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Permutations with Kazhdan-Lusztig
polynomial Pid,w(q) = 1 + qh

Alexander Woo†

Mathematics, Statistics, and Computer Science, Saint Olaf College, 1520 Saint Olaf Ave., Northfield, MN 55057

Abstract. Using resolutions of singularities introduced by Cortez and a method for calculating Kazhdan-Lusztig
polynomials due to Polo, we prove the conjecture of Billey and Braden characterizing permutations w with Kazhdan-
Lusztig polynomial Pid,w(q) = 1 + qh for some h.

Résumé. On démontre la conjecture de Billey et Braden sur les permutations w pour lesquelles le polynôme de
Kazhdan-Lusztig Pid,w(q) = 1 + qh pour un entier h. On emploie une résolution des singularités présentées par
Cortez et une méthode de Polo pour calculer ces polynômes.
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1 Introduction
The results mentioned in this extended abstract have been published in [33] along with most of the intro-
ductory material. We explain here the alternative approach mentioned in [33, Remark 4.7]. This approach
recasts some of the geometry into combinatorial language, but the details in the proofs of the lemmas will
be essentially the same.

Kazhdan-Lusztig polynomials are polynomials Pu,w(q) in one variable associated to each pair of el-
ements u and w in the symmetric group Sn (or more generally in any Coxeter group). They have an
elementary definition in terms of the Hecke algebra [24, 21, 9] and numerous applications in represen-
tation theory, most notably in [24, 1, 13], and the geometry of homogeneous spaces [25, 17]. While
their definition makes it fairly easy to compute any particular Kazhdan-Lusztig polynomial, on the whole
they are poorly understood. General closed formulas are known [5, 10], but they are fairly complicated;
furthermore, although Kazhdan-Lusztig polynomials are known to be positive (for Sn and other Weyl
groups), these formulas have negative signs. For Sn, positive formulas are known only for 3412 avoid-
ing permutations [26, 27], 321-hexagon avoiding permutations [7], and some isolated cases related to the
generic singularities of Schubert varieties [8, 29, 16, 32].

One important interpretation of Kazhdan-Lusztig polynomials is as local intersection homology Poin-
caré polynomials for Schubert varieties. This interpretation, originally established by Kazhdan and
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Lusztig [25], shows, in an entirely non-constructive manner, that Kazhdan-Lusztig polynomials have non-
negative integer coefficients and constant term 1. Furthermore, as shown by Deodhar [17], Pid,w(q) = 1
(for Sn) if and only if the Schubert variety Xw is smooth, and, more generally, Pu,w(q) = 1 if and only if
Xw is smooth over the Schubert cell X◦u.

The purpose of this paper is to prove the following theorem.

Theorem 1.1 Suppose the singular locus ofXw has exactly one irreducible component, and w avoids the
patterns 653421, 632541, 463152, 526413, 546213, and 465132. Then Pid,w(1) = 2.

More precisely, when the hypotheses are satisfied, Pid,w(q) = 1 + qh where h is the minimum height
of a 3412 embedding, with h = 1 if no such embedding exists.

Here, a 3412 embedding is a sequence of indices i1 < i2 < i3 < i4 such that w(i3) < w(i4) <
w(i1) < w(i2), and its height is w(i1)−w(i4). Given the first part of the theorem, the second part can be
immediately deduced from the unimodality of Kazhdan-Lusztig polynomials [22, 12] and the calculation
of the Kazhdan-Lusztig polynomial at the unique generic singularity [8, 29, 16]. Indeed, unimodality and
this calculation imply the following corollary.

Corollary 1.2 Suppose w satisfies the hypotheses of Theorem 1.1. Let Xv be the singular locus of Xw.
Then Pu,w(q) = 1 + qh (with h as in Theorem 1.1) if u ≤ v in Bruhat order, and Pu,w(q) = 1 otherwise.

The permutation v and the singular locus in general has a combinatorial description given in Theo-
rem 2.1, which was originally proved independently in [8, 16, 23, 28]. This description is used in our
proof. Furthermore, Billey and Weed recently found a combinatorial version [33, Theorem A.1] of Theo-
rem 1.1, replacing the geometric condition that Xw has one irreducible component with sixty additional
patterns.

Theorem 1.1 was conjectured by Billey and Braden [6]. They claim to have a proof for the converse
in their paper. An outline of their proof is as follows. If Pid,w(1) = 1 then Xw is nonsingular [17].
The methods for calculating Kazhdan-Lusztig polynomials due to Braden and MacPherson [12] show that
Pid,w(1) ≤ 2 implies that the singular locus of Xw has at most one component. That Pid,w(1) ≤ 2
implies the pattern avoidance conditions follows from [6, Thm. 1] and the computation of Kazhdan-
Lusztig polynomials for the six pattern permutations.

Example 1.3 To illustrate the theorem, Pid,643521(q) = 1 + q (as 643521 has no 3412 embedding),
Pid,254613(q) = 1 + q (as h = 1), Pid,2657413(q) = 1 + q2, and Pid,564312(q) = 1 + q3. On the other
hand, Pid,34512(q) = 1 + 2q (as the singular locus of X34512 has three irreducible components), and
Pid,2574163(q) = 1 + q + q2 (as 2574163 does not avoid 463152).

The proof of Theorem 1.1 outlined in this abstract requires two cases. When w has no 3412 embedding,
we analyze the algorithm of Lascoux [26] for calculating Kazhdan-Lusztig polynomials for such w. For
w containing a 3412 embedding, we use a resolution of singularities for Schubert varieties introduced
by Cortez [16]. In general, the maps introduced by Cortez [16] do not necessarily come from a smooth
variety, but they are actual resolutions forw satisfying the conditions of Theorem 1.1. A Bialynicki-Birula
decomposition [3, 4, 14] of the resolution gives us a combinatorial formula purely in terms of permutations
for the Poincaré polynomials for the fibers of the resolution. Polo [30] gave a combinatorial interpretation
of the Decomposition Theorem [2] which allows us to then calculate Kazhdan-Lusztig polynomials from
these Poincaré polynomials. This calculation is in the spirit of Deodhar’s approach [18] to calculating
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Kazhdan-Luzstig polynomials Pu,w(q) from a reduced expression for w, but our calculation is simpler in
this particular case.

Corollary 1.2 suggests the problem of describing all pairs u and w for which Pu,w(1) = 2. It seems
possible to extend the methods of this paper to characterize such pairs; presumably Xu would need to lie
in no more than one component of the singular locus of Xw, and [u,w] would need to avoid certain inter-
vals (see Section 2.3). Our methods in theory extend to more permutations, but any further extension to
characterize w for which Pid,w(1) = 3 is likely to be extremely combinatorially intricate. An extension to
other Weyl groups would also be interesting, not only for its intrinsic value, but because methods for prov-
ing such a result may suggest methods for proving any (currently nonexistent) conjecture combinatorially
describing the singular loci of Schubert varieties for these other Weyl groups.

I wish to thank Eric Babson for encouraging conversations and Sara Billey for helpful comments and
suggestions on earlier drafts. I used Greg Warrington’s software [31] for computing Kazhdan-Lusztig
polynomials in explorations leading to this work.

2 Preliminaries
2.1 The symmetric group and Bruhat order
We begin by setting notation and basic definitions. We let Sn denote the symmetric group on n letters.
We let si ∈ Sn denote the adjacent transposition which switches i and i + 1; the elements si for i =
1, . . . , n− 1 generate Sn. Given an element w ∈ Sn, its length, denoted `(w), is the minimal number of
generators such that w can be written as w = si1si2 · · · si` . An inversion in w is a pair of indices i < j
such that w(i) > w(j). The length of a permutation w is equal to the number of inversions it has.

Unless otherwise stated, permutations are written in one-line notation, so that w = 3142 is the permu-
tation such that w(1) = 3, w(2) = 1, w(3) = 4, and w(4) = 2.

Given a permutation w ∈ Sn, the graph of w is the set of points (i, w(i)) for i ∈ {1, . . . , n}. We
will draw graphs according to the Cartesian convention, so that (0, 0) is at the bottom left and (n, 0) the
bottom right.

The rank function rw is defined by

rw(p, q) = #{i | 1 ≤ i ≤ p, 1 ≤ w(i) ≤ q}

for any p, q ∈ {1, . . . , n}. We can visualize rw(p, q) as the number of points of the graph of w in the
rectangle defined by (1, 1) and (p, q). There is a partial order on Sn, known as Bruhat order, which can
be defined as the reverse of the natural partial order on the rank function; explicitly, u ≤ w if ru(p, q) ≥
rw(p, q) for all p, q ∈ {1, . . . , n}. The Bruhat order and the length function are closely related. If
u < w, then `(u) < `(w); moreover, if u < w and j = `(w) − `(u), then there exist (not necessarily
adjacent) transpositions t1, . . . , tj such that u = tj · · · t1w and `(ti+1 · · · t1w) = `(ti · · · t1w)− 1 for all
i, 1 ≤ i < j. For a thorough exposition covering various definitions and properties of Bruhat order see [9,
Chap. 2].

2.2 Schubert varieties
Now we briefly define Schubert varieties. A (complete) flag F• in Cn is a sequence of subspaces {0} ⊆
F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Cn, with dimFi = i. As a set, the flag variety Fn has one point for
every flag in Cn. The flag variety Fn has an algebraic and geometric structure as GL(n)/B, where B is
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the group of invertible upper triangular matrices, as follows. Given a matrix g ∈ GL(n), we can associate
to it the flag F• with Fi being the span of the first i columns of g. Two matrices g and g′ represent the
same flag if and only if g′ = gb for some b ∈ B, so complete flags are in one-to-one correspondence with
left B-cosets of GL(n).

Fix an ordered basis e1, . . . , en for Cn, and let E• be the flag where Ei is the span of the first i basis
vectors. Given a permutation w ∈ Sn, the Schubert cell associated to w, denoted X◦w, is the subset of Fn
corresponding to the set of flags

{F• | dim(Fp ∩ Eq) = rw(p, q) ∀p, q}. (1)

The conditions in 1 are called rank conditions The Schubert variety Xw is the closure of the Schubert
cell X◦w; its points correspond to the flags

{F• | dim(Fp ∩ Eq) ≥ rw(p, q) ∀p, q}.

Bruhat order has an alternative definition in terms of Schubert varieties; the Schubert variety Xw is a
union of Schubert cells, and u ≤ w if and only if X◦u ⊂ Xw. In each Schubert cell X◦w there is a
Schubert point ew, which is the point associated to the permutation matrix w; in terms of flags, the flag
E

(w)
• corresponding to ew is defined by E(w)

i = C{ew(1), . . . , ew(i)}. The Schubert cell X◦w is the orbit
of ew under the left action of the group B.

Many of the rank conditions in (1) are actually redundant. Fulton [20] showed that for any w there is
a minimal set, called the coessential set(i), of rank conditions which suffice to define Xw. To be precise,
the coessential set is given by

Coess(w) = {(p, q) | w(p) ≤ q < w(p+ 1), w−1(q) ≤ p < w−1(q + 1)},

and a flag F• corresponds to a point in Xw if and only if dim(Fp ∩ Eq) ≥ rw(p, q) for all (p, q) ∈
Coess(w).

While we have distinguished between points in flag and Schubert varieties and the flags they correspond
to here, we will freely ignore this distinction in the rest of the paper.

2.3 Pattern avoidance and interval pattern avoidance
Let v ∈ Sm and w ∈ Sn, with m ≤ n. A (pattern) embedding of v into w is a set of indices i1 <
· · · < im such that the entries of w in those indices are in the same relative order as the entries of v.
Stated precisely, this means that, for all j, k ∈ {1, . . . ,m}, v(j) < v(k) if and only if w(ij) < w(ik). A
permutation w is said to avoid v if there are no embeddings of v into w.

Now let [x, v] ⊆ Sm and [u,w] ⊆ Sn be two intervals in Bruhat order. An (interval) (pattern)
embedding of [x, v] into [u,w] is a simultaneous pattern embedding of x into u and v into w using the
same set of indices i1 < · · · < im, with the additional property that [x, v] and [u,w] are isomorphic as
posets. For the last condition, it suffices to check that `(v)− `(x) = `(w)− `(u) [34, Lemma 2.1].

Note that given the embedding indices i1 < · · · < im, any three of the four permutations x, v, u, and w
determine the fourth. Therefore, for convenience, we sometimes drop u from the terminology and discuss
embeddings of [x, v] in w, with u implied. We also say that w (interval) (pattern) avoids [x, v] if there
are no interval pattern embeddings of [x, v] into [u,w] for any u ≤ w.

(i) Fulton [20] indexes Schubert varieties in a manner reversed from our indexing as it is more convenient in his context. As a
result, his Schubert varieties are defined by inequalities in the opposite direction, and he defines the essential set with inequalities
reversed from ours. Our conventions also differ from those of Cortez [15] in replacing her p− 1 with p.
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2.4 Singular locus of Schubert varieties
Now we describe combinatorially the singular loci of Schubert varieties. The results of this section are
due independently to Billey and Warrington [8], Cortez [15, 16], Kassel, Lascoux, and Reutenauer [23],
and Manivel [28].

Stated in terms of interval pattern embeddings as in [34, Thm. 6.1], the theorem is as follows. Permu-
tations are given in 1-line notation. We use the convention that the segment “j, · · · , i” means j, j − 1, j −
2, . . . , i+ 1, i. In particular, if j < i then the segment is empty.

Theorem 2.1 The Schubert variety Xw is singular at eu′ if and only if there exists u with u′ ≤ u < w
such that one of the following (infinitely many) intervals embeds in [u,w]:

I:
[
(y+1), z, · · · , 1, (y+z+2), · · · , (y+2); (y+z+2), (y+1), y, · · · , 2, (y+z+1), · · · , (y+2), 1

]
for some integers y, z > 0.

IIA:
[
(y + 1), · · · , 1, (y + 3), (y + 2), (y + z + 4), · · · , (y + 4); (y + 3), (y + 1), · · · , 2, (y + z +

4), 1, (y + z + 3), · · · , (y + 4), (y + 2)
]

for some integers y, z ≥ 0.

IIB:
[
1, (y + 3), · · · , 2, (y + 4); (y + 3), (y + 4), (y + 2), · · · , 3, 1, 2

]
for some integer y > 1.

Equivalently, the irreducible components of the singular locus of Xw are the subvarieties Xu for which
one of these intervals embeds in [u,w].

2.5 Bialynicki-Birula decompositions
Given a C∗ action on a smooth complex projective variety Y with finitely many fixed points, Bialynicki-
Birula [3, 4] defined a decomposition of Y into cells, which he showed are each isomorphic to Cn for
some n. More precisely, given a C∗-fixed point p, we can associate the cell

Y ◦p := {y ∈ Y | lim
t→0

t · y = p}.

In the case where Y is the flag variety, there is a C∗ action whose fixed points are the Schubert points and
whose resulting cells are the Schubert cells. Therefore, even though Schubert varieties are not smooth,
they have a Bialynicki-Birula decomposition.

Given a C∗-equivariant resolution of singularities π : Z → Xw, we also have a Bialynicki-Birula
decomposition of Z. Furthermore, if we let Pu denote the set of C∗-fixed points of Z in π−1(eu), we
have a cell decomposition

π−1(X◦u) =
⊔
p∈Pu

Y ◦p ,

and a decomposition of the fiber π−1(eu) into cells π−1(eu) ∩ Y ◦p which are respectively of dimensions
dim(Y ◦p )− dim(X◦u).

Therefore, the homology Poincaré polynomial for π−1(eu) is

Hu,π(q) =
∑
p∈Pu

qdim(Y ◦p )−`(u).

(Technically, the degrees should be doubled, but as we have halved the degrees since all cells will be
(R)-even-dimensional and this will match the usual degrees for Kazhdan-Lusztig polynomials.)
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2.6 The Decomposition Theorem
From the homology Poincaré polynomialsHu,π for a resolution π : Z → Xw we can, following Polo [30],
use the Decomposition Theorem [2] to calculate Kazhdan-Lusztig polynomials. More specifically, given
such a resolution,

Hu,π(q) = Pu,w(q) +
∑

u≤v<w

q`(w)−`(v)Ev(q)Pu,v(q).

In this statement, Ev(q) are Laurent polynomials in q
1
2 to be determined later; the Laurent polynomials

Ev(q) depend only on v and π and not on u, have with positive integer coefficients, and satisfy the identity
Ev(q) = Ev(q−1).

One case of the Decomposition Theorem is well-known in the theory of Kazhdan-Lusztig polynomials.
When Z is the full Bott-Samelson resolution of Xw constructed from a reduced word decomposition
w = si1 · · · si` , the fixed points of Z are indexed by the 2`(w) subwords of this reduced word. One
method of indexing leads to dim(Y ◦p ) − dim(X◦u) being Deodhar’s defect statistic [18], so that Hu,π is
precisely the sum, taken over subwords of our defining reduced word, of q raised to the number of defects
in the subword. Rearranged, the formula above is precisely Deodhar’s formula, and Ev(q) represents the
inadmissible masks.

Unfortunately the full Bott-Samelson resolution and Deodhar’s approach is too difficult to analyze in
this case. Instead we use a resolution of singularities due to Cortez [16] and calculate Hu,π for this
resolution π and certain crucial permutations u. This will give us enough information to calculate Ev for
those resolutions and determine Pid,w(q) when w satisfies the conditions of Theorem 1.1.

3 The covexillary case
A permutation w is covexillary if it avoids 3412. Generalizing a formula of Lascoux and Schützenberger
in the case where w has only one ascent, Lascoux [26] gave a formula for the Kazhdan-Lusztig polyno-
mials Pu,w(q) which applies whenever w is covexillary. This formula proceeds by constructing a rooted
tree Tw from w with nonnegative integer labels for the leaves of this tree based on how far u and w are
from each other. Given an edge labelling L of a tree by nonnegative integers, let s(L) be the sum of the
edge labels. Then Lascoux shows that

Pu,w =
∑
L

qs(L),

where the sum is over all nondecreasing edge labellings of Tw which are bounded by the labels for the
leaves.

A Schubert variety Xw for a covexillary permutation w has one component in its singular locus pre-
cisely when the labelling of the rooted tree Tw for id has only one leaf λ which is not labeled 0. Further-
more, the following lemmas hold.

Lemma 3.1 Suppose w avoids 632541. Then no single branch of Tw is two edges long by itself. (In other
words, every leaf is adjacent to a internal node with at least two children.)

Lemma 3.2 Suppose w avoids 653421. Then no leaf of Tw has a label greater than 1.

In consequence, when the singular locus of Xw has one component and w avoids 3412, 632541, and
653421, one must label all the edges of Tw by 0, except for the edge above λ which can be labelled 0 or
1. Therefore, Pid,w(q) = 1 + q.
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4 The 3412 containing case
In this section we treat the case where w contains a 3412 pattern. We use a resolution of singularities
defined by Cortez and the machinery mentioned above of a Bialynicki-Birula decomposition followed by
an application of the Decomposition Theorem.

4.1 Cortez’s resolution
We begin with some definitions necessary for defining a variety Z and a C∗-equivariant map π : Z → Xw

which we will show is a resolution of singularities. Our notation and terminology generally follows that
of Cortez [16]. Given an embedding i1 < i2 < i3 < i4 of 3412 into w, we call w(i1)− w(i4) its height
(hauteur), and w(i2)− w(i3) its amplitude. Among all embeddings of 3412 in w, we take the ones with
minimum height, and among embeddings of minimum height, we choose one with minimum amplitude.
As we will be continually referring this particular embedding, we denote the indices of this embedding by
a < b < c < d and entries of w at these indices by α = w(a), β = w(b), γ = w(c), and δ = w(d). We
let h = α− δ be the height of this embedding.

Let α′ be the largest number such that w−1(α′) < w−1(α′ − 1) < · · · < w−1(α + 1) < w−1(α) and
δ′ the smallest number such that w−1(δ) < w−1(δ − 1) < · · · < w−1(δ′). Also let a′ = w−1(α′) and
d′ = w−1(δ′). Now let κ = δ′ + α′ − α, let I denote the set of simple transpositions {sδ′ , · · · , sα′−1},
and let J be I \ {sκ}. Furthermore, let v = wJ0w

I
0w, where wJ0 and wI0 denote the longest permutations

in the parabolic subgroups of Sn generated by J and I respectively.

Example 4.1 Suppose w = 817396254 ∈ S9. Then a = 3, b = 5, c = 7, and d = 8, while α = 7, β = 9,
γ = 2, and δ = 5. We also have h = 2, α′ = 8 and δ′ = 4. Hence κ = 5 and v = 514398276.

Now consider the variety Z = PI ×PJ Xv . By definition, Z is a quotient of PI × Xv under the
free action of PJ where q · (p, x) = (pq−1, q · x) for any q ∈ PJ , p ∈ PI , and x ∈ Xv . We have
a map π : Z → Xw defined by π(p, x) = p · x; note this is well-defined. The map π is birational
and surjective [16, Proposition 4.4]. However, Z is not smooth in general, as Xv need not be smooth.
Nevertheless, we show the following for our case.

Lemma 4.2 Suppose the singular locus of Xw has only one component and w avoids 463152. Then Z is
smooth.

Cortez [16] introduced the variety Z along with several other varieties (constructed by defining κ =
δ′ + α′ − α + i − 1 for i = 1, . . . , h) to help in describing the singular locus of Schubert varieties(ii).
A virtually identical proof would follow from analyzing the resolution given by i = h instead of i = 1
as we are doing, but the other choices of i will give maps which are harder to analyze as they have more
complicated fibers.

4.2 Calculations for Hπ,u

We now need to identify the fixed points of Z under the C∗ action, calculate the dimensions of the cells
associated with them, and classify them according to the fixed point eu they map to under π. The fixed
points of Z are precisely {(σ, eτ )}, where σ is in WI , the parabolic subgroup of Sn generated by sk for

(ii) Cortez’s choice of 3412 embedding in [16] is slightly different from ours. For technical reasons she chooses one of minimum
amplitude among those satisfying a condition she calls “well-filled” (bien remplie). As she notes, 3412 embeddings of minimum
height are automatically “well-filled”.
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k ∈ I (considered as a subgroup ofGLn in the usual way), and τ ≤ v in Bruhat order on Sn. Several such
pairs (σ, τ) will be in the same PJ orbit, so they will represent the same point in Z. We can eliminate this
duplication by choosing one σ from each left WJ coset. For convenience, we will choose the one which
is minimal in Bruhat order; each coset has a unique minimal element since WJ is parabolic. Furthermore,
π(σ, eτ ) = eu if and only if στ = u.

When u is minimal in its rightWI coset, then the dimension of the cell associated to (σ, eτ ) ∈ π−1(eu)
is `(u) + `(σ). When u is not minimal in its right WI coset, then the dimension of the cell is harder to
calculate, but since π is PI -equivariant, the fiber of eu′ is the same as the fiber of eu whenever u′ and u
are in the same right WI coset. Therefore, given u ≤ w, let u′ denote the minimal element of its right WI

coset. Then
Hπ,u =

∑
(σ,τ)

q`(σ),

where σ ∈WI is minimal in its left WJ coset, τ ≤ v, and στ = u′.
It would be interesting to give a more direct formula for Hπ,u in general; hopefully this formula would

mimic that of Deodhar for the full Bott-Samelson resolution by placing some defect-like statistic in the
exponent of q.

Now we have the following combinatorial lemmas.

Lemma 4.3 Suppose that the singular locus of Xw has only one component and w avoids 546213. If
σ ∈ PI , τ ≤ v, and στ = id, then {1, . . . , κ− 1} ⊆ σ({1, . . . , κ}).

Lemma 4.4 Suppose that the singular locus of Xw has only one component and w avoids 465132. If
σ ∈ PI , τ ≤ v, and στ = id, then σ({1, . . . , κ}) ⊆ {1, . . . , κ+ h}.

In the case where h = 1, this shows that Hid,π(q) = 1 + q, since the only admissible σ are the
identity and the adjacent transposition sκ. This shows that Pid,w(q) = 1 + q. Otherwise, Hid,π(q) =
1 + q + · · ·+ qh. In this case, let ξ ∈ Sn be the cycle (γ, δ + 1, δ + 2, . . . , α = δ + h), and let ρ = ξw.
We then have the following lemma.

Lemma 4.5 Assume that the singular locus ofXw has only one component, that h > 1, and thatw avoids
526413. Then Hπ,u(1) > 1 only if u ≤ ρ, `(w)− `(ρ) = h, and Hπ,ρ = 1 + q + · · ·+ qh−1.

From these lemmas it follows by a calculation similar to one by Polo [30, Proposition 2.4(b)] that, in
the case h > 1,

Eu(q) = 0 for u 6= ρ,

Eρ(q) = q1−
h
2 + · · ·+ q

h
2−1,

and therefore
Pid,w = 1 + qh.
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