right ¢fy)). If there is an embedding
from 7 into 7 then we say that containsr. If not, then we say that avoidsr. The following problem,
analogous to problems related to detecting occurrencesattérps in words, is central with respect to
these concepts:

PERMUTATION PATTERN MATCHING (PPM)

Input: A text permutatiorr of sizen and a pattermr of sizek.
Question: Doesr containm?

Bose, Buss, and Lubiw [5] showed in 1998 that the PPM probsaP-completé) .

The recent work of Guillemot and Marx [9] shows that the PPMbbem can be solved in time
20(K*logk)y j e, linear-time inn whenk is viewed as a constant. In particular, this implies that the
PPM problem idixed-parameter tractable (fpgyith respect to the size of the pattéenWork prior to this
breakthrough result achieved runtimegfi!+2#/3 - log n) [2] and O (n0-47k+e(k)) [1]. Usingrun(7) as
parameter, i.e., the number of alternating runs,druner and Lackner [6] present an fpt algorithm with
runtimeO(1.79™"(7) . kn).

A permutation clas<C, is a set of permutations with the property that i€ C andr containsr then
7w € C. In other words( is closed downwards with respect to the partial orderingashputations given
by the relation “is contained in”. A permutation class isgeoif it does not contain every permutation.
Permutation classes are frequently defined in terms of anciel conditions, namely, for any sBtof
permutations, the setv(B) consisting of those permutations which avoid every eleré® is a per-
mutation class (and it is always propefdfis non-empty). Conversely, every permutation class islequa
the class of permutations avoiding its complement, or everdang the minimal elements (with respect
to the partial ordering mentioned above) of its complemé&iat: an overview of results on permutation
classes, we refer to the corresponding chapter inHdnedbook of Enumerative Combinator{d$].

This leads to two natural ways in which one might restrict &M problem. One is to impose ad-
ditional structure on the pattern, most naturally, to in#iat the pattern belongs to a particular (proper)
permutation class. One example which has been studied isldbe ofseparablepermutations, which
are those avoiding both142 and2413. If the pattern is separable, PPM can be solved in polynomial
time [2, 5, 11, 13, 16]. The fastest algorithm for this casbyidbarra [11] with a runtime 0O (kn?).
Formally, we define this class of problems as follows:

C-PATTERN PERMUTATION PATTERN MATCHING (C-PATTERN PP M)
Input: A text permutationr of sizen and a pattermr of sizek, wherer belongs to
a fixed proper permutation clas
Question: Doesr containm?

A second and more restrictive specialisation of the PPM Iprabs to insist that both the pattern and
text belong to a (proper) permutation class. This is theioersf the problem that we study.

() Note that because both the pattern and text are regardepwstime size of the input is + k. Were we to regard the size of the
pattern as fixed, then the triviéd ((7.) - k) algorithm would be polynomial time.
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C PERMUTATION PATTERN MATCHING (C-PPM)
Input: A text permutationr of sizen and a pattermr of sizek, both belonging to a
fixed proper permutation clags
Question: Doesr containm?

Clearly, for a fixedC, polynomial time algorithms fo€-PATTERN PPM apply toC-PPM as well.
Consequently, the separable case, e:(3142,2413)-PPM, can be solved i®(kn*) time [11]. Note
that if the pattern avoid$32, 231, 213 or 312 then it is automatically separable and thus€heATTERN
PPM problem for all four classesv(132), Av(231), Av(213) or Av(312) can be solved in polynomial
time. Most relevant to our work is a result by Guillemot andlette [10] that establishes &r{k2n5)-time
algorithm forAv(321)-PPM. In Sections 2 and 3, we improve their approach to gigddhowing.

Theorem 1.1. Given321-avoiding permutations of sizen and = of sizek, there is anO(kn)-time
algorithm which determines whetheicontainsr.

In Section 4 we show how to adapt this approach to the cladseof-snerged permutations, which are
those permutations whose elements can be partitioned imiocaeasing subsequence and a decreasing
subsequence. Skew-merged permutations can also be @r@edtas those permutations that avoid both
3412 and2143 [14].

Theorem 1.2. Given skew-merged permutationsof sizen and « of sizek, there is anO(kn)-time
algorithm which determines whetheicontainsr.

The following elementary observation will be used repelgted

Lemma 1.3. Letw andr be permutations and : = — 7. Thenf is an embedding aof into 7 if and only
if for every element of r:

e if x4 # L thenf(z) lies strictly to the right off (z*) and

e if 27 #£ | thenf(z) lies strictly abovef (z7).

Proof: Suppose that andy are points ofr and that, without loss of generalitylies strictly to the left
of . Theny occurs in the sequenasg, z*, z*, .. .. So, by inductive use of the first properfi{x) lies
strictly to the right off(y). Similarly, inductive use of the second property estakelsthat the vertical
relationship betweelfi(z) and f (y) is the same as that betweemndy, and the result follows.

The other direction follows directly from the definition ahbeddings given on page 2t is an element
strictly to the left ofz and thusf(z) lies strictly to the right off (z*) for an embedding. In the same
way, z" is an element strictly below and thusf (z) lies strictly abovef (z"). O

2 The Lattice of Rigid Embeddings of 321-Avoiding Permutations

Itis easy to see that the elements of 8ay-avoiding permutatiom can be partitioned into two increasing
subsequences. This partition is in general not unique bamyrsuch partition, one of these subsequences
will contain all those elements which participate as thein a copy of 21—called theupper elements

of 7 and denoted/,— and the other will contain all those elements which pgrtté as thel” in a
copy of 21—called thelower elementsf = and denoted.,. Elements that are neither upper nor lower
elements, i.e., those that are not involved in a cop®lofcan be part of either of the two subsequences.
Let us formalise these definitions: An elementf 7 is an upper element if there is some embedding of
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Fig. 1. The decomposition of th21-avoiding permutationr = 3124596710811 1312 into rigid and fluid
elements.

21 ={(1,2),(2,1)} inton such thatr is the image of1, 2) and a lower element if there is an embedding
of 21 such thatr is the image of2, 1).

Following Albert, Atkinson, Brignall, Ruskuc, Smith, aMidest [3], elements which are either upper
or lower elements of are referred to aggid elements, and is called arigid permutationif all of its
elements are rigid (i.e., it = U, U L;). The remaining elements will be call@édid elements. For an
example of é821-avoiding permutation and its decomposition into rigid #imdl elements, see Figure 1.

Note that it can be determined in linear time which elemergsipper, lower and fluid in a permutation.
For this purpose one simply needs to scan the permutationl&f to right and record the largest element
encountered so far, denoted hyand the smallest element yet to come at the right, denoted When
we read an element, three cases can occur:

e 1 > s:Inthis caser s forms a21-pattern and thus is an upper element.

e x < /: In this cas€ x forms a21-pattern and thus is a lower element

e © < sandz > ¢ (which implies that: = s ands > /): In this caser does not occur in &1-pattern
and is thus a fluid element.

The existence of fluid elements in a pattern will be the soafeeme difficulty in solving the\v(321)-
PPM problem, and will be addressed in the next section. Forémainder of this section we consider
a rigid patternr of size k and a321-avoiding textr of sizen. Since an embedding preserves relative
locations of points, the image of any rigid element must b&riMore precisely, we have the following:

Observation 2.1. Letw be arigid pattern and- be an arbitrary321-avoiding permutation. If there exists
an embedding of into 7, then it must map upper (resp., lower) elements @b upper (resp., lower)
elements of and the fluid elements efwill never occur in an embedding.

In order to look for such embeddings we must widen our segoelces A mapf : = — 7 is called
arigid mappingif f maps upper (resp., lower) elementsrofo upper (resp., lower) elements of As
noted above, becauszeis rigid, every embedding aof into 7 is a rigid mapping, but the converse is far
from true since, among other reasons, rigid mappings neelokniojective.

Given two pointsg andy, in U, we sayzx < y if y lies above and to the right af. This is a linear
order onU,, and we have similar linear orders (all denotedon L., U, andL... This makes the set of
all rigid mappings ofr into 7 into a partially ordered set using point-wise comparishat ts, given rigid
mappingsf,g : © — 7, we write f < gif f(z) < g(z) for all elementse of 7. In fact, it is easy to see
that this partially ordered set is a distributive latticéyem two rigid mappings,g : @ — 7 their meet
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andjoin can be defined, respectively, by

(f N g)(x)
(f vV g)(x)

min{f(z), g(z)},
max{ f(z), g(x)}

for all elements: of .
It is notable that these observations also hold for embegdifihat is, the set of embeddings fram
into 7 is a sublattice of the lattice of rigid mappings:

Theorem 2.2. bruner [[3, Theorem 2]] Given a rigid patterm and a321-avoiding textr, the set of
embeddings of into 7 forms a distributive lattice under the operations of meet gin defined above.

It follows from Theorem 2.2 that ifr is contained in- then there is aninimum embeddingf 7 into 7
which we denote by,,;,.

Given an element of some321-avoiding permutatiom we definexy; to be the rightmost element of
U, that is to the left ofr. Of course, we have corresponding notations suctfas?}, and so on. In all
cases, if no such element exists we geds usual. We also define thgeof =, T'(z) to beU if z € U,
andL if z € L,. The following result forms the core of our algorithm for dehining whether there is
an embedding of into 7, at least for the case whereis rigid. It will allow us to turn an arbitrary rigid
mapping into an embedding, if possible.

Proposition 2.3. Suppose that : # — 7 is an embeddingf : # — 7 is a rigid mapping, and, for all
xz e, f(z) <e(x). Then, forallx € :

max{ f(z*)r (), (")) } < e(2),

where we definmax{y, L} = y andmax{L} = 0.

Proof: We first establish thaf(:v‘)tf(m) < e(z). Sincez lies strictly to the right ofz* (ande is an
embedding)e¢(x) lies strictly to the right ok (z*) and is of the same type asso, it does not lie to the left
Ofe(x‘)}(m). Consequentl;@(z‘)}(m) < e(x). But f(z*) < e(z*) and sof(:c‘):f(m) < e(:c‘)}(m) <e(x).
The arguments for the other case are exactly the same. O

Applying the proposition above in the case whére ¢, we see that for any embedding from a rigid
minto 7, and anyr €
max{e(z*)p (), (@)} < el).

Now suppose thaf is any rigid mapping fromr to 7. We say that: is a problemif it violates the above
condition, i.e.,z is a problem if

f (@) <max{f (2" ey, (@)@} (1)
Intuitively , x is a problem iff (z) is too low compared witty (") or too far left compared wittf ().
We let P(f) be the set of problems fgf, for which the following holds:

Corollary 2.4. Letw be arigid permutation and a 321-avoiding permutation. A rigid mappinfjis an
embedding of into 7 if and only if the set of problemB( f) is empty.
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Proof: If fis an embedding, it follows from Proposition 2.3 that no edetx: €  fulfills condition (1).
ThusP(f) is empty.

For the other direction, assume tlfais not an embedding. From Lemma 1.3 we know that there exists
anx € « such thatf(z) is below or equal tgf («7) or such thatf () is left of or equal tof (z*). First, if
f(z) is below or equal tof (z7) this implies thatf (x) is strictly belowf(z")%,, and hencer € P(f).
Second, iff (x) is left of or equal tof (z*), we have thaf (x) is strictly left off(x‘)’T(z). Now note that
for f(z), f(y) € 7 of the same typef(x) is left of f(y) if and only if f(z) is below f(y). Moreover
we know thatf preserves types and thygz) and f(x‘)’T(z) have the same type. We conclude that
f(x) < f(@*)3,, and thuse € P(f). O

We now describe an algorithm, displayed as Algorithm 1. Gi&e input a rigid permutation and a
321-avoiding permutatiorr, it returns the minimum embeddirg,;, of 7 into 7 when it exists, and fails
otherwise. The algorithm constructs and updates a rigidpingg, ensuring thalff < e,,;, at all times
(if an embedding exists). Lefy be the map that sends all the elementé/pfto the least element df
and all elements of ; to the least element df ..

Algorithm 1 Find a minimum embedding of into 7, or demonstrate that no embeddings exist.
Initialise: f < fo.
Compute:P(f).
while f is defined everywhere, arfé( f) is non-emptydo
Chooser € P(f).
Update: f(z) <= max{f(@*) ., [ (@ )}
RecomputeP(f).
end while
Return: f, which, if everywhere defined, equalg;,.

The correctness of this algorithm is easy to establish. iitre while loop, iff is everywhere defined,
P(f) is non-empty, and: is chosen for the update step, then the updated versigriostrictly greater
than the original atz, and has the same value elsewhere. Since the set of rigid iméipie, the loop
can be executed a bounded number of times, and the algorafim In the case wherg,;, exists, we
certainly havefy < enin. S0, by Proposition 2.3, it is always the case that e.,;,. Therefore, when
the loop terminates, the algorithm returns an embeddirigshess than or equal t@,;,, and hence must
equale,;,. Shoulde,,;, not exist, then termination can only occur becafise not everywhere defined,
and so the algorithm fails as required in this case.

We can further combine the correctness analysis with aimea-analysis to obtain the following.

Proposition 2.5. Given arigid321-avoiding permutation of sizek and a321-avoiding permutatiorr of
sizen there is an algorithm which determines an embedding iofto 7 if one exists, and fails otherwise,
whose run-time i®(kn).

Proof: The algorithm in question is Algorithm 1, and it remains towstthat we can achieve the bound
claimed for the run-time. As noted, each execution of th@ lioareases the value ¢fx) for at least one
z (in the linear orderingg, of eitherU, or L;). Since there are at mostpossible values any(z) can
take, and only distinctz, the loop certainly executes not more thlantimes. So, if we can establish
that the computation in the loop can be carried out in consitae, the claim follows.
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In an initialisation phase (not part of the algorithm prgpee can certainly compute tables of all the
valuesz{ for x in bothm andr, a € {<,»,v,a} andb either absent or equal to one bfor U. Forr this
can be done itD(k) time, and forr in O(n) time, so this initialisation can be absorbed into the claime
run-time. This ensures that the “Update” operations in tlsglcan be carried out in constant time. We
can maintainP( f) as a queue, and separately maintain an array of boolearsvaiigndicate whether or
notx € P(f). To start the loop, we dequeue someThe update operation ensures thas no longer a
problem, so we can set its value in the array &3 se. Moreover, the update operation only changes the
value of f(z), and increases it. So it cannot “solve” any existing prob(ether than that o) and the
only other way that it could change the problem set would ifé:ify moved to the right of (z*) or above
f(z*). Therefore, in the recompute phase we only need to check thaspossibilities, and enqueu®
and/orz* (setting their boolean values in the arrayttoue) if necessary. By making reference to the
array, we can ensure that we never have duplicate elemetits nueue — so every iteration of the loop
really does result in a proper update. O

Let us end this section by providing a simple example illatitg how the presented algorithm works.

Example2.6. Let us consider the text permutation=31245967108 1113 12represented in Figure 1
and the patterm = 2145 3. Note thatr is indeed rigid, whereas is not; we can however ignore the
fluid elements when looking for an embeddingrointo + as explained above. The upper elements in
are2, 4 and5 and the lower elements ateand3. We now describe a possible run of the algorithm (the
order in which problems are resolved is not determined):

1. We start with the initial rigid mapping = f, defined as followsfy(1) = fo(3) = 1 andfy(2) =
fo(4) = fo(5) = 3. By checking the condition in equation (1) we see that alinelets except
and2 are problemsP(fy) = Py = {3,4,5}.

2. We resolve the problem = 4 for which we havemax{ f(z*)};, f(2")},} = 9 and updatef such
thatf(4) = 9. In order to recomput®(f), we only need to check = 2* = 5. We cannot possibly
have resolved the problefnat the same time, so it remainsit( f) and we haveP(f) = {3, 5}.

3. We resolve the problem = 5 for which we havemax{ f(z*)};, f(z")1;} = 10 and updatef such
that f(5) = 10. In order to recomput®( f), we only need to check” = 3 (5* is not defined). We
cannot possibly have resolved the problgmt the same time, so it remains () and we have

P(f) = {3}

4. We resolve the last problem= 3 for which we havemax{f(z*)}, f(z")}} = 8 and updatef
such thatf (3) = 8. In order to recomput@(f), we only need to check* = 4 (3" is not defined).
The element is no longer a problem since it is large enough and #B(g) is empty.

5. The algorithm terminates successfully sidegf) is empty and has found the minimal embedding
e = emin Of 7 into 7 defined as followse(2) = 3, e(1) = 1,e(4) =9, e(5) = 10 ande(3) = 8.

3 Fluid Elements and the O(kn) Algorithm for 321-Avoiding Per-
mutations

In this section we aim to complete the proof of Theorem 1.1tardb so we must face the issue of fluid
elements in the pattern. Since a fluid element participates in 2b, each other element of is either
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below and left of it, or above and right of it. This is repre@shmost easily using another notational
convention. Suppose thatandé are two permutations of siz@ andn respectively. Thea @ 0 is the
permutation whose points are:

o U{(E+m,0()+m) : i€ [n]}.

Informally, to formo @ 6 we just place? above and to the right af. Clearly® is associative, though of
course not commutative.
For any321-avoiding permutation there is a unique decomposition:

T=T1 DD - Dy

where, forl < ¢ < ¢, m; is either rigid or a singleton, and it is never the case thah ke and ;4 1
are rigid. The singleton elements of this representationespond precisely to the fluid elementsqof
For an example, consider again Figure 1 where the black sgu@nrrespond to the blocks of this
representation.

Givenr of sizek we can easily compute this representatio®itk) time, simply by finding the fluid
elements ofr (which are those elements that are both left-to-right maxand right-to-left minima).
Henceforth, we assume that this representation is given.

In the algorithm to determine whetherembeds in- we will construct, for each < i < ¢t at most two
embeddings ofr; @ - - - @ 7; into 7 in such a way that, if any embeddingofinto + exists, then at least
one of the two partial embeddings can be extended to a fulkeldibg.

So we first consider the following question: given an embegldi;, of 71 @& --- @ =; into 7 that
extends to an (unknown) embedding, of = into 7, how can we construct a pair of embeddings of
™ B @ e into 7, at least one of which extends to an embedding ofto 77

We distinguish three cases foy, ;. For this purpose, I€f; denote the set of elements that lie above
and to the right of the image af,. Then, the image of restricted to the elements corresponding to
1 IS contained ifl;. Let us first consider the case wherg ; is rigid. Then the image of on the
elements corresponding g, ; must be greater than or equal to (point by point), the image_of under
its minimum embedding int@;. Thus, if we choose the minimal embedding®f; into T3, the resulting
embedding;1; extends to an embedding ofinto 7. ThoughT; is, strictly speaking, not a permutation
all of its associated operators are the same as thosg@fcept some are undefined, e.g., the leftmost
element ofT; has no left neighbour ifl; but may well have one in). So, in this case we can use
Algorithm 1 in order to find the minimal embedding®f, ; into 7; and hereby obtain a single extension
of e; with the required property.

A similarly easy case is wherg;,; is a singleton, i.e., a fluid element afig begins with its least
element (which is a fluid element as well). Then nothing calobeby mappingr; ., to that element.

The only remaining case is whefg,; is a singleton and the first elementBf is not its minimum.
Since every element df; lies above its first element, or above and to the right of itsimum, we can
extende; in two ways — one sending;. ; to the leftmost element d&f; (which is an upper element) and
one to its minimum (which is a lower element), and one of theast be extensible.

Now it seems that we might have a problem — given two partiddeddings ofr; @ - - - & m; might
they not extend to three or four candidate embeddings @f - - - & m; ® m;41? Indeed this is the case,
but only if 7;, 1 is a singleton. If it has four possible images, two belon§tcand two toL ... Since all
further elements of lie above and to the right of this fluid element, we only neegtain the embeddings
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where its image is the lesser of the two in each of these sékewlse, if it has three possible images
(one of which might be fluid), at least one of them can be igdofsother way to say this is that because
m™ B P d myr ends with its maximum element, so do its images under the ddibg. Among
three or more elements of3&1-avoiding permutation there are at least one and at mostlemoants that
do not participate as thein a 12 pattern. We need retain only those embeddings whose maximnat
such &, as otherwise they could be replaced by an embedding wittallesrmaximum in forming a full
extension.

Since the sum of the size of the rigid permutations in theegsgmtation ofr is at most the total size
of 7, the parts of the algorithm where we construct minimal rigiebeddings still require at mo&t kn)
time in total. Dealing with singletons (fluid elements) elgaequires only constant time since we can
find the next (to the right) fluid/upper/lower elementiim constant time. Also, filtering out non-optimal
extensions can be done in constant time since only the méslmaments of these extensions have to
be compared and at most four extensions exist at the same Waeonclude that the total cost of the
algorithmis stillO(kn). If 7 containsr the algorithm terminates successfully and returns one ssiply
two embeddings.

What if no embedding exists? Then, following the plan abavé & did (beginning from an empty
map, i.e., the case= 0) we must at some point reach a failing case of Algorithm 1,aasibly encounter
an emptyT;. In either case, we fail since we have demonstrated that tedding can be possible.

This completes the proof of Theorem 1.1.

Again, let us provide an example demonstrating how the #@lgarfor arbitrary321-avoiding patterns
works.

Example 3.1. As in Example 2.6, we consider the text permutatios 3124596710811 1312 rep-
resented in Figure 1. The patternds= 21345768. The upper elements im are2 and7, the lower
ones ard and6, and the fluid elements afe 4, 5 and8. The algorithm proceeds block by block in the
decomposition ofr.

1. It starts with the rigid block consisting of the elemehend1. Algorithm 1 takes care of this block
and, as in Example 2.6(2) = 3 ande(1) = 1.

2. The next blockr is the singleton elemest 77, the set of elements that lie above and to the right
of the image ot starts with a fluid element and thus we can«8j = 4.

3. We have the same situation fay which consists of the singleton elemerand se&(4) = 5.

4. The blockn, is again a singleton element. HowevEs,does not start with its minimal element and
thus two choices are possible fg(5): we can either sendlto the leftmost upper element ify or
to the leftmost lower element. We store these two posséslit; (5) = 9 ander,(5) = 6.

5. The next blockrs is rigid and we thus apply Algorithm 1 which is not detailedadne~or the choice
ey(5) =9 itleads toey (7) = 13 andey (6) = 12 whereas foe,(5) = 6 it leads toer,(7) = 10
ander,(6) = 8. These two partial embeddings are rigid and thus comparaple e;; and we can
disregarcky;. Thisis a good choice, sineg cannot be extended to an embedding @fto ~ since
the last elemert cannot be mapped anywhere.

6. It remains to determing8). SinceT} starts with its minimal element we can choose this one and
sete(8) = 11.
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centre
y s
Fig. 2: The decomposition of a skew-merged permutation into itéreeand four corners.

7. The algorithm terminates successfully and returns areedibg ofr into 7: e(2) = 3, e(1) = 1,
e(3)=4,e(4) =5,e(5) =6,e(7) =10, e(6) = 8 ande(8) = 11.

4 Skew-Merged Permutations

The permutations avoiding21 can be partitioned into two monotone increasing sequei@ssourse the
permutations avoidin@23 can be similarly partitioned (into decreasing sequenaed}lae results of the
previous section apply to them as well. However, the claskeiv-merged permutationthose that can
be partitioned into an increasing and a decreasing sequeateres further analysis, though as we shall
see the analogue of Theorem 1.1 is also true in this context.

Towards this goal, we first identify a setofid elements of a skew-merged permutation. In Figure 2
these are the elements lying in the corner regions. Spdbifiga say that an element of a skew-merged
permutation is of type:

NE ifit participates as 8 in a213;

NW ifit participates as & in a312;

SW ifit participates as & in a132;

SE  ifit participates as &in a231,
and we call any other element of a skew-merged permutatairal We first verify that the illustration
of a skew-merged permutation shown in Figure 2 is corrects iBha result due to Atkinson [4], and so
we only sketch part of the proof to give its flavour.

Proposition 4.1. The elements of a skew-merged permutation decompose bgstyghe@wn in Figure 2.
Moreover, the central elements form a monotone subsequence

Proof: Recall that another characterisation of skew-merged petions is the following: they are those
permutations that do not contain eitt3arl 2 or 2143.

Let a skew-merged permutationbe given, and suppose that= I U D is a partition ofr into a
monotone increasing and monotone decreasing sequencsid€ofirst elements of type NE (all other
types can be handled by parallel arguments due to symm8&inge any such participates a8 e a 213,
it must belong tal (otherwise, the elements participating as 2hrend1 would both belong td which is
of course impossible). So the elements of type NE form a nwreincreasing sequence.

Suppose thaC is of type NE, withBAC an occurrence o213 anda is of type SW withacb an
occurrence of32. Thena € I for similar reasons to the preceding ones’lpreceded (and hence was
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also smaller than it) ther3 Acb would be an occurrence @f43. So, all elements of type SW lie below
and to the left of those of type NE. Now suppose that of type NW, withzzy an occurrence df12. If

C were to precede we would have various cases: firstiflay belowy then B Azy would be2143, if C

lay abovey but belowz thenC'zzy would be3412, if C lay abovez andB abovey, thenBCzy would be
3412, but if B lay belowy then BAzy would be2143. As all these cases lead to contradictiafisnust
follow z.

All other cases can be dealt with similarly. Finally, to skattthe central elements form a monotone

sequence observe that they must certainly avoid alBef 213, 231, and312 lest some of them be non-
central. But, only monotone permutations (of either typ@jdthese four permutations. O

This decomposition can be computed in linear time:

Lemma4.2. Given a skew-merged permutation of siz¢here is an algorithm that computes its partition
into types inO(n)-time.

Proof: Let§ be an arbitrary skew-merged permutation. Notice that tinegi@ to the left of the leftmost
element of type NE or SE avoid31 and213. Such permutations have a characteristishape since
any element must not be intermediate in value between twis tigiht. We are interested in finding the
maximum prefix of which has this characteristic shape, or what amounts tcatime $hing, the leftmost
element o) such that the prefix ending at that element invoR&kor 213.

This can be accomplished in linear time: we s@drom left to right and determine for every position
i whether it is an ascené (i) < 6(i + 1)) or a descenti(7) > 6(i + 1)). At any moment we only store
the last encountered ascenand descend. The elemend(i) plays the role of d in a 231 pattern, if
0(i) < 6(a); it plays the role of &8 in a 213, if (i) > 6(d). If either of the two conditions apply to
positioni, we have identified the leftmost element of type NE or SE. Tate have found the boundary
line between the centre region and the Eastern regién of

In a similar manner we can find all of the boundary lines: bynsaag from right to left we find the
boundary between West and centre, by scanning from bottaopteve find the boundary between South
and centre and by scanning from top to bottom we find the bayrmtween North and centre. We can
thus compute the partition éfinto types by scanning four times. O

We will now describe an algorithm for skew-merged pattemd txts and provide the necessary the-
oretic background. This algorithm consists of two main @ah the first part, the non central elements
of the patternt are embedded inte using a similar approach as for rigid permutations and adgpt
Algorithm 1 which will deliver a minimal embedding of the n@entral elements. In the second part, we
will extend this minimal embedding to the central elemerfits.o

In this sense, the non-central elements of a skew-mergadypation correspond to the rigid elements
of a 321-avoiding permutation. Since they are defined by the ocogg®f certain patterns and since
embeddings preserve such patterns it is immediately cledrite : # — 7 is an embedding of one
skew-merged permutation into another, tkenust preserve the type of all non-central elements.

In order to be able to speak of minimal embeddings in the comeskew-merged permutations, we
need to introduce some new notation. For two non-centredetes of the same type we write< y if =
lies strictly further out from the center thgr(x < y will mean that either: <y or z = ). The minimum
with respect to this relatior is denoted byuterand the maximum bynner. For two embeddings;
ande, of the non-central elements ofinto = that preserve types we can define their meet by

e1 A ez(x) = oute{e; (), e2(z)}
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for all non-centrake € 7. Then, just as in th821-avoiding casee; A es is also an embedding of the
non-central elements afinto those ofr:

Lemma4.3. Letw be a skew-merged pattern with no central elementsranelan arbitrary skew-merged
permutation. Then the following holds:elf ande,; are embeddings af into 7 then their meef := ejAes
as defined above is an embedding as well.

Proof: Letxz # y be two elements imr and let us assume thatlies to the left ofy in 7. We need to
show thatf (x) lies to the left off(y) in  and that the horizontal relation betweemndy is preserved
as well. The key argument is that taking the minimum of thenelets in the above sense automatically
translates into taking their actual minimum or maximum (eajently, the leftmost or rightmost element),
depending on the type of element. In order to give a formadfyrwe distinguish between three cases.

e If x andy are of the same type. We detail the case of SW elements hetliee ather ones are
analogous (one simply needs to replace “minimum” by “maximiand/or “left of” by “right
of” depending on the type). In this case, taking the minimunthe elements in the sense de-
fined earlier is nothing else than taking their actual mimmuwvhich again is the same as tak-
ing the left-most element. Since we have thigt) < e1(z) < ei(y) (and f(x) is to the left
of e1(y)) as well asf(z) < ez(z) < e2(y) (and f(z) is to the left ofes(y)), it follows that

f(z) < outerle1(y),e2(y)) = f(y) (@andf(z) is to the left of f (y)).

e If z andy lie in opposite corners of the diagram. In this case the istate follows immediately
from the fact that an embedding preserves types. Indee@\Vdlelements are to the left of and
smaller than NE ones and all NW elements are to the left of amgl than SE ones. Thus both the
vertical as well as the horizontal relation betwaeandy is preserved.

e The remaining cases, whereandy are not of the same type, but are both elements in the south,
north, east or west. We detail the case of two elements indhté rn.e.,z is a NW element ang a
NE one. The other cases can be dealt with analogously (bycheiaging minimum with maximum
or vertical with horizontal positions). Without loss of geality, we further assume that < .
First, itis clear thaff (z) lies strictly to the left off (y) since types are preserved. Second, regarding
the horizontal relation betweenandy, let us note that taking the element that is furthest away
from the centre translates into taking the maximum. Thushaue thatf (y) > e1(y) > e1(z) as
well asf(y) > ea(y) > ea(x) which implies thatf (y) > f(z).

The consideration of these cases completes the proof. O

Observe the following: if eithet; or e; was the restriction of an actual embeddingof 7 into r to
the non-central elements then we can extend the mapping:- to central elements usingthere, and
thereby obtain an embedding. So, among all embeddingsinfo 7 there is one whose effect on the
non-central elements is the minimum of all the embeddings®hon-central elements ofinto those of
7. We will see later on how such an extension to the central @sofr can be found.

This minimum embedding of the non-central elements can beddy modifying the definition of the
problem set and the update rule of Algorithm 1. The only thirgneed to do in order to reflect the new
notion of minimum/maximum in this definition, is to redefiletnotation introduced in the Introduction.
Given a non-central elementin a skew-merged permutatian we denote by (wherever possible):
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z°"  the next non-central element furthertdrom the center in drizontal direction,

z'"  the next non-central element towards the centewirds) in_forizontal direction,

¥ the next non-central element towards the centewgirds) in ertical direction, and

z°?  the next non-central element furthartdrom the center in ertical direction.
For example, in the skew-merged patterdepicted in Figure 3 and = 7, we havexz" = 1, 2" = 1,
2™ =6, andz® = 1.

We also define the type of a non-central elemenh a skew-merged permutatioffy(z), to be the
corner in whiche lies, i.e.,T'(«) can be NW, SW, NE or SE. Moreover, we extend the notationdhiced
above as follows: Fos € {oh,ih,iv,ov} andb € {NE,SE, SW, NW}, we definez? to be the next
non-central element in according to direction that is of typeb. In other wordsyy is the first element
in the sequencér®, ()%, ...) of typeb. If there is no such element, i.e., no elemengifi, (*)*,...)
is of typeb, then we setry = 1. For example, in the skew-merged patterdepicted in Figure 3 and
z = 5, we havery,, = 7, 2% = 6, whereas?s, = | andz®, = L.

With this new notation, one can see that an analogue of Pitapo2.3 holds for skew-merged permu-
tations:

Proposition 4.4. Suppose that is an embedding of the non-central elements ofto 7, f is a mapping
of the non-central elements ofinto = that preserves types, and, for all non-centrat , f(x) <e(z).
Then, for all non-centrat €

inner{ F@m)id o, f(xov)gzd(w)} Qe(x).

The proof of this Proposition is analogous to the one of Psdjom 2.3.
We thus say that a non-central elemerdf a skew-merged permutation ieoblemif:

f(z) < inner{f(xo")%‘(z), f(xov)i%}(m)} ; (2)

for a mappingf of the non-central elements afinto r that preserves types. Moreover, when we re-
solve the problemx: by updating the value of (z) this is done analogously to the case3@fi-avoiding
permutations and we s¢fz) = inner{f(x(’h)gﬁ(m), f(xov)?(z)}

This finishes the description of the necessary modificatadmsigorithm 1. As for Algorithm 1 we
assume that® andz{ for a € {oh,ih,iv,ov} andb € {NE,SE,SW, NW} is precomputed and thus
can be found in constant time. Given the decomposition afidr into types, these precomputations can
be done in linear time. Both the steps required for the upofafeand the recomputation of the problem
setP(f) can be carried out in constant time.

To complete the proof of Theorem 1.2 we must show that, hafongd a minimum embedding of
the non-central elements afto those ofr, the existence of a full embedding can also be determined
sufficiently quickly. We need to determine whether or notdhatral part ofr can be embedded into the
remainder ofr, i.e., the set of elements inwhich consists of central elements and all adjacent elesnent
that have not yet been used in the minimum embedding. Theadgairt of is a monotone pattern of a
certain size at mogt, and the remaining part afis a skew-merged permutation of size at mog$ivhose
endpoints we know).

In general, finding a longest increasing (or decreasingyeyisence of sizk in a permutation of size
n can be done in timé&(n loglog k) [7]. Thus, checking whether the central part can be embeihded
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m=1734256 T7=10193546278

Fig. 3: Decomposition of the skew-merged permutatiarendr into their centres and four corners.

the remaining part of can be done within th@(nk) runtime bound of our algorithm. In the special case
of skew-merged permutations, finding a longest increagiesp(, decreasing) subsequence can even be
done inO(n) time. To be more precis€)(n) time is only required for obtaining the partition into five
types as represented in Figure 2 (which is already availatdar case); the remaining steps require only
constant time.

Indeed, for longest increasing subsequences the followfrsgrvations can be made (the case of de-
creasing subsequences can be treated analogously): Thergteof type SW and NE will always con-
tribute to a longest increasing subsequence. Moreovérgsabsequence also contains as many elements
as possible from the centre, i.e., if the center is incregtbian all elements contribute to a longest increas-
ing subsequence and if the center is decreasing we canaailgipiick one centre element. Note that it is
never advantageous to include elements of type NW or SE.CHnide seen as follows: At most one NW
or SE element can be part of an increasing subsequence. iTthescentre is non-empty, it is certainly
not advantageous to include a NW or SE element. Let us ashahthe centre is empty. An element of
type NW occurs as & in a 312 pattern. Among the elements playing the role of thend the2, at least
one element (and possibly both of them) is of type SW or NE.sTimcluding an element of type NW
would force us to exclude one or two elements of type SW or NEather words, we cannot increase
the size of an increasing subsequence by adding an elemgmeoNW. A similar argument holds for
elements of type SE. We conclude that for the size of the Isingereasing subsequence we only have to
add the number of elements of type SW and NE as well as the Gihe bngest increasing subsequence
in the central part. Let us end this section by providing apdénexample illustrating how this modified
version of Algorithm 1 works.

Example4.5. Let us consider the text permutation= 10193546 2 78and the patterm = 1734256.
Both permutations and their decomposition into types aoevahin Figure 3. We start by describing a
possible run of the algorithm (the order in which problenms @solved is not determined) finding the
minimal embedding of the non-central elements dfito 7

1. We start with the initial mapping = f, that sends all non-central elements of one type in the
minimal element of this type in (i.e., the element that is furthest out from the centerk tefined
as follows: f(1) = 1, f(7) = 10, f(5) = f(6) = 8 and f(2) = 2. We compute the problem set
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using the condition in equation (2) and obtdf) = {5, 7}.

2. We resolve the problem = 5 for which we havenner{ f(z°")i ., f(2°?)%,} = 7 and update
f such thatf(5) = 7. In order to recomputé®(f), we only need to check® = 2 sincez™ is
not defined. The choicg(2) = 2 does not create a problem with this new choice f¢5). We
cannot possibly have resolved the problemt the same time, so it remains () and we have

P(f) ={7}.

3. We resolve the problem = 7 for which we havénner{ f(z°")%y,,, f(2°*)%, } = 9 and update
f such thatf(7) = 9. In order to recomput(f), we only need to check’ = 6 sincez™ is not
defined. The choic¢(6) = 8 does not create a problem with this new choiceff¢r).

4. The algorithm has found the minimal embedding e,,;, of the non-central elements ofinto =
defined as followsyf (1) = 1, f(7) =9, f(2) = 2, f(5) = Tand f(6) = 8.

5. We need to map the central elemehtnd4 of = into the remaining part of (marked by a dotted
line in Figure 3). Since the central elementsratonsist of an increasing subsequence of size two,
we can choose any such subsequence within the dotted ared/Nle decide to sef(3) = 3 and
f(4) = 5 which finally gives an embedding afinto 7.

5 Concluding Remarks

We conclude by mentioning some open problems related toatbik. We have seen in Theorem 1.1
that Av(321)-PPM can be solved i®(kn) time. Guillemot and Vialette showed that the more general
Av(321)-PATTERN PPM problem can be solved i(kn*V*+12) time. It is an open problem whether
Av(321)-PATTERN PPM can be solved in polynomial time. Note that if the pat@vaids132, 231,
213 or 312 then it is automatically separable and thus ¢h® PM problem and th€-PATTERN PPM
problem for all four classeav(132), Av(231), Av(213) or Av(312) can be solved in polynomial time.
Consequently thav(321)-PATTERN PPM—which is equivalent to th&v(123)-PATTERN PPM—is the
only open case foAv(/5)-PATTERN PPM where3 has sizes.

In caseAv(321)-PATTERN PPM turns out to bé&P-complete,Av(3)-PATTERN PPM will also be
NP-complete if3 is any permutation of size four other thati3, 3142, 2413, or 3412. Interestingly, this
list contains exactly those patterns that define the clasfssiew-merged and of separable permutations.
Moreover NP-completeness div(321)-PATTERNPPM would imply thatAv(5)-PATTERNPPM isNP-
complete fors of size five or more, since by Erd6s—Szekeres Theorem [8yga&rmutation of size at
least five contain$23 or 321.

Looking at the big picture, Theorems 1.1 and 1.2 show@hBP M can be solved in polynomial time for
Av(321) andAv(2143, 3412), respectively. It might be th&t-PPM is always polynomial-time solvable
for a fixed, proper clas€. It would be of considerable interest to either establish sfatement or to
prove a dichotomy theorem that distinguishes permutatiasses for whiclf-PPM is polynomial-time
solvable and those that yield hafdPPM instances. The same question can be aske@-fo{TTERN
PPM, although it seems rather unlikely that this problemdl/pomial time solvable for every fixed,
proper clasg’.
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Note added in proof. After a draft of this paper was posted on the arXiv, Jelinad ldyncl [12] estab-
lished that theAv(3)-PATTERN PPM problem is indeeNP-complete for every

B¢ {1,12,21,132,213,231, 312}.

They further showed that thev(4321)-PPM problem isjNP-complete, even when the pattern is restricted
to be321-avoiding.
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