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Macdonald polynomials at t = qk

Jean-Gabriel Luque
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Abstract. We investigate the homogeneous symmetric Macdonald polynomials Pλ(X; q, t) for the specialization

t = qk. We show an identity relying the polynomials Pλ(X; q, qk) and Pλ
“

1−q
1−qkX; q, qk

”
. As a consequence, we

describe an operator whose eigenvalues characterize the polynomials Pλ(X; q, qk).

Résumé. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques Pλ(X; q, t) pour la spécia-

lisation t = qk. En particulier nous montrons une égalité reliant les polynômes Pλ(X; q, qk) et Pλ
“

1−q
1−qkX; q, qk

”
.

Nous en déduisons la description d’un opérateur dont les valeurs propres caractérisent les polynômes Pλ(X; q, qk).
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1 Introduction
The Macdonald polynomials are (q, t)-deformations of the Schur functions which play an important rôle
in the representation theory of the double affine Hecke algebra [11, 13] since they are the eigenfunctions
of the Cherednik elements. More precisely, the non-symmetric Macdonald polynomials are the eigen-
functions of the Cherednik elements, but the symmetric Macdonald polynomials are the eigenfunctions
of the symmetric functions in the Cherednik elements. The polynomials considered here are the ho-
mogeneous symmetric Macdonald polynomials Pλ(X; q, t) and are the eigenfunctions of the Sekiguchi-
Debiard-Macdonald operator M1. For (q, t) generic, the dimension of each eigenspace equals 1 and each
Macdonald polynomial is characterized (up to a multiplicative constant) by the associated eigenvalue of
M1. That is no longer true when t is specialized to a rational power of q (note that the case of the spe-
cialization tnqm = 1 - n and m being integer - has been investigated by Feigin et al. [4] in their study of
ideals of symmetric functions defined by vanishing conditions). Hence, it is more convenient to charac-
terize the Macdonald (homogeneous symmetric) polynomials by orthogonality (w.r.t. a (q, t)-deformation
of the usual scalar product on symmetric functions) and by some conditions on their dominant monomials
(see e.g. [12]). In this paper, we consider the specialization t = qk where k is a (strictly) positive integer.
One of our motivations is to generalize an identity of [1], which shows that even powers of the discrim-
inant are rectangular Jack polynomials. Here, we show that this property follows from deeper relations
between the Macdonald polynomials Pλ(X; q, qk) and Pλ

(
1−q
1−qkX; q, qk

)
(in the λ-ring notation). This

result is interesting in the context of the fractional quantum Hall effect [8], since it implies properties
of the expansion of the powers of the discriminant in the Schur basis [3, 6, 14]. It implies also that the
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Macdonald polynomials (at t = qk) are characterized by the eigenvalues of an operator M (described in
terms of isobaric divided differences) whose eigenspaces are of dimension 1.

The paper is organized as follows. After recalling notations and background (Section 2) related to Mac-
donald polynomials, we give, in Section 3, some properties of the operator which substitutes a complete
function to each power of a letter. These properties allow us to show our main result in Section 4 which is
an identity involving the polynomial Pλ(X; q, qk) and Pλ

(
1−q
1−qkX; q, qk

)
. As a consequence, we describe

(Section 5) an operator M whose eigenvalues characterize the Macdonald polynomials Pλ(X; q, qk). Fi-
nally, in Section 6, we give an expression of M in terms of the Cherednik elements.

2 Notations and background
We recall here the basic definitions and classical properties of the symmetric functions and the Macdonald
polynomials.

2.1 Symmetric functions
Consider an alphabet X (potentially infinite). Following [10] we define the symmetric functions on X by
the generating functions of the complete homogeneous functions Sp(X),

σz(X) :=
∑
i

Si(X)zi =
∏
x∈X

1
1− xz

.

The algebra Sym of symmetric functions has a λ-ring structure [10] and many properties of that structure
can be understood by manipulating σz . For example, the sum of two alphabets X + Y is defined by the
product

σz(X + Y) := σz(X)σz(Y) =
∑
i

Si(X + Y)zi.

In particular, if X = Y one has σz(2X) = σz(X)2. This definition is extended to any complex number α
by σz(αX) = σz(X)α. For example, the generating series of the elementary functions is

λz(X) :=
∑

Λi(X)zi =
∏
x∈X

(1 + xz)

= σ−z(−X) =
∑
i(−1)iSi(−X)zi.

The complete functions of the product of two alphabets XY are given by the Cauchy kernel

K(X,Y) := σ1(XY) =
∑
i

Si(XY) =
∏
x∈X

∏
y∈Y

1
1− xy

=
∑
λ

Sλ(X)Sλ(Y),

where Sλ denotes, as in [10], a Schur function. More generally, one has

K(X,Y) =
∑
λ

Aλ(X)Bλ(Y)

for any pair of bases (Aλ)λ and (Bλ)λ in duality for the usual scalar product 〈 , 〉, i.e. K(X,Y) is the
reproducing kernel associated to 〈 , 〉.
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2.2 Macdonald polynomials
The usual scalar product on symmetric functions admits a (q, t)-deformation (see e.g. [12]) defined for a
pair of power sum functions Ψλ and Ψµ (in the notation of [10]) by

〈Ψλ,Ψµ〉q,t = δλ,µzλ

l(λ)∏
i=1

1− qλi
1− tλi

, (1)

where δλ,µ = 1 if λ = µ and 0 otherwise. The family of (symmetric homogeneous) Macdonald polyno-
mials (Pλ(X; q, t))λ is the unique basis of the symmetric functions orthogonal w.r.t. 〈 , 〉q,t verifying

Pλ(X; q, t) = mλ(X) +
∑
µ≤λ

uλµmµ(X), (2)

where mλ denotes, as usual, a monomial function [10, 12]. The reproducing kernel associated to this
scalar product is

Kq,t(X,Y) :=
∑
λ

〈Ψλ,Ψλ〉−1
q,tΨλ(X)Ψλ(Y) = σ1

(
1− t
1− q

XY
)

see e.g. [12, VI.2]. In particular, one has

Kq,t(X,Y) =
∑
λ

Pλ(X; q, t)Qλ(Y; q, t), (3)

where Qλ(X; q, t) is the dual basis of Pλ(Y; q, t) with respect to 〈 , 〉q,t,

Qλ(X; q, t) = 〈Pλ, Pλ〉−1
q,tPλ(X; q, t). (4)

The coefficient bλ(q, t) = 〈Pλ, Pλ〉−1
q,t is known to be

bλ(q, t) =
∏

(i,j)∈λ

1− qλj−i+1tλ
′
i−j

1− qλj−itλ′i−j+1
(5)

see [12, VI.6]. Writing

Kq,t

((
1− q
1− t

)
X,Y

)
= K(X,Y), (6)

one finds that
(
Pλ

((
1−q
1−t

)
X; q, t

))
λ

is the dual basis of (Qλ(X; q, t))λ with respect to the usual scalar

product 〈 , 〉.
Note that there exists an other Kernel type formula which reads

λ1(XY) =
∑
λ

Pλ′(X; t, q)Pλ(Y; q, t) =
∑
λ

Qλ′(X; t, q)Qλ(Y; q, t). (7)

where λ′ denotes the conjugate partition of λ. This formula can be found in [12, VI.5 p329].
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From equalities (6) and (3) , one has

σ1(XY) = Kq,t

(
1− q
1− t

X,Y
)

=
∑
λ

Qλ

(
1− q
1− t

X; q, t
)
Pλ(Y; q, t). (8)

Applying (7) to
σ1(XY) = λ−1(−XY),

one obtains
σ1(XY) =

∑
λ

(−1)|λ|Qλ′(−X; t, q)Qλ(Y; q, t). (9)

Identifying the coefficient of Pλ(Y; t, q) in (8) and (9), one finds the following property.

Lemma 2.1
Qλ(−X; t, q) = (−1)|λ|Pλ′

(
1− q
1− t

X; q, t
)
. (10)

Unlike the usual (q = t = 1) scalar product, there is no expression as a constant term for the product
〈 , 〉q,t when X = {x1, . . . , xn} is finite. But the Macdonald polynomials are orthogonal with respect to
an other scalar product defined by

〈f, g〉′q,t;n =
1
n!

C.T.{f(X)g(X∨)∆q,t(X)} (11)

where C.T. denotes the constant term w.r.t. the alphabet X,

∆q,t(X) =
∏
i 6=j

(xix−1
j ; q)∞

(txix−1
j ; q)∞

, (a; b)∞ =
∏
i≥0

(1 − abi) and X∨ = {x−1
1 , . . . , x−1

n }. The expression of

〈Pλ, Qλ〉′q,t;n is given by ([12, VI.9])

〈Pλ, Qλ〉′q,t;n =
1
n!

C.T.{∆q,t(X)}
∏

(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
. (12)

2.3 Skew symmetric functions
Let us define as in [12, VI.7], the skew Macdonald functions Qλ/µ by

〈Qλ/µ, Pν〉q,t := 〈Qλ, PµPν〉q,t. (13)

Straightforwardly, one has

Qλ/µ(X; q, t) =
∑
ν

〈Qλ, PνPµ〉q,tQν(X; q, t). (14)

And classically, the following property holds (see e.g. [12, VI.7] for a short proof of this identity),

Proposition 2.2 Let X and Y be two alphabets, one has

Qλ(X + Y; q, t) =
∑
µ

Qµ(X; q, t)Qλ/µ(Y; q, t),
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or equivalently
Pλ(X + Y; q, t) =

∑
µ

Pµ(X; q, t)Pλ/µ(Y; q, t).

Equalities (3) and (7) are generalized by identities (15) and (16) as shown in [12, example 6 p.352],∑
ρ

Pρ/λ(X; q, t)Qρ/µ(Y; q, t) = Kqt(X,Y)
∑
ρ

Pµ/ρ(X; q, t)Qλ/ρ(Y; q, t), (15)

∑
ρ

Qρ′/λ′(X; t, q)Qρ/µ(Y; q, t) = λ1(XY)
∑
ρ

Qµ′/ρ′(X, t, q)Qλ/ρ(Y; q, t). (16)

3 The substitution xp → Sp(Y) and the Macdonald polynomials
Let X = {x1, . . . , xn} be a finite alphabet and Y be an other (potentially infinite) alphabet. For simplicity
we will denote by

∫
Y the substitution ∫

Y
: xp → Sp(Y), (17)

for each x ∈ X and each p ∈ Z. Let us define the symmetric function

Hn,kλ/µ(Y; q, t) :=
1
n!

∫
Y
Pλ(X; q, t)Qµ(X∨; q, t)∆(X, q, t) (18)

where X∨ = {x−1
1 , . . . , x−1

n }.
Set Ytq := 1−t

1−qY and consider the substitution∫
Ytq

xp = Sp
(
Ytq
)

= Qp(Y; q, t). (19)

The following result shows that Hn,kλ/µ is a skew Macdonald polynomial on a suitable alphabet.

Theorem 3.1 Let X = {x1, . . . , xn} be an alphabet, λ = (λ1, . . . , λn) be a partition and µ ⊂ λ. The
polynomial Hn,kλ/µ(Ytq; q, t) is the Macdonald polynomial

Hn,kλ/µ(Ytq; q, t) =
1
n!

∏
(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
C.T.{∆(X, q, t)}Pλ/µ(Y, q, t) (20)

Set Y = {−y1, . . . ,−ym, . . .} if Y = {y1, . . . , ym, . . .} and note that the operation Y → Y makes sense
even for virtual alphabet since it sends any homogeneous symmetric polynomial P (Y) of degree p to
(−1)pP (Y). One observes the following phenomenon which is obtained from Theorem 3.1 by applying
the operations of the λ-ring structure.

Corollary 3.2 Let X = {x1, . . . , xn} be an alphabet, λ = (λ1, . . . , λn) be a partition and µ ⊂ λ. One
has

Hn,kλ/µ(−Y; q, t) =
1
n!

∏
(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
C.T.{∆(X, q, t)}Qλ′/µ′(Y, t, q). (21)
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Note that in the case of partitions, one has

Corollary 3.3

Hn,kλ (−Y, q, t) =
1
n!

∏
(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
C.T.{∆(X, q, t)}Qλ′(Y, t, q) (22)

Example 3.4 Consider the following equality

H2,3
41/3(−Y; q, t) = (∗)C.T.{∆(X, q, t)}Q2111/111(Y; t, q).

where X = {x1, x2}. The coefficient (∗) is computed as follows. One writes the partition [41] in a
rectangle of height 2 and length 4.

×
× × × ×

Each × of coordinates (i, j) is read as the fraction [i, j] := 1−qi−1t3−j

1−qit2−j . Hence

(∗) = [1, 2][1, 1][2, 1][3, 1][4, 1] =
(1− t)(1− t2)(1− qt2)(1− q2t2)(1− q3t2)
(1− q)(1− qt)(1− q2t)(1− q3t)(1− q4t)

4 A formula involving the polynomials Pλ

(
1−q
1−qkX; q, qk

)
and Pλ

(
X; q, qk

)
Now, we suppose that t = qk with k ∈ N. In that case, the constant term C.T.{∆(X, q, t)} admits a
closed form and Corollary 3.3 gives

Corollary 4.1
Hn,kλ (−Y, q, qk) = βn,kλ (q)Qλ′(Y; qk, q). (23)

where

βn,kλ (q) =
n−1∏
i=0

[
λn−i − 1 + k(i+ 1)

k − 1

]
q

and
[
n
p

]
q

= (1−qn)...(1−qn−p+1)
(1−q)...(1−qr) denotes the q-binomial.

Example 4.2 Set k = 2, n = 3 and consider the polynomial

H3,2
[320](−Y; q, q2) =

1
n!

∫
−Y

P[32](x1 + x2 + x3; q, q2)
∏
i 6=j

(1− xix−1
j )(1− qxix−1

j ).

One has

H3,2
[320](−Y; q, q2) =

(
1− q5

) (
1− q8

)
(1− q)2

Q[221](Y; q2, q).
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Let
ΩS :=

1
n!

∫
X

∏
i 6=j

(1− xix−1
j ) (24)

and for each v ∈ Zn,
S̃v(X) = det

(
x
vj+n−j
i

)∏
i<j

(xi − xj)−1.

Lemma 4.3 If v is any vector in Zn, one has

ΩSS̃v(X) = Sv(X) := det(Svi−i+j(X)) (25)

In particular, ΩS leaves invariant any symmetric polynomial. The operator

Am := ΩSΛn(X)−m (26)

acts on symmetric polynomials by substracting m from each part of the partitions appearing in their
expansion in the Schur basis.

Example 4.4 If X = {x1, x2, x3} and λ = [320], one has

P32(X; q, t) = S32(X) +
(−q + t)S311(X)

qt− 1
+

(q + 1)
(
qt2 − 1

)
(−q + t)S221(X)

(qt− 1)2 (qt+ 1)
.

Hence,

A1P32(X; q, t) = (−q+t)S2(X)
qt−1 +

(q+1)(qt2−1)(−q+t)S11(X)

(qt−1)2(qt+1)

=
(−q+t)(t+1)(q2t−1)P11(X;q,t)

(qt−1)2(qt+1)
+ (−q+t)P2(X;q,t)

qt−1 .

Theorem 4.5 If λ denotes a partition of length at most n, one has

A(k−1)(n−1)Pλ(X; q, qk)
k−1∏
l=1

∏
i 6=j

(xi − qlxj) = βn,kλ (q)Pλ

(
1− q
1− qk

X; q, qk
)

(27)

Example 4.6 Set k = 2, n = 3 and λ = [2]. One has

P[2](x1 + x2 + x3; q, q2)
∏
i 6=j

(xi − qxj) = −q3S[6,2] + q2
q3 − 1
q − 1

S[6,1,1]

+
q2(q5 − 1)
q3 − 1

S[5,3] −
q(q2 + 1)(q5 − 1)

q3 − 1
S[5,2,1] −

q(q7 − 1)
q3 − 1

S[4,3,1] +
q7 − 1
q − 1

S[4,2,2].

And,

A2P[2](x1 + x2 + x3; q, q2)
∏
i 6=j

(xi − qxj) =
q7 − 1
q − 1

S[2].

Since,

P[2]

(
x1 + x2 + x3

1 + q
; q, q2

)
=

q − 1
q3 − 1

S[2]
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one obtains

A2P[2](x1 + x2 + x3; q, q2)
∏
i 6=j

(xi − qxj) =
[

1
1

]
q

[
3
1

]
q

[
7
1

]
q

P[2]

(
x1 + x2 + x3

1 + q
; q, q2

)
.

As a consequence, one has

Corollary 4.7 If λ = µ+ [((k − 1)(n− 1))n],

Pµ(X; q, qk)
k−1∏
l=1

∏
i6=j

(xi − qlxj) = βn,kλ (q)Pλ

(
1− q
1− qk

X; q, qk
)
.

Example 4.8 Set k = 3, n = 2 and λ = [5, 2]. One has

P[5,2](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =

q3S[9,2] +
(1− q7)(1 + q4)

1− q5
S[7,4] −

(1− q2)(1 + q)(1 + q2)(1 + q4)
1− q5

S[8,3].

This implies

A2P[5,2](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =
(x1x2)−2P[5,2](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =
P[3](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1).

One verifies that

P[3](x1 + x2; q, q3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =[
4
2

]
q

[
10
2

]
q

P[5,2](
x1 + x2

1 + q + q2
; q, q3).

Remark 4.9 If µ is the empty partition, Corollary 4.7 gives

k−1∏
l=1

∏
i 6=j

(xi − qlxj) = βn,kλ (q)P[((k−1)(n−1))n]

(
1− q
1− qk

X; q, qk
)
. (28)

This equality generalizes an identity given in [1]:

∏
i<j

(xi − xj)2(k−1) =
(−1)

((k−1)n(n−1)
2

n!

(
kn

k, . . . , k

)
P

(k)

n(n−1)(k−1)(−X),

where P (k)
λ (X) = lim

q→1
P

(α)
λ (X; q, qk) denotes a Jack polynomial (see e.g. [12]).

The expansion of the powers of the discriminant and their q-deformations in different basis of symmetric
functions is a difficult problem having many applications, for example, in the study of Hua-type integrals
(see e.g. [5, 7]) or in the context of the fractional quantum Hall effect (e.g. [3, 6, 8, 14]).
Note that in [2], we gave an expression of an other q-deformation of the powers of the discriminant as
staircase Macdonald polynomials. This deformation is also relevant in the study of the expansion of∏
i<j(xi − xj)2k in the Schur basis (for example, we generalized in [2] a result of [6]).
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5 Macdonald polynomials at t = qk as eigenfunctions
Let Y = {y1, . . . , ykn} be an alphabet of cardinality kn with y1 = x1, . . . , yn = xn. One considers the
symmetrizer πω defined by

πωf(y1, . . . , ykn) =
Y
i<j

(xi − xj)
−1

X
σ∈Skn

sign(σ)f(yσ(1), . . . , yσ(kn))y
kn−1
σ(1)

. . . yσ(kn−1).

Note that πω is the isobaric divided difference associated to the maximal permutation ω in Skn.
This operator applied to a symmetric function of the alphabet X increases the alphabet from X to Y in

its expansion in the Schur basis, since

πωSλ(X) = Sλ(Y). (29)

Indeed, the image of the monomial yi11 . . . yiknkn is the Schur function SI(Y). Since

πωSλ(X) = πωx
λ1
1 . . . xλnn = πωy

λ1
1 . . . yλnn y0

n+1 . . . y
0
kn,

one recovers equality (29).
One defines the operator πtq which consists in applying πω and specializing the result to the alphabet

Xtq := {x1, . . . , xn, qx1, . . . , qxn, . . . , q
k−1x1, . . . , q

k−1xn}.

From equality (29), one has

πtqω Sλ(X) = Sλ
(
(1 + q + . . .+ qk−1)X

)
, (30)

for l(λ) ≤ n. Furthermore, the expansion of Sλ
(
(1 + q + . . .+ qk−1)X

)
in the Schur basis is triangular,

so the operator πtq defines an automorphism of the space Sym≤n generated by the Schur functions
indexed by partitions whose length are less or equal to n, i.e. for each function f ∈ Sym≤n, one has

πtqf(X) = f(Xtq). (31)

In particular,

Lemma 5.1 Let λ be a partition such that l(λ) ≤ n then

πtqω Pλ

(
1− q
1− qk

X; q, t = qk
)

= Pλ(X, q, qk). (32)

Consider the operator M : f →Mf defined by

M := (x1 . . . xn)(k−1)(1−n)πtqω

k−1∏
l=1

∏
i6=j

(xi − qlxj).

The following theorem shows that the Macdonald polynomials are the eigenfunctions of the operator M.

Theorem 5.2 The Macdonald polynomials Pλ(X; q, qk) are eigenfunctions of M. The eigenvalue asso-
ciated to Pµ(X; q, qk) is βn,kµ+((k−1)(n−1))n(q). Furthermore, if k > 1, the dimension of each eigenspace
is 1.
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Example 5.3 If n = 5, the eigenvalues associated to the partitions of 4 are

β
4,k
[4 k,4 k−4,4 k−4,4 k−4,4 k−4] =

h 5k−5
k−1

i
q

h 6k−5
k−1

i
q

h 7k−5
k−1

i
q

h 8k−5
k−1

i
q

h 9k−1
k−1

i
q

(λ = [4, 0, 0, 0, 0]),

β
4,k
[4 k−1,4 k−3,4 k−4,4 k−4,4 k−4] =

h 5k−5
k−1

i
q

h 6k−5
k−1

i
q

h 7k−5
k−1

i
q

h 8k−4
k−1

i
q

h 9k−2
k−1

i
q

(λ = [3, 1, 0, 0, 0]),

β
4,k
[4 k−2,4 k−2,4 k−4,4 k−4,4 k−4] =

h 5k−5
k−1

i
q

h 6k−5
k−1

i
q

h 7k−5
k−1

i
q

h 8k−3
k−1

i
q

h 9k−3
k−1

i
q

(λ = [2, 2, 0, 0, 0]),

β
4,k
[4 k−2,4 k−3,4 k−3,4 k−4,4 k−4] =

h 5k−5
k−1

i
q

h 6k−5
k−1

i
q

h 7k−4
k−1

i
q

h 8k−4
k−1

i
q

h 9k−3
k−1

i
q

(λ = [2, 1, 1, 0, 0]),

β
4,k
[4 k−3,4 k−3,4 k−3,4 k−3,4 k−4] =

h 5k−5
k−1

i
q

h 6k−4
k−1

i
q

h 7k−4
k−1

i
q

h 8k−4
k−1

i
q

h 9k−4
k−1

i
q

(λ = [1, 1, 1, 1, 0]).

6 Expression of M in terms of the Cherednik elements
In this paragraph, we restate Proposition 5.2 in terms of Cherednik operators. Cherednik’s operators
{ξi; i ∈ {1, . . . , n}} =: Ξ are commutative elements of the double affine Hecke algebra. The Macdonald
polynomials Pλ(X; q, t) are eigenfunctions of symmetric polynomials f(Ξ) and the eigenvalues are ob-
tained substituting each occurrence of ξi in f(Ξ) by qλitn−i (see [11] for more details).
Suppose that k > 1 and consider the operator M̃ : f → M̃f defined by

M̃ :=
k−1∏
i=1

(1− qi)nM. (33)

From Proposition 5.2, one has

M̃Pλ(X; q, qk) =
n−1∏
i=0

k−1∏
j=1

(1− qλn−i+k(i+1)−j)Pλ(X; q, qk). (34)

The following proposition shows that M̃ admits a closed expression in terms of the Cherednick elements.

Proposition 6.1 One supposes that k > 1. For any symmetric function f , one has

M̃f(X) =
k−1∏
l=1

n∏
i=1

(1− ql+kξi)f(X). (35)
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[7] A. Korányi, Hua-type integrals, hypergeomatric functions and symmetric polynomials, Proceeding
of a Conference in Memory of L K Hua, Beijin (1998).

[8] R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Frac-
tionally Charged Excitations , Phys. Rev. Lett. 50 (1983) 1395-1398

[9] L. Lapointe, A. Lascoux, J. Morse, Determinantal expressions for Macdonald polynomials, Inter-
national Mathematics Research Notices 18 (1998).

[10] A Lascoux, Symmetric function and combinatorial operators on polynomials, CBMS 99, American
Mathematical Society 2001.

[11] A. Lascoux, Yang-Baxter graphs, Jack and Macdonald polynomials, Ann. Comb., 5(3-4) (2001)
397-424. Dedicated to the memory of Gian-Carlo Rota (Tianjin, 1999)

[12] I. G. Macdonald, Symetric functions and Hall polynomials, second edition, Oxford University Press
Inc., New York 1995.

[13] I. G. Macdonald, Affine Hecke algebra and orthogonal polynomials, Cambridge University Press,
Cambridge, 2003.

[14] T. Scharf, J.-Y. Thibon, B.G. Wybourne, Powers of the Vandermonde determinant and the quantum
Hall effect, J. Phys. A.: Math. Gen. 27 (1994) 4211-4219.

[15] D. Zeilberger, D. Bressoud, A proof of Andrew’s q-Dyson conjecture, Discrete Math. 54 (1985)
201-224.



596 Jean-Gabriel Luque


	Introduction
	Notations and background
	Symmetric functions
	Macdonald polynomials
	Skew symmetric functions

	The substitution xpSp(Y) and the Macdonald polynomials
	A formula involving the polynomials P(1-q1-qkX;q,qk) and P(X;q,qk)
	Macdonald polynomials at t=qk as eigenfunctions
	Expression of M in terms of the Cherednik elements

