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We prove that the number of permutations which avd#-patterns and have exactly oh23-pattern, equalén —
2)2"~23 forn > 3. We then give a bijection onto the set of permutations which ai@idpatterns and have exactly
onel32-pattern. Finally, we show that the number of permutations which contain exacty28rgattern and exactly
onel132-pattern is(n — 3)(n — 4)2" %, forn > 5.
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1 Introduction

In 1990, Herb Wilf asked the following: How many permutations of lengtvoid a given patterp? By
pattern-avoiding we mean the following: Letbe a permutation of length and letp = (p1,p2, - .., k)
be a permutation of length < n (we will call this a pattern of length). Let J be a set of integers, and
letj € J. Defineplace(j, J) to bel if j is the smallest element i, 2 if it is the second smallest, ...,
andr if it is the largest. The permutatianavoids the patterp if and only if there does not exist a set of
indicesI = (i1, 42, - - -, i), such thap = (place(w(i1), I), place(n(i2),I), . .., place(n (ix), I)).

In two beautiful papers ([B1] and [N]), the number of subsequences containing exacill$pattern
and exactly ond23-pattern are enumerated. Noonan shows in [N] that the number of permutations
containing exactly oné23-pattern is the simple formul%( n ) Bbna proves that the even simpler

n+3
formula(2§:33) enumerates the number of permutations containing exactly3pattern. Béna's result
proved a conjecture first made by Noonan and Zeilberger in [NZ].

Noonan and Zeilberger considered in [NZ] the number of permutations of lengthich contain ex-
actlyr p-patterns, for > 1. Bona, in [B2], made further progress concerning the number of permutations
with exactlyr 132-patterns. In this article we work towards the following generalization: How many per-
mutations of lengte avoid patterng;, for s > 0, and contairr; p;-patterns, foj > 1, r; > 1? We will
first consider the permutations of lengttwhich avoidl32-patterns, but contain exactly om3-pattern.

We then define a natural bijection between these permutations and the permutations of, lednith
avoid 123-patterns, but contain exactly om82-pattern. Finally, we will calculate the number of permu-
tations which contain on&23-pattern and on&32-pattern. These results address questions first raised in
[NZ].
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2 Known Results

For completeness, two results which are already known are given below.

Lemma 1: The number of permutations of lengtlwith one12-pattern isn — 1.

Proof:Induct onn. The base case is trivial. A permutatiaf),of lengthn with one12-pattern must have

n = ¢(1) orn = ¢(2). If n = ¢(1), by induction we getr — 2 permutation. Ifn = ¢(2), then we must
haven — 1 = ¢(1) (or we would have more than ori@-pattern). The rest of the entries ¢fmust be
decreasing. Hence we gemore permutation from this second case, for a total of1.

Lemma 2: The number of permutations which avoid both the pati@hand132 is 271,

Proof: Let f,, denote the number of permutations we are interested in. Fhea > | f,—; with

fo = 1. To see this, lep be a permutation of length — 1. Insert the element into theit* position of

p. Letw be this new permutation of length To assure that avoids thel32-pattern, we must have all
entries preceding in w be larger than the entries following To assure that avoids thel23-pattern,

the entries preceding must be in decreasing order. This argument gives the sum in the recursion. The
recursion holds by noting thatif = 1, there is one permutation which avoids both patterns. To complete
the proof note thaf,, = 271,

3 One 123-pattern, but no 132-pattern

Theorem 1. The number of permutations of lengttwhich have exactly ong3-pattern, and avoid the
132-pattern is(n — 2)273.
Proof: Call a permutatiorgoodif it has exactly onel23-pattern and avoids the32-pattern, and leg,
denote the number of good permutations of length.et v be a permutation of length — 1. Insert the
elementn into theit”® position ofy. Call this newly constructed permutation of lengthr. To assure
that 7 avoids thel32 pattern, we must have all elements precedinign = be larger than the elements
following n in 7. Form to be a good permutation, we must consider two disjoint cases.
Casel: The patterni23 appears in the elements followimgin 7. This forces the elements preceding
to be in decreasing order. Summing ovthis case accounts for;" , g,—; permutations.
Case ll: The patterni23 appears in the elements preceding and includinig 7. This forces the3 in
the pattern to bea. Hence the elements precedingnust contain exactly ong-pattern. (Further there
must be at least elements. Hencemust be at least). From Lemma 1, this numberis- 2. We are also
forced to avoid both patterns in the elements followingLemma 2 implies that there a@®—*~! such
permutations. Summing ovérthis case accounts ch?:_; (i —2)2"==1 + p — 2 permutations.

We have established that the recurrence relation

n n—1
gn =) gnoit Y (i-2)2""" +n-2
i=1 =3

which holds forn > 3 (g0 = 0,91 = 0, g2 = 0), enumerates the permutations of lengtiwhich avoid
the patterni32 and contain exactly one23-pattern.
One easy way to proceed would be to find the generating functigp,.ofHowever, in this article
we would like to employ a different, and in many circumstances more powerful, tool. We will use
the Maple proceduréindrec  in Doron Zeilberger's Maple packad&kHAD. (The Maple shareware

f Available for download atvww.math.temple.edu/"zeilberg/
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packagegfun could have also been used.) Instructions for its use are available online. Tiodise
rec we compute the first few terms @f,. These are (fon > 4) 4,12, 32,80,192,448,1024. We
type findrec([4,12,32,80,192,448,1024],0,2,n,N) and are given the recurrenég =
4(hp—1 — hn—2) for n > 4. Definehg = 0,h1 = 0, hy = 0, andhs = 1, and it is routine to verify that
gn = hy, for n > 0. Another routine calculation shows us thaf = (n — 2)2"~2 for n > 3, thereby
proving the statement of the theorem.

4 One 132-pattern, but no 123-pattern

Theorem 2. The number of permutations of lengttwhich have exactly ont32-pattern, and avoid the
123-pattern is(n — 2)273.

Proof: We prove this by exhibiting a (natural) bijection from the permutations counted in Theorem 1 to
the permutations counted in this theorem. Defthe= {7 : = avoids132-pattern and contains one
123-patterr} andT := {r : = avoids123-pattern and contains orik32-patterr}. We will show that

| S |=| T |, by using the following bijection:

Letgp : S — T. Lets € S, and letabc be thel23-pattern ins. Theng acts on the elements efas
follows: ¢(z) = z if = & {b,c}, #(b) = ¢, and¢(c) = b. In other words, all elements keep their positions
exceptb andc switch places. An easy examination of several cases shows that this is a bijection, thereby
proving the theorem.

5 One 132-pattern and one 123-pattern

Theorem 3: The number of permutations of lengthwhich have exactly on&32-pattern and ond 23-
pattern is(n — 3)(n — 4)2" 5.

Proof:We use the same insertion technique as in the proof of Theorem 1. Call a permgtatdifit has
exactly onel 23-pattern and exactly on32-pattern and ley,, denote the number of good permutations of
lengthn. Let~ be a permutation of length — 1. Insert the element into theit” position ofy. Letn be
this newly constructed permutation of length We note that thd32-pattern cannot consist of elements
only precedingn. If this were the case, we would have tiB3-patterns ending with. For« to be a
good permutation, we must consider the following disjoint cases.

Casel: The132-pattern consists of elements following In this case all elements precedimgnust be
larger than the elements following

Subcase AThe123-pattern consists of elements following Summing ovei we get)";" | g,—; good
permutations in this subcase.

Subcase B:The elements precedinghave exactly oné2-pattern. This gives a23-pattern where the
3 in the pattern i%. We must also avoid th&23-pattern in the elements following. Summing ovei
and using Lemma 1 and Theorem 1, we §&t~.” (i — 2)(n — i — 3)2"~ =2 good permutations in this
subcase.

Case II: The132-pattern has the first element precedinghe last element following, andn as the
middle element. The elements precedimgnust ben — 1,n — 2,...,n — 1 4+ 2,n — i, wheren — i
immediately precedes in 7. See [B1] for a more detailed argument as to why this must be true.

Subcase AThe elements precedimghave exactly on&2-pattern. This gives &23-pattern where the last
element of the pattern is. We must also avoid both tH23 and thel32 pattern in the elements following
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n. Summing ovei and using Lemma 1 and Lemma 2 we h@é‘:}l (i — 3)2" %1 good permutations
in this subcase.
Subcase B:The 123-pattern consists of elements followimg We must have the elements preceding
in = be decreasing to avoid anothEt3-pattern. Further, the elements followingmust not contain a
132-pattern. Using Theorem 1 and summing o¥ewe get a total 0122‘;23 (n —i — 2)2"~3 good
permutations in this subcase.

In total, we find that the following recurrence enumerates the permutations of lengtich contain
exactly onel23-pattern and on&32-pattern.

n n—4
go=3 gui+ > (2i(n—i—4)+n 32"
=1 i=1

forn > 5andg; = g2 =93 =g4 =0.

Usingfindrec  again by typindindrec([2,12,48,160,480,1344,3584],1,1,n,N)
(where the listis the first few terms of our recurrencerfor 5) we get the recurrencg, 1 = @fm
with f; = 2. After reindexing, another routine calculation shows that g,,. Solving f,, for an explicit
answer, we find thag,, = (n — 3)(n — 4)275.

We conjecture that the generating function for the number of permutations with exactly zero or exactly
one132-pattern and exactly 123-patterns isP(z)/(1 — 2z)"+!, whereP(z) is a polynomial. For more
evidence, and further extensions see [RWZ].
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