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The poset perspective on alternating sign
matrices

Jessica Striker
School of Mathematics, University of Minnesota, Minneapolis, MN 55455

Abstract. Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or −1 whose rows and columns
sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals
of subposets of a certain poset, proving that they are in bijection with a variety of interesting combinatorial objects,
including ASMs, totally symmetric self–complementary plane partitions (TSSCPPs), Catalan objects, tournaments,
semistandard Young tableaux, and totally symmetric plane partitions. We use this perspective to prove an expansion
of the tournament generating function as a sum over TSSCPPs which is analogous to a known formula involving
ASMs.

Résumé. Les matrices à signe alternant (ASMs) sont des matrices carrées dont les coefficients sont 0, 1 ou −1, telles
que dans chaque ligne et chaque colonne la somme des entrées vaut 1 et les entrées non nulles ont des signes qui
alternent. Nous incluons les ASMs dans un cadre plus vaste, en étudiant les idéaux des sous-posets d’un certain
poset, dont nous prouvons qu’ils sont en bijection avec de nombreux objets combinatoires intéressants, tels que les
ASMs, les partitions planes totalement symétriques autocomplémentaires (TSSCPPs), des objets comptés par les
nombres de Catalan, les tournois, les tableaux semistandards, ou les partitions planes totalement symétriques. Nous
utilisons ce point de vue pour démontrer un développement de la série génératrice des tournois en une somme portant
sur les TSSCPPs, analogue à une formule déjà connue faisant apparaı̂tre les ASMs.
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1 Introduction
Alternating sign matrices (ASMs) are simply defined as square matrices with entries 0, 1, or −1 whose
rows and columns sum to 1 and alternate in sign, but have proved quite difficult to understand (and even
count). Totally symmetric self–complementary plane partitions (TSSCPPs) are plane partitions, each
equal to its complement and invariant under all permutations of the coordinate axes. TSSCPPs inside a
2n× 2n× 2n box are equinumerous with n× n ASMs, but no explicit bijection between these two sets
of objects is known. In this paper we present a new perspective which sheds light on ASMs and TSSCPPs
and brings us closer to constructing a explicit ASM–TSSCPP bijection.

2 The tetrahedral poset
Given an n × n ASM A, consider the following bijection to objects called monotone triangles of or-
der n [2]. For each row of A note which columns have a partial sum (from the top) of 1 in that row.
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Record the numbers of the columns in which this occurs in increasing order. This gives a triangular array
of numbers 1 to n. This process can be easily reversed, and is thus a bijection. Monotone triangles can be
defined as objects in their own right as follows [2].

Definition 2.1 Monotone triangles of order n are all triangular arrays of integers with bottom row
1 2 3 . . . n and integer entries aij such that ai,j ≤ ai−1,j ≤ ai,j+1 and aij < ai,j+1.

Note that the bottom row of a monotone triangle of order n is always 1 2 3 . . . n. If we rotate the
monotone triangle clockwise by π

4 we obtain a semistandard Young tableau (SSYT) of staircase shape
δn = n (n− 1) (n− 2) . . . 3 2 1 whose northeast to southwest diagonals are weakly increasing. Thus we
have the following theorem.

4× 4 ASM
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

 ⇐⇒

Monotone triangle of order 4
2

1 4
1 3 4

1 2 3 4

⇐⇒

Rotated array
1 1 1 2
2 3 4
3 4
4

Theorem 2.2 n×n alternating sign matrices are in bijection with SSYT of staircase shape δn with entries
yi,j at most n such that yi,j ≤ yi+1,j−1. Denote this set as SSAn.

Ordered by componentwise comparison of the entries, SSAn forms a distributive lattice J(P ) where
the Hasse diagram of the poset of join-irreducibles P (for n = 4) is shown below:

Given a TSSCPP t = {ti,j}1≤i,j≤2n take a fundamental domain consisting of the triangular array of
integers {ti,j}n+1≤i≤j≤2n. In this triangular array ti,j ≥ ti+1,j ≥ ti+1,j+1 since t is a plane partition.
Also for these values of i and j the entries ti,j satisfy 0 ≤ ti,j ≤ 2n+ 1− i. Now if we reflect this array
about a vertical line then rotate clockwise by π

4 we obtain a staircase shape array x whose entries xi,j
satisfy the conditions xi,j ≤ xi,j+1 ≤ xi+1,j and 0 ≤ xi,j ≤ j. Now add i to each entry in row i. This
gives us the following theorem.

Theorem 2.3 Totally symmetric self–complementary plane partitions inside a 2n × 2n × 2n box are in
bijection with SSYT of staircase shape δn with entries yi,j at most n such that yi,j ≤ yi−1,j+1 +1. Denote
this set as SSTn.
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TSSCPP
8 8 8 8 6 6 4 4
8 8 8 8 6 5 4 4
8 8 7 6 5 4 3 2
8 8 6 5 4 3 2 2
6 6 5 4 3 2 · ·
6 5 4 3 2 1 · ·
4 4 3 2 · · · ·
4 4 2 2 · · · ·

⇐⇒

Fundamental
domain

3
2 1
· · ·
· · · ·

⇐⇒

Reflected
& rotated
· · 1 3
· · 2
· ·
·

⇐⇒

i added
to row i

1 1 2 4
2 2 4
3 3
4

Ordered by componentwise comparison of the entries, SSTn forms a distributive lattice J(Q) where
the Hasse diagram of the poset of join-irreducibles Q (for n = 4) is shown below. (Note that in this paper
we will extend the definition of a Hasse diagram slightly by at times drawing edges in the Hasse diagram
from x to y when x < y but y does not cover x, like the yellow edges below.)

Suppose we put the posets P and Q together and consider SSYT with both conditions on the diagonals.
The Hasse diagram of our new poset looks like a tetrahedron with one direction of edges missing:

Inserting those extra edges yields a tetrahedral poset, denoted Tn, whose lattice of order ideals we find to
be in bijection with totally symmetric plane partitions (TSPPs) inside an (n− 1)× (n− 1)× (n− 1) box.

We define Tn precisely as follows. Define the unit vectors −→r = (
√

3
2 ,

1
2 , 0), −→g = (0, 1, 0), and

−→
b = (−

√
3

2 ,
1
2 , 0), −→y = (

√
3

6 ,
1
2 ,
√

6
3 ), −→o = (−

√
3

3 , 0,
√

6
3 ), −→s = (−

√
3

6 , 1
2 ,−

√
6

3 ). Let the elements of Tn
be defined as the coordinates of all the points reached by linear combinations of −→r , −→g , and −→y . Thus as
a set Tn = {c1−→r + c2

−→g + c3
−→y , c1, c2, c3 ∈ Z≥0, c1 + c2 + c3 ≤ n − 2}. Let all the vectors −→r , −→g ,

and −→y used to define the elements of Tn be directed edges in the Hasse diagram of colors red, green, and
yellow. Additionally draw as edges of colors blue, orange, and silver the vectors

−→
b , −→o , and −→s between

poset elements wherever possible. The partial order of Tn is defined so that the corner vertex with edges
colored red, green, and yellow is the smallest element, the corner vertex with edges colored silver, green,
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and blue is the largest element, and the other two corner vertices are ordered such that the one with silver,
yellow, and orange edges is above the one with orange, red, and blue edges.

Since the ASM and TSSCPP posets appear as subposets of Tn with certain edge colors, we now in-
vestigate the subposets of Tn made up of all the different combinations of edge colors. Surprisingly, for
almost all of these posets, there exists a nice product formula for the number of order ideals and a bijec-
tion between these order ideals and an interesting set of combinatorial objects. We wish to consider only
subsets of the colors which include all the colors whose covering relations are induced by combinations
of other colors, which are the admissible subsets of the following definition.

Definition 2.4 Let a subset S of the six colors {red, blue, green, orange, yellow, silver} (abbreviated
{r, b, g, o, y, s}) be admissible if all of the following are true: If {r, b} ⊆ S then g ∈ S, if {o, s} ⊆ S then
b ∈ S, if {s, y} ⊆ S then g ∈ S, and if {r, o} ⊆ S then y ∈ S.

Given an admissible subset S of the colors {r, b, g, o, y, s}, let Tn(S) denote the poset formed by the
vertices of Tn together with all the edges whose colors are in S. The induced colors will be in parentheses.

We give a bijection between order ideals of Tn(S), S an admissible subset of {r, b, g, y, o, s}, and
arrays of integers with certain inequality conditions.

Definition 2.5 Let S be an admissible subset of {r, b, g, y, o, s} and suppose g ∈ S. Define Yn(S) to be
the set of all integer arrays x of staircase shape δn with entries xi,j , 1 ≤ i ≤ n, 0 ≤ j ≤ n− i satisfying
both i ≤ xi,j ≤ j + i and the following inequality conditions corresponding to the additional colors in
S: orange: xi,j < xi+1,j , red: xi,j ≤ xi−1,j+1 + 1, yellow: xi,j ≤ xi,j+1, blue: xi,j ≤ xi+1,j−1, silver:
xi,j ≤ xi,j−1 + 1

For the proof of the following proposition we will need to note the following: Tn({r, b, (g)}) is a
disjoint poset, whose connected components we will call, from smallest to largest, P2, P3, . . . Pn. Thus Tn
can be thought of as the poset which results from beginning with Pn, overlaying Pn−1, Pn−2, . . . , P3, P2

successively, and connecting each Pi to Pi−1 by the orange, yellow, and silver edges.

Proposition 2.6 If S is an admissible subset of {r, b, g, y, o, s} and g ∈ S then Yn(S) is in weight–
preserving bijection with J(Tn(S)) where the weight of x ∈ Yn(S) is given by

∑n−1
i=1

∑n−i
j=0(xi,j − i)

and the weight of I ∈ J(Tn(S)) equals |I|.

Proof: Let S be an admissible subset of {r, b, g, y, o, s} and suppose g ∈ S. Recall that Tn is made
up of the layers Pk where 2 ≤ k ≤ n. Since g ∈ S, Pk contains k − 1 green–edged chains of length
k − 1, . . . , 2, 1. For each Pk ⊆ Tn let the k − 1 green chains inside Pk determine the entries xi,j (j 6= 0)
of an integer array on the diagonal where i + j = k. In particular, given an order ideal I of Tn(S) form
an array x by setting xi,j equal to i plus the number of elements in the induced order ideal of the length j
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green chain inside Pi+j (in column 0 xi,0 = i). This defines x as an integer array of staircase shape δn
whose entries satisfy i ≤ xi,j ≤ j + i. Also since each entry xi,j is given by an induced order ideal and
since each element of Tn is in exactly one green chain we know that |I| =

∑
i,j xi,j − i. Thus the weight

is preserved.
Now it is left to determine what the other colors mean in terms of the array entries. Since the colors

red and blue connect green chains from the same Pk we see that inequalities corresponding to red and
blue should relate entries of x on the same northeast to southwest diagonal of x. So if r ∈ S then
xi,j ≤ xi−1,j+1 + 1 and if b ∈ S then xi,j ≤ xi+1,j−1. The colors yellow, orange, and silver connect Pk
to Pk+1 for 2 ≤ k ≤ n − 1. So from our construction we see that if o ∈ S then xi,j ≤ xi+1,j , if y ∈ S
then xi,j ≤ xi,j+1, and if s ∈ S then xi,j ≤ xi,j−1 + 1. 2

3 Combinatorial objects as subposet order ideals
We will now give product formulas for the number of order ideals of Tn(S) for S an admissible set of
colors along with the rank generating functions wherever we have them, where F (P, q) denotes the rank
generating function for the poset P . For the sake of comparison we have also written each formula as a
product over the same indices 1 ≤ i ≤ j ≤ k ≤ n − 1 in a way which is reminiscent of the MacMahon
box formula. See Figure 1 for the big picture of inclusions and bijections between these order ideals. For
a more detailed discussion, see [6].

Theorem 3.1 For any color x ∈ {r, b, y, g, o, s}

F (J(Tn({x})), q) =
n∏
j=1

j!q =
∏

1≤i≤j≤k≤n−1

[i+ 1]q
[i]q

. (1)

Proof: Tn({x}) is the disjoint sum of n − j chains of length j − 1 as j goes from 1 to n − 1. So the
number of order ideals is the product of the number of order ideals of each chain. 2

Theorem 3.2 If S ∈ {{g, o}, {r, s}, {b, y}} then

F (J(Tn(S)), q) =
n∏
j=1

[
n

j

]
q

=
∏

1≤i≤j≤k≤n−1

[j + 1]q
[j]q

. (2)

Proof: The arrays Yn({g, o}) strictly decrease down columns and have no conditions on the rows. Thus in
a column of length j there must be j distinct integers between 1 and n; this is counted by

(
n
j

)
. If we give a

weight to each of these integers of q to the power of that integer minus its row, we have a set q–enumerated
by the q–binomial coefficient

[
n
j

]
q
. Thus

∏n
j=1

[
n
j

]
q

is the generating function of the arrays Yn({g, o})
and also of the order ideals F (J(Tn({g, o})), q). The posets Tn({g, o}), Tn({r, s}), and Tn({b, y}} are
all isomorphic, thus the result follows by poset isomorphism. 2

Theorem 3.3 If S1 ∈ {{b, g}, {b, s}, {y, o}, {g, s}} and S2 ∈ {{r, y}, {r, g}, {y, g}, {b, o}} then

|J(Tn(S1))| = |J(Tn(S2))| =
n∏
j=1

Cj =
n∏
j=1

1
j + 1

(
2j
j

)
=

∏
1≤i≤j≤k≤n−1

i+ j + 2
i+ j

(3)
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F (J(Tn(S1)), q) = F (J(T ∗n(S2)), q) =
n∏
j=1

Cj(q) (4)

where ∗ is poset dual, Cj is the jth Catalan number, and Cj(q) is the Carlitz–Riordan q–Catalan number

defined by the recurrence Cj(q) =
j∑

k=1

qk−1Ck−1(q)Cj−k(q) with initial conditions C0(q) = C1(q) = 1.

Proof: Tn({b, g}) is isomorphic to the disjoint sum of posets Pj({b, g}) for 2 ≤ j ≤ n with rank
generating functions Cj(q). This can be shown using an easy bijection between these order ideals and
Dyck paths from (0, 0) to (2j, 0). Thus the number of order ideals |J(Tn({b, g}))| equals the product∏n
j=1 Cj and the rank generating function F (J(Tn({b, g})), q) equals the product

∏n
j=1 Cj(q). Finally,

the posets Tn(S1) for any choice of S1 ∈ {{b, g}, {b, s}, {y, o}, {g, s}} and the posets T ∗n(S2) for any
S2 ∈ {{r, y}, {r, g}, {y, g}, {b, o}} are all isomorphic, thus the result follows by poset isomorphism. 2

Theorem 3.4 If S is an admissible subset of {r, b, g, o, y, s}, |S| = 3, and S /∈ {{r, g, y}, {s, b, r}} then

F (J(Tn(S)), q) =
n−1∏
j=1

(1 + qj)n−j =
∏

1≤i≤j≤k≤n−1

[i+ j]q
[i+ j − 1]q

. (5)

Thus if we set q = 1 we have |J(Tn(S))| = 2(n
2).

We will prove Theorem 3.4 using two lemmas since there are two nonisomorphic classes of posets
Tn(S) where S is admissible, |S| = 3, and S /∈ {{r, g, y}, {s, b, r}}. The first lemma is the case where
Tn(S) is a disjoint sum of posets and the second lemma is the case where Tn(S) is a connected poset.

Lemma 3.5 Suppose S ∈ {{o, s, (b)}, {s, y, (g)}, {o, r, (y)}, {b, r, (g)}}. Then

F (J(Tn(S)), q) =
n−1∏
j=1

(1 + qj)n−j =
∏

1≤i≤j≤k≤n−1

[i+ j]q
[i+ j − 1]q

.

Proof: Tn({b, r, (g)}) is a disjoint sum of the Pj posets for 2 ≤ j ≤ n. The order ideals of Pj are
counted by 2j−1 and the rank generating function of J(Pj) is given by

∏j−1
i=1 (1 + qi), both of which

are proved by induction. Thus F (Tn({b, r, (g)}), q) is the product of
∏j−1
i=1 (1 + qi) for 2 ≤ j ≤ n.

Rewriting the product we obtain
∏n
j=2

∏j−1
i=1 (1 + qi) =

∏n−1
j=1 (1 + qj)n−j . The posets Tn(S) where

S ∈ {{o, s, (b)}, {s, y, (g)}, {o, r, (y)}} are isomorphic to Tn({b, r, (g)}) so the result follows by poset
isomorphism. 2

Lemma 3.6 Suppose S ∈ {{r, g, s}, {o, b, y}, {y, g, o}, {b, g, o}, {y, g, b}}. Then

F (J(Tn(S)), q) =
n−1∏
j=1

(1 + qj)n−j =
∏

1≤i≤j≤k≤n−1

[i+ j]q
[i+ j − 1]q

.
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Fig. 1: The big picture of inclusions and bijections between order ideals J(Tn(S)). The one sided arrows represent
inclusions of one set of order ideals into another. The two sided arrows represent bijections between sets of order
ideals. The bijection between the order ideals of the three color posets is in Section 4 and the bijections between
TSSCPP posets is by poset isomorphism. The only missing bijection between sets of order ideals of the same size is
between ASM and TSSCPP.
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Proof: The arrays Yn({g, y, o}) are by Definition 2.5 equivalent to SSYT of staircase shape δn, thus their
generating function is given by the Schur function sδn

(x1, x2, . . . , xn). Now

sδn(x1, x2, . . . , xn) =
det(x2(n−j)

i )ni,j=1

det(xn−ji )ni,j=1

=
∏

1≤i<j≤n

x2
i − x2

j

xi − xj
=

∏
1≤i<j≤n

(xi + xj)

using the algebraic Schur function definition and the Vandermonde determinant. The principle special-
ization of this generating function yields the q–generating function

∏n−1
j=1 (1 + qj)n−j . The posets Tn(S)

where S ∈ {{r, g, s}, {o, b, y}, {b, g, o}, {y, g, b}} are isomorphic to Tn({g, y, o}) so the result follows
by poset isomorphism. 2

Proof of Theorem 3.4: By Lemma 3.5, if S ∈ {{o, s, (b)}, {s, y, (g)}, {o, r, (y)}, {b, r, (g)}} then the
generating function F (J(Tn(S)), q) is as above. By Lemma 3.6, if S ∈ {{r, g, s}, {o, b, y}, {y, g, o},
{b, g, o}, {y, g, b}} then generating function F (J(Tn(S)), q) is as above. These are the only admissible
subsets S of {r, b, g, o, y, s} with |S| = 3 and S /∈ {{r, g, y}, {s, b, r}}. 2

There seems to be no nice product formula for the number of order ideals of the dual posets Tn({r, g, y})
and Tn({s, b, r}). The number of order ideals up to n = 6 are: 1, 2, 9, 96, 2498, 161422.

Theorem 3.7 If S is an admissible subset of {r, b, g, o, y, s} and |S| = 4 then

|J(Tn(S))| =
n−1∏
j=0

(3j + 1)!
(n+ j)!

=
∏

1≤i≤j≤k≤n−1

i+ j + k + 1
i+ j + k − 1

. (6)

Proof: The posets Tn(S) for S admissible and |S| = 4 are Tn({g, y, b, o}), the three isomorphic
posets Tn({r, o, (y), g}), Tn({r, b, (g), y}), and Tn({y, s, (g), r}), and the three posets dual to these,
Tn({y, s, (g), b}), Tn({o, s, (b), g}), Tn({r, b, (g), s}). In Theorem 2.2 we showed that the order ideals
of Tn({g, y, b, o}) are in bijection with n× n ASMs and in Theorem 2.3 we showed that the order ideals
of Tn({r, o, (y), g}) are in bijection with TSSCPPs inside a 2n×2n×2n box. Therefore by poset isomor-
phism TSSCPPs inside a 2n×2n×2n box are in bijection with the order ideals of any of Tn({r, o, (y), g}),
Tn({r, b, (g), y}), Tn({y, s, (g), r}), T ∗n({y, s, (g), b}), T ∗n({o, s, (b), g}), or T ∗n({r, b, (g), s}). Thus by
the enumeration of ASMs in [8] and [3] and the enumeration of TSSCPPs in [1] we have the above formula
for the number of order ideals. 2

There are two different cases for five colors: one case consists of the dual posets Tn({(g), (b), o, y, s})
and Tn({r, b, (g), o, (y)}) and the other case is Tn({r, b, s, (y), g}). A nice product formula has not yet
been found for either case.

Theorem 3.8

|J(Tn)| =
∏

1≤i≤j≤n−1

i+ j + n− 2
i+ 2j − 2

=
∏

1≤i≤j≤k≤n−1

i+ j + k − 1
i+ j + k − 2

(7)

Proof: Totally symmetric plane partitions are plane partitions which are symmetric with respect to all
permutations of the x, y, z axes. Thus we can take as a fundamental domain the wedge where x ≥ y ≥ z.
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Then if we draw the lattice points in this wedge (inside a fixed bounding box of size n − 1) as a poset
with edges in the x, y, and z directions, we obtain the poset Tn where the x direction corresponds to
the red edges of Tn, the y direction to the orange edges, and the z direction to the silver edges. All
other colors of edges in Tn are induced by the colors red, silver, and orange. Thus TSPPs inside an
(n− 1)× (n− 1)× (n− 1) box are in bijection with the order ideals of Tn. Thus by the enumeration of
TSPPs in [5] the number of order ideals |J(Tn)| is given by the above formula. 2

4 Bijections with tournaments
Theorem 3.4 states that the order ideals of the three color posets J(Tn(S)) where S is admissible, |S| = 3,
and S /∈ {{r, g, y}, {s, b, r}} are counted by 2(n

2). This is also the number of graphs on n labeled vertices
and equivalently the number of tournaments on n vertices. A tournament is a complete directed graph
with labeled vertices. We now discuss bijections between these order ideals and tournaments.

Theorem 4.1 There exists an explicit bijection between the order ideals of the poset Tn({b, r, (g)}) and
tournaments on n vertices.
1 1 1
2 2
3

1 1 2
2 2
3

1 1 2
2 3
3

1 1 3
2 3
3

1 2 1
2 2
3

1 2 2
2 2
3

1 2 2
2 3
3

1 2 3
2 3
3

Proof: The colors blue and red correspond to inequalities on Yn({b, r, (g)}) such that as one goes up the
southwest to northeast diagonals at each step the next entry has the choice between staying the same and
decreasing by one. Therefore since each of the

(
n
2

)
entries of the array not in the 0th column has exactly

two choices of values given the value of the entry to the southwest, we may consider each array entry αi,j
with j ≥ 1 to symbolize the outcome of the game between i and i+ j in a tournament. If αi,j = αi+1,j−1

say the outcome of the game between i and i + j is an upset and otherwise not. Thus tournaments on n
vertices are in bijection with the arrays Yn({b, r, (g)}) and also with the order ideals of Tn({b, r, (g)}). 2

The bijection between the order ideals of the connected three color posets of Lemma 3.6 and tourna-
ments is due to Sundquist in [7] and involves repeated use of jeu de taquin and column deletion to go from
SSYT of shape δn and largest entry n to certain tableaux in bijection with tournaments on n vertices.

Next we describe which subsets of tournaments correspond to TSSCPPs.

Theorem 4.2 TSSCPPs inside a 2n× 2n× 2n box are in bijection with tournaments on vertices labeled
1, 2, . . . , n which satisfy the following condition on the upsets: if vertex v has k upsets with vertices in
{u, u+ 1, . . . , v − 1} then vertex v − 1 has at most k upsets with vertices in {u, u+ 1, . . . , v − 2}.

Proof: We have seen in Theorem 4.1 the bijection between the order ideals of Tn({r, b, (g)}) and tour-
naments on n vertices. Thus if we consider the TSSCPP arrays Yn({r, b, (g), y}) we need only find an
interpretation for the yellow edges in terms of tournaments. Recall that yellow corresponds to a weak
increase across the rows of α. To satisfy this condition, for each choice of i ∈ {1, . . . , n − 1} and
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j ∈ {1, . . . , n − i − 1} the number of diagonal equalities to the southwest of αi,j must be less than or
equal to the number of diagonal equalities to the southwest of αi,j+1. So in terms of tournaments, the
number of upsets between i + j + 1 and vertices greater than or equal to i must be greater than or equal
to the number of upsets between i+ j and vertices greater than or equal to i. 2

5 Connections between ASMs, TSSCPPs, and tournaments
In this section we discuss the expansion of the tournament generating function as a sum over ASMs
and derive a new expansion as a sum over TSSCPPs. We begin with the following theorem of Rob-
bins and Rumsey [4]. We need the following notion: the inversion number of an ASM A is defined as
I(A) =

∑
AijAk` where the sum is over all i, j, k, ` such that i > k and j < `.

Theorem 5.1 (Robbins–Rumsey) Let An be the set of n× n alternating sign matrices, and for A ∈ An
let I(A) denote the inversion number of A and N(A) the number of −1 entries in A, then∏

1≤i<j≤n

(xi + λxj) =
∑
A∈An

λI(A)
(
1 + λ−1

)N(A)
n∏

i,j=1

x
(n−i)Aij

j . (8)

Note that the left–hand side is the generating function for tournaments on n vertices where each factor
of (xi + λxj) represents the outcome of the game between i and j in the tournament. If xi is chosen then
the expected winner, i, is the actual winner, and if λxj is chosen then j is the unexpected winner and the
game is an upset. Thus in each monomial in the expansion of

∏
1≤i<j≤n(xi+λxj) the power of λ equals

the number of upsets and the power of xk equals the number of wins of k.
We rewrite Theorem 5.1 in different notation which will also be needed later. For any staircase shape

integer array α ∈ Yn(S) let Ei,k(α) be the number of entries of value k in row i equal to their southwest
diagonal neighbor, Ei(α) be the number of entries in (southwest to northeast) diagonal i equal to their
southwest diagonal neighbor, andEi(α) be the number of entries in row i equal to their southwest diagonal
neighbor, that is, Ei(α) =

∑
k Ei,k(α). Also let E(α) be the total number of entries of α equal to their

southwest diagonal neighbor, that is, E(α) =
∑
iEi(α) =

∑
iE

i(α). We now define variables for the
content of α. Let Ci,k(α) be the number of entries in row i with value k and let Ck(α) be the total
number of entries of α equal to k, that is, Ck(α) =

∑
i Ci,k(α). Let N(α) be the number of entries of α

strictly greater than their neighbor to the west and strictly less than their neighbor to the southwest. When
α ∈ Yn({b, y, o, g}) then N(α) equals the number of −1 entries in the corresponding ASM.

Using this notation we reformulate Theorem 5.1 in the following way.

Theorem 5.2 The generating function for tournaments on n vertices can be expanded as a sum over the
ASM arrays Yn({b, y, o, g}) in the following way.∏

1≤i<j≤n

(xi + λxj) =
∑

α∈Yn({b,y,o,g})

λE(α)(1 + λ)N(α)
n∏
k=1

x
Ck(α)−1
k (9)

Proof: First we rewrite Equation 8 by factoring out λ−1 from each
(
1 + λ−1

)
.

∏
1≤i<j≤n

(xi + λxj) =
∑
A∈An

λI(A)−N(A) (1 + λ)N(A)
n∏

i,j=1

x
(n−i)Aij

j
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Let α ∈ Yn({b, y, o, g}) be the array which corresponds toA. It is left to show that I(A)−N(A) = E(α)
and

∏n
i,j=1 x

(n−i)Aij

j =
∏n
j=1 x

Cj(α)−1
j . In the latter equality take the product over i of the left hand side:∏n

i,j=1 x
(n−i)Aij

j =
∏n
j=1 x

Pn
i=1(n−i)Aij

j . We wish to show Cj(α)−1 =
∑n
i=1(n−i)Aij . Cj(α) equals

the number of entries of α with value j, so Cj(α)− 1 equals the number of entries of α with value j not
counting the j in the 0th column. Now the number of js in columns 1 through n−1 of α equals the number
of 1s in column j of A plus the number of zeros in column j of A which are south of a 1 with no −1s in
between. This is precisely what

∑n
i=1(n − i)Aij counts by taking a positive contribution from every 1

and every entry below that 1 in column j and then subtracting one for every −1 and every entry below
that −1 in column j. Thus Cj(α)− 1 =

∑n
i=1(n− i)Aij so that

∏n
i,j=1 x

(n−i)Aij

j =
∏n
j=1 x

Cj(α)−1
j .

Now we wish to show that I(A) − N(A) = E(α). Fix i, j, and ` and consider
∑
k<iAijAk`. Let

k′ be the row of the southernmost nonzero entry in column ` such that k′ < i. If there exists no such
k′ (that is, Ak` = 0 ∀ k < i) or if Ak′` = −1 then

∑
k>iAijAk` = 0 since there must be an even

number of nonzero entries in {Ak`, k < i} half of which are 1 and half of which are −1. If Ak′` = 1
then

∑
k<iAijAk` = Aij . Thus I(A) =

∑
i,j αijAij where αij equals the number of columns east of

column j such that Ak′` with k′ > i exists and equals 1. Let column `′ be one of the columns counted
by αij . Then Ai`′ cannot equal 1, otherwise Ak′`′ would either not exist or equal −1. If Ai`′ = 0 then in
α there is a corresponding diagonal equality. If Ai`′ = −1 then there is no diagonal equality in α. Thus
I(A) = E(α) +N(A). 2

Many people have wondered what the TSSCPP analogue of the −1 in an ASM may be. The following
theorem does not give a direct analogue, but rather expands the left–hand side of (9) as a sum over
TSSCPPs instead of ASMs.

Theorem 5.3 The generating function for tournaments on n vertices can be expanded as a sum over the
TSSCPP arrays Yn({b, r, (g), y}) in the following way.

∏
1≤i<j≤n

(xi + λxj) =
∑

α∈Yn({b,r,(g),y})

λE(α)
n−1∏
i=1

x
n−i−Ei(α)
i

∑
row shuffles α′ of α

n−1∏
j=1

x
Ej(α′)
j (10)

where a row shuffle α′ of α ∈ Yn({b, r, (g), y} is an array obtained by reordering the entries in the rows
of α in such a way that α′ ∈ Yn({b, r, (g)}. Also, setting the x’s to 1 we have

(1 + λ)(
n
2) =

∑
α∈Yn({b,r,(g),y})

λE(α)
∏

1≤i≤k≤n−1

(
Ci+1,k(α)
Ei,k(α)

)
. (11)

Proof: We begin with the set Yn({b, r, (g), y}) and remove the inequality restriction corresponding to
the color yellow to obtain the arrays Yn({b, r, (g)}) (which are in bijection with tournaments). We use
the following algorithm for turning any α ∈ Yn({b, r, (g)}) into an element of Yn({b, r, (g), y}) thus
grouping all the elements of Yn({b, r, (g)}) into fibers over the elements of Yn({b, r, (g), y}). Assume
each row of α below row i is weakly increasing. Thus αi+1,j ≤ αi+1,j+1. If αi+1,j < αi+1,j+1 then
αi,j+1 ≤ αi+1,j+2 since αi,j+1 ∈ {αi+1,j , αi+1,j − 1} and αi,j+2 ∈ {αi+1,j+1, αi+1,j+1 − 1} by the
inequalities corresponding to red and blue. So the only entries which may be out of order in row i are
those for which their southwest neighbors are equal. If αi+1,j = αi+1,j+1 but αi,j+1 > αi,j+2 it must
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be that αi,j+1 = αi+1,j and αi,j+2 = αi+1,j+1 − 1. So we may swap αi,j+1 and αi,j+2 along with their
entire northeast diagonals while not violating the red and blue inequalities. By completing this process
for all rows we obtain an array with weakly increasing rows which is thus in Yn({b, r, (g), y}).

Now we do a weighted count of how many arrays in Yn({b, r, (g)}) are mapped to a given array in
Yn({b, r, (g), y}). Again we rely on the fact that entries in a row can be reordered only when their south-
west neighbors are equal. Thus to find the weight of all the Yn({b, r, (g)}) arrays corresponding to a single
Yn({b, r, (g), y}) array we simply need to find the set of diagonals containing equalities. The diagonal
equalities give a weight dependent on which diagonal they are in, whereas the diagonal inequalities give
a weight according to their row (which remains constant). Thus if we are keeping track of the xi weight
we can do no better than to write this as a sum over all the allowable shuffles of the rows of α with the x
weight of the diagonal equalities dependent on the position. Thus we have Equation (10).

If we set xi = 1 for all i and only keep track of the λ we can make a more precise statement. The above
proof shows that the λ’s result from the diagonal equalities, and the number of different reorderings of
the rows tell us the number of different elements of Yn({b, r, (g)}) which correspond to a given element
of Yn({b, r, (g), y}). We count this number of allowable reorderings as a product over all rows i and all
array values k as

(Ci+1,k(α)
Ei,k(α)

)
. This yields Equation (11). 2

The difference in the weighting of ASMs and TSSCPPs in Theorems 5.2 and 5.3 is substantial. For
ASMs the more complicated part of the formula arises in the power of λ and for TSSCPPs the complica-
tion comes from the x variables. These theorems are also strangely similar. They show that the tournament
generating function can be expanded as a sum over either ASMs or TSSCPPs, but we still have no direct
reason why the number of summands should be the same. The combination of Theorems 5.2 and 5.3 may
contribute toward finding a bijection between ASMs and TSSCPPs, but the differences between these
expansions show why a bijection is not obvious.
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