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Macdonald polynomials att = ¢*

Jean-Gabriel Luque
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Abstract. We investigate the homogeneous symmetric Macdonald polynomials Py (X;q,t) for the specialization

t = ¢*. We show an identity relying the polynomials Py (X;q,¢") and Py (11:q‘5§c X;q, qk>. As a consequence, we

describe an operator whose eigenvalues characterize the polynomials Py (X; g, qk).

Résumé. Nous nous intéressons aux propriétés des polyndmes de Macdonald symétriques P (X g, t) pour la spécia-
lisation ¢ = ¢*. En particulier nous montrons une égalité reliant les polyndmes Py (X; q, qk) et Py i;qqu; q, qk).

Nous en déduisons la description d’un opérateur dont les valeurs propres caractérisent les polynémes P (X; g, qk).
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1 Introduction

The Macdonald polynomials are (g, ¢)-deformations of the Schur functions which play an important rdle
in the representation theory of the double affine Hecke algebra [[11}[13] since they are the eigenfunctions
of the Cherednik elements. More precisely, the non-symmetric Macdonald polynomials are the eigen-
functions of the Cherednik elements, but the symmetric Macdonald polynomials are the eigenfunctions
of the symmetric functions in the Cherednik elements. The polynomials considered here are the ho-
mogeneous symmetric Macdonald polynomials Py (X; g, t) and are the eigenfunctions of the Sekiguchi-
Debiard-Macdonald operator 91;. For (g, t) generic, the dimension of each eigenspace equals 1 and each
Macdonald polynomial is characterized (up to a multiplicative constant) by the associated eigenvalue of
;. That is no longer true when ¢ is specialized to a rational power of ¢ (note that the case of the spe-
cialization t"¢™ = 1 - n and m being integer - has been investigated by Feigin et al. [4] in their study of
ideals of symmetric functions defined by vanishing conditions). Hence, it is more convenient to charac-
terize the Macdonald (homogeneous symmetric) polynomials by orthogonality (w.xt. a (g, t)-deformation
of the usual scalar product on symmetric functions) and by some conditions on their dominant monomials
(see e.g. [12]). In this paper, we consider the specialization ¢ = ¢* where k is a (strictly) positive integer.
One of our motivations is to generalize an identity of [1], which shows that even powers of the discrim-
inant are rectangular Jack polynomials. Here, we show that this property follows from deeper relations

f_‘qqk X;q, q"“) (in the A-ring notation). This
result is interesting in the context of the fractional quantum Hall effect [8]], since it implies properties

of the expansion of the powers of the discriminant in the Schur basis [3} 16, [14]. It implies also that the

between the Macdonald polynomials P (X; g, ¢*) and Py (
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Macdonald polynomials (at t = ¢*) are characterized by the eigenvalues of an operator 9t (described in
terms of isobaric divided differences) whose eigenspaces are of dimension 1.

The paper is organized as follows. After recalling notations and background (Section2) related to Mac-
donald polynomials, we give, in Section [3| some properties of the operator which substitutes a complete
function to each power of a letter. These properties allow us to show our main result in Section ] which is

an identity involving the polynomial Py (X; ¢, ¢*) and Py (f%;kx; q, qk> . As a consequence, we describe

(Section |5) an operator 9t whose eigenvalues characterize the Macdonald polynomials Py (X; g, ¢*). Fi-
nally, in Section[6] we give an expression of 91 in terms of the Cherednik elements.

2 Notations and background

We recall here the basic definitions and classical properties of the symmetric functions and the Macdonald
polynomials.

2.1 Symmetric functions

Consider an alphabet X (potentially infinite). Following [10] we define the symmetric functions on X by
the generating functions of the complete homogeneous functions S?(X),

0.(X) := ZSz(X)z’ = H 1 sz

zeX

The algebra Sym of symmetric functions has a A-ring structure [10] and many properties of that structure
can be understood by manipulating o,. For example, the sum of two alphabets X + Y is defined by the
product

o (X+Y) = 0.(X)oo(Y) = > S*(X+Y)2".

In particular, if X = Y one has ¢, (2X) = o, (X)?. This definition is extended to any complex number «
by 0. (aX) = 0, (X)“. For example, the generating series of the elementary functions is

(X)) = CAX) = [0 +a2)
zeX

= 0 (-X) = D (DS (X)L

The complete functions of the product of two alphabets XY are given by the Cauchy kernel

K(%,Y) =01 (x) = 0 5xv) = [T ] 7= = - Sa(®)5a(¥),
% A

1—zy
rzeXyeY Yy

where S denotes, as in [10], a Schur function. More generally, one has

K(X,Y) =) A\(X)Bx(Y)
/\

for any pair of bases (A))x and (B)), in duality for the usual scalar product (, ), i.e. K(X,Y) is the
reproducing kernel associated to (, ).
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2.2 Macdonald polynomials

The usual scalar product on symmetric functions admits a (g, t)-deformation (see e.g. [12]) defined for a
pair of power sum functions ¥* and W* (in the notation of [10]) by

)
(o W>qt—mzAH e (1)

where 0, = 1if A = p and 0 otherwise. The family of (symmetric homogeneous) Macdonald polyno-
mials (P (X ¢, t))x is the unique basis of the symmetric functions orthogonal w.r.z. {, ), verifying

P (X Q7 + Z u)\umu (2)

pn<

where m) denotes, as usual, a monomial function [10, [12]]. The reproducing kernel associated to this
scalar product is

— A g o (Lt
By, 0) = DU 0 GO (Y) = 1(1_qxv>

see e.g. [12, VI.2]. In particular, one has

Kq,t(Xuy) = ZP)\(X;Q7t)Q)\(Y;Q7t)> (3)
A
where Q1 (X; ¢, t) is the dual basis of Py(Y; g, t) with respect to (, ).,
Q ( 34, ) <P)\3P>\> (X7q7t)' 4

The coefficient by (g, t) = (P, P,Q;% is known to be

1— q 7z+1t)\ —J
)= 11 1= x=prm 5)
(i,7)€EX
see [12, VI.6]. Writing
1—
Koy ((1_;’) X, \Y) = K(X.Y), (®)

one finds that (P,\ ((%) X;q, t) ) R is the dual basis of (Qx(X; ¢, t)), with respect to the usual scalar

product ( , ).
Note that there exists an other Kernel type formula which reads

A ZPN (X;t,q)PA(Y; q,t) ZQ» (X1, 0)Qx(Y; g, 1). (7)

where \’ denotes the conjugate partition of . This formula can be found in [[12, VL5 p329].
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From equalities (6) and (3) , one has

1— 1—
o1(XY) = Kgy (1_33& Y) => Qx (1_(ZX; q,t> Pr(Y;q,t). ®)
A

Applying (7)) to
g1 (XY) = )\_1 (7XY),

one obtains

o1(XY) =Y (=D)MQun (=X;t,q)Q(Y; g, 1). ©)

A
Identifying the coefficient of P)(Y; ¢, q) in (8) and @]) one finds the following property.

Lemma 2.1
1—
A (=X;t,q) = (-1) Py (ﬁx;q,t) : (10)
Unlike the usual (¢ = t = 1) scalar product, there is no expression as a constant term for the product
(, )q when X = {z4,...,z,} is finite. But the Macdonald polynomials are orthogonal with respect to
an other scalar product defined by
1
(fs9)qtim = 1 CTAFX)g(XY)Ag1(X)} (1D

where C.T. denotes the constant term w.r.z. the alphabet X,

—1
TiT: 3 q) oo ,
A (X)) = H(t]1q) (a;b)0o = H(l —ab’) and XV = {27',...,z;'}. The expression of
i#j ( xzxj aq)oo i>0
(Px; Qx)g.1:n 18 given by ([12} VL.9])

1— qi—ltn—j-l-l

1
ro_
(Prs Q)tin = —CT{Ag4(X)} H g (12)
(i,7)EX
2.3 Skew symmetric functions
Let us define as in [12] V1.7], the skew Macdonald functions @ i by
<Q/\/,u7 PV>q,t = <Q)\7 PMPI/>q,t' (13)
Straightforwardly, one has
Qu/n(X50:t) =Y (Qx, Py Pu)g.1Qu(Xi g, 1). (14)

v

And classically, the following property holds (see e.g. [12, VI.7] for a short proof of this identity),
Proposition 2.2 Let X and Y be two alphabets, one has

ONX+Y50,8) =D QulXs0,)Qx/u(Ysq,1),
"



Macdonald polynomials at t = ¢* 589

or equivalently
PA(X+Y,Qa ZP vQ7 PX/M(Y q, )

Equalities (3 and (7) are generalized by identities (I3 and (16) as shown in [12] example 6 p.352],

Z //\ X 1q,t Qp/p,(Y q,t qt X Y Z /p X iq,t Q)\//)(Y q, )7 (15)
D Qi (Kt 0)Qu (Y 0,8) = M(XY) Y~ Quurypr (X, t,)Qu /0 (Yi g, 1), (16)
p p

3 The substitution 27 — SP(Y) and the Macdonald polynomials

Let X = {x1,...,2,} be a finite alphabet and Y be an other (potentially infinite) alphabet. For simplicity
we will denote by fY the substitution

/Y ;P — SP(Y), 17
for each z € X and each p € Z. Let us define the symmetric function
9 (Vi) = o | P QUK 0.0A K00 as)
where XV = {z7', ...,z ).

Set Y% := %%ZY and consider the substitution
/ P = SP (Y') = Q,(Y;q.t). (19)
Yta

The following result shows that 55’;/; is a skew Macdonald polynomial on a suitable alphabet.
Theorem 3.1 Let X = {z1,...,z,} be an alphabet, \ = (A1, ..., \,) be a partition and p C \. The
polynomial § T (Ytq, q,t) is the Macdonald polynomial

1 1 _ qifltnfjJrl

y))\//L(Ytqa q, ) E H — qitn_j CT{A(Xa q, t)}P)\/u(Yv q, t) (20)
(i,9)EX
SetY = {—v1,.--,~Ym,---}if Y = {y1,...,Ym, ...} and note that the operation Y — Y makes sense

even for virtual alphabet since it sends any homogeneous symmetric polynomial P(Y) of degree p to
(—=1)PP(Y). One observes the following phenomenon which is obtained from Theorem [3.1] by applying
the operations of the A-ring structure.

Corollary 3.2 Let X = {x1,...,x,} be an alphabet, A = (A1, ..., \,) be a partition and ;o C \. One

has
ik <. B 1 1— qifltnfjjtl
f),\/ﬂ(*Y,Qat) = (l;[a WQT-{A(X’ ¢, 1) }Qx (Y, t,q). 21
%,
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Note that in the case of partitions, one has

Corollary 3.3

n — 1
ﬁ)\yk(fyvqa t) - 1 H

n:
(3,9)€X

1— qifltn7j+1

1— qitn—j CT{A(Xa q, t)}Q)\’ (Y, t, Q) (22)

Example 3.4 Consider the following equality
5421}1;%/3(_?;(]70 = (x)C.T{A(X, ¢,)} Q2111111 (Y2, ).

where X = {x1,22}. The coefficient (%) is computed as follows. One writes the partition [41] in a
rectangle of height 2 and length 4.

X
X | X | X | X

1—gi— 1437

Each X of coordinates (i, j) is read as the fraction [, j] := “T57z=—. Hence

(1—8)(1 —2)(1 — qt?)(1 — ¢*t*)(1 — ¢3¢?)
(1—=q)(1 —qt)(1 —¢*)(1 —g3t)(1 — ¢*t)

(*) = [17 2][17 1][27 1][37 1][47 1] =

4 A formula involving the polynomials P, (f_;qqu; q, qk> and P, (X; ¢, ¢")

Now, we suppose that t = ¢* with k& € N. In that case, the constant term C.T.{A(X, ¢,t)} admits a
closed form and Corollary [3.3| gives

Corollary 4.1
(=Y, q,4%) = By @)Qn (Yid*,q). (23)
where
n—1 .
An—i — 1+ k(i +1)

n,k _ n—i

o=
and [H = (1_(‘11717);1')'.(.1'(_1‘{;?1) denotes the q-binomial.

q

Example 4.2 Set &k = 2,n = 3 and consider the polynomial

_ 1 B B
ﬁ?égo](—y;%f) = /,P[32}($1 + T2 + 2354, ¢°) H(l — XL Ha - qTiT; h).
it i#j
One has
(1-¢°)(1-¢%
(1-q)?

Sz (— Vi 0:0%) = Q21 (Y; %, q).-
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Let

/ [[a -z (24)

Kitj
and for each v € Z",

S,(X) = det( vitn= J) H(:Ez — ;) h

1<j
Lemma 4.3 Ifv is any vector in Z", one has
055, (X) = 8,(X) := det (U~ (X)) (25)
In particular, Q2g leaves invariant any symmetric polynomial. The operator
A = Qs A (X)™™ (26)

acts on symmetric polynomials by substracting m from each part of the partitions appearing in their
expansion in the Schur basis.

Example 4.4 If X = {21, 22,25} and A = [320], one has

(—q+1)5311(X) n (g+1) (q¢t? = 1) (=g + 1) S221(X)
gt —1 (gt —1)* (gt +1) '

P35(X;q,t) = S32(X) +

Hence,
. L (cqt)Se(x) | (a+D)(qt?— 1)( q+t)S11(X)
2 P3(X;q,t) = s (qt—1)%(gt+1)
(—g+) (t+1) (¢ t—1) P11 (X5q,t) + (et P(Xig.t)
(qt—1)%(gt+1) qt=1 '

Theorem 4.5 If A denotes a partition of length at most n, one has

Ak—1)(n-1)Pr(X5 ¢, %) HH zi — q'z;) ()PA< XQQ> (27)

=1 i#j

Example 4.6 Set k = 2, n = 3 and A = [2]. One has

Py (z1 + 22 + x3; q,qz) H(:pi —qx;) = 7q35[672] + g2 o Sie.1]
i#]
2(,.5 2 5 7 7
7*(¢° — 1) q(¢° +1)(¢° — 1) a(q" — 1) -1

+q37715[5’3] - 1 Sis21) — —5 5431t (1*715[4’2’2}'

And,
2 g —1
o Pgy(z1 + 22 + 1359, q )H(xi —qx;) = jgm,
i) q

Since,

a:1—|—ac2+x3. 9 qg—1
P[2] (1_'_(]7%(1 ) = 5[2]



592 Jean-Gabriel Luque

one obtains

1 3 7 Ty + T2+ T
WPy (w1 + w2+ 2330,4%) [ [ (s — 42y) = H M M o (11+2c13’q’q>
q q q

i#j
As a consequence, one has
Corollary 4.7 If A = p+ [((k —1)(n —1))"],

n 17q
X;q,q" H H i —d ;) ﬂx’k(Q)PA (1_qu;Qa qk> .

=1 i#j
Example 4.8 Setk = 3,n = 2and A = [5, 2]. One has
Pis o)(z1 + 225 g, 4 ) (@1 — qa2) (21 — q2-’r22)($2 —qr1)(z2 — ¢°11) =

1—¢")(+ 11—+ +¢)(1+q*
q35[9,2]+( ) q)SM_( 7*)(1+q)( L q*)(1+¢ Sss
1—g¢q 1—g¢q

This implies

o Pi5 91 (21 + 7259, q (w1 — qua) (21 — @P22) (22 — qr1) (22 — ¢Pa1) =
($13€2) P [5 2] ($1 + ffz,qaq?’)(xl —qw2) (71 — q2x2)(x2 —qwy) (72 — q2:c1) =
P[3](331 + x25q,q )(561 - qxz)(l”l - q2$2)($2 - q331)(5€2 - q2x1).

One verifies that

P

E

Remark 4.9 If 1 is the empty partition, Corollary .7 gives

H [T = d'z5) = B () Py n—1yym <1_qu;q,qk> :

=1 i#j

(21 4 2254, ¢°) (21 — qa2) (21 — ¢*2) (T2 — q21) (22 — ¢P11) =

10 T+ T
{2} P o(———2514,4).
. . q+q

This equality generalizes an identity given in [[1]]:

(E=1)n(n—-1)
2

B -1 kn k
LG —a)*® :()T <k: k;) P (=),

1<j

where P)(\k) X) = lirq P)(\a) (X; g, ¢") denotes a Jack polynomial (see e.g. [12]).
q—?

(28)

The expansion of the powers of the discriminant and their ¢g-deformations in different basis of symmetric
functions is a difficult problem having many applications, for example, in the study of Hua-type integrals

(see e.g. [5,[7]) or in the context of the fractional quantum Hall effect (e.g. [3}16} (8}, [14]]).

Note that in [2], we gave an expression of an other g-deformation of the powers of the discriminant as
staircase Macdonald polynomials. This deformation is also relevant in the study of the expansion of

[Ticj(zi— z;)?* in the Schur basis (for example, we generalized in [2] a result of [6]).
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5 Macdonald polynomials at ¢t = ¢* as eigenfunctions

Let Y = {y1,...,Yrn} be an alphabet of cardinality kn with y; = x1, ..., y, = x,. One considers the
symmetrizer 7,, defined by

Tof@Wis- s kn) = [ (@i —2) ™" D sign(0) f(Uo(ry, - - ,ya(kn))yﬁ?f)l Yo (kn—1)-
i<j €Sk,
Note that 7, is the isobaric divided difference associated to the maximal permutation w in Sy, .

This operator applied to a symmetric function of the alphabet X increases the alphabet from X to Y in
its expansion in the Schur basis, since

WwSA(X) = S,\(Y) (29)
Indeed, the image of the monomial yil e yz’;:‘ is the Schur function S7(Y). Since
TN (X) = m,x?l ... x;\L = ﬂwyi\l .. .y;)"y,ol+1 .. .ygn,

one recovers equality (29).
One defines the operator 79 which consists in applying 7, and specializing the result to the alphabet

XM= {1, .., X0, QT QT ¢l 7qkilxn}.
From equality (29), one has
TISHX) =Sy (L+g+...+¢")X), (30)

for {(\) < n. Furthermore, the expansion of Sy ((1+ ¢+ ...+ ¢"*~')X) in the Schur basis is triangular,
so the operator 7*¢ defines an automorphism of the space Sym<, generated by the Schur functions
indexed by partitions whose length are less or equal to n, i.e. for each function f € Sym<,,, one has

T f(X) = f(XM). 31)
In particular,

Lemma 5.1 Ler A be a partition such that [(\) < n then

1
Wz}qP)\ <1

Consider the operator 901 : f — 9 f defined by

qqu;q,t=q"'> = PA(X, 4, ¢"). (32)

k-1
M= (21 ...2,) DA 7l H H(wl —q'zy).
I1=1 i#j
The following theorem shows that the Macdonald polynomials are the eigenfunctions of the operator 91.

Theorem 5.2 The Macdonald polynomials Py (X; q, ¢*) are eigenfunctions of M. The eigenvalue asso-

?ialled to P,(X;q,q") is Zf((k—l)(n—l))" (q). Furthermore, if k > 1, the dimension of each eigenspace
is 1.
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Example 5.3 If n = 5, the eigenvalues associated to the partitions of 4 are

Pt k4 k.4 k4 k4] o], (6], (o], [0 ], [ ], ¢ =1 0.0.0,00,
5§4E 14k-3,4k—4,4k—4,4k—4] = [‘5’1{:1;}[1[Zk;:g]q[:k)::;}q[Zkz:é}q[}::i}q(>‘=[ »1,0,0,0),
Pldk—24k-24k-44k—4,4k—1] = [k{l}q[k—:l]q[k{ L[k{l}q[k{Jq(*:[2’2'0’0’01)"
/’ﬁ;’fc 2,4k-34k—34k—4,4k—4] [skk—s)}q[Gkk—ls]q[7kk—4}q[Sk],c—lﬁl}q[gk;,v—lg}q(A:[ »1,1,0,0)),
Plik—3ak—3.4k—34k-34k—a] = e ], o], O], [0S, [t], o= s,

6 Expression of M in terms of the Cherednik elements

In this paragraph, we restate Proposition [5.2] in terms of Cherednik operators. Cherednik’s operators
{&;ie€{l,...,n}} =: 2 are commutative elements of the double affine Hecke algebra. The Macdonald
polynomials Py (X g, t) are eigenfunctions of symmetric polynomials f(Z) and the eigenvalues are ob-
tained substituting each occurrence of &; in f(Z) by q’\'it"_i (see [[L1] for more details).

Suppose that k& > 1 and consider the operator 0 : f — 9 defined by

k-1
M= [ -q)m (33)
i=1
From Proposition[5.2] one has
n—1k—1
MPA(X; ¢, %) = [] [J(1 = D) Pa(Xs 0, 6Y). (34)
i=0 j=1

The following proposition shows that 9t admits a closed expression in terms of the Cherednick elements.

Proposition 6.1 One supposes that k > 1. For any symmetric function f, one has

k—1

H H_kfz ) (35)

11¢=1
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