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The shifted plactic monoid
(extended abstract)
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We introduce a shifted analog of the plactic monoid of Lascoux and Schützenberger, the shifted plactic monoid. It
can be defined in two different ways: via the shifted Knuth relations, or using Haiman’s mixed insertion.

Applications include: a new combinatorial derivation (and a new version of) the shifted Littlewood-Richardson Rule;
similar results for the coefficients in the Schur expansion of a Schur P -function; a shifted counterpart of the Lascoux-
Schützenberger theory of noncommutative Schur functions in plactic variables; a characterization of shifted tableau
words; and more.
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[...] pour affirmer la nécessité d’installer le monoı̈de plaxique parmi les structures remar-
quables.

– M.-P. Schützenberger (16)

Introduction
The (shifted) plactic monoid. The celebrated Robinson-Schensted-Knuth correspondence (14) is a bijec-
tion between words in a linearly ordered alphabet X = {1 < 2 < 3 < · · · } and pairs of Young tableaux
with entries in X . More precisely, each word corresponds to a pair consisting of a semistandard insertion
tableau and a standard recording tableau. The words producing a given insertion tableau form a plactic
class. A. Lascoux and M. P. Schützenberger (11) made a crucial observation based on a result by D. E.
Knuth (6): the plactic classes [u] and [v] of two words u and v uniquely determine the plactic class [uv]
of their concatenation. This gives the set of all plactic classes (equivalently, the set of all semistandard
Young tableaux) the structure of a plactic monoid P = P(X). This monoid has important applications in
representation theory and the theory of symmetric functions; see, e.g., (10).

The main goal of this paper is to construct and study a proper analog of the plactic monoid for (semistan-
dard) shifted Young tableaux, with similar properties and similar applications. The problem of developing
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such a theory was already posed more than 20 years ago by B. Sagan (12). Shifted Young tableaux are
certain fillings of a shifted shape (a shifted Young diagram associated with a strict partition) with letters
in an alphabet X ′ = {1′ < 1 < 2′ < 2 < · · · }; see, e.g., (13). M. Haiman (5) defined the (shifted) mixed
insertion correspondence, a beautiful bijection between permutations and pairs of standard shifted Young
tableaux; each pair consists of the mixed insertion tableau and the mixed recording tableau. Haiman’s
correspondence is easily generalized to a bijection between words in the alphabet X and pairs consisting
of a semistandard shifted mixed insertion tableau and a standard shifted mixed recording tableau. (We
emphasize that this bijection deals with words in the original alphabetX rather than the extended alphabet
X ′.) We define a shifted plactic class as the set of all words which have a given mixed insertion tableau.
Thus, shifted plactic classes are in bijection with shifted semistandard Young tableaux. The following key
property, analogous to that of Lascoux and Schützenberger’s in the ordinary case, holds (Theorem 4): the
shifted plactic class of the concatenation of two words u and v depends only on the shifted plactic classes
of u and v. Consequently, one can define the shifted plactic monoid S = S(X) in which the product is,
again, given by concatenation. In analogy with the classical case, we obtain a presentation of S by the
quartic shifted Knuth (or shifted plactic) relations. So two words are shifted Knuth-equivalent if and only
if they have the same mixed insertion tableau.

Sagan (12) and Worley (20) have introduced the Sagan-Worley correspondence, another analog of
Robinson-Schensted-Knuth correspondence for shifted tableaux. In the case of permutations, Haiman
(5) proved that the mixed insertion correspondence is dual to Sagan-Worley’s. We use a semistandard
version of this duality to describe shifted plactic equivalence in yet another way, namely: two words u
and v are shifted plactic equivalent if and only if the recording tableaux of their inverses (as biwords) are
the same.

(Shifted) Plactic Schur functions. The plactic algebra QP is the semigroup algebra of the plactic
monoid. The shape of a plactic class is the shape of the corresponding tableau. A plactic Schur function
Sλ ∈ QP is the sum of all plactic classes of shape λ; it can be viewed as a noncommutative version of
the ordinary Schur function sλ. This notion was used by Schützenberger (15) to obtain a proof of the
Littlewood-Richardson rule along the following lines. It can be shown that the plactic Schur functions
span the ring they generate. Furthermore, this ring is canonically isomorphic to the ordinary ring of
symmetric functions: the isomorphism simply sends each Schur function sλ to its plactic counterpart Sλ.
It follows that the Littlewood-Richardson coefficient cλµ,ν is equal to the coefficient of a fixed plactic
class Tλ of shape λ in the product of plactic Schur functions SµSν . In other words, cλµ,ν is equal to the
number of pairs (Tµ, Tν) of plactic classes of shapes µ and ν such that TµTν = Tλ.

We develop a shifted counterpart of this classical theory. The shifted plactic algebra QS is the semi-
group algebra of the shifted plactic monoid, and a (shifted) plactic Schur P -function Pλ ∈ QS is the sum
of all shifted plactic classes of a given shifted shape. We prove that the plactic Schur P -functions span the
ring they generate, and this ring is canonically isomorphic to the ring spanned/generated by the ordinary
Schur P -functions. Again, the isomorphism sends each Schur P -function Pλ to its plactic counterpart Pλ.
This leads to a proof of the shifted Littlewood-Richardson rule (Corollary 16). Our version of the rule
states that the coefficient bλµ,ν of Pλ in the product PµPν is equal to the number of pairs (Tµ, Tν) of shifted
plactic classes of shapes µ and ν such that TµTν = Tλ, where Tλ is a fixed shifted plactic class of shape
λ. The first version of the shifted Littlewood-Richardson rule was given by Stembridge (19). In Lemma
18 we relate our rule to Stembridge’s by a simple bijection.

It turns out that the shifted plactic relations are a “relaxation” of the ordinary Knuth (plactic) relations.
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More precisely, the tautological map u 7→ u that sends each word in the alphabet X to itself descends
to a monoid homomorphism S → P. By extending this map linearly, we obtain the following theorem
(Corollary 21): For a shifted shape θ, the coefficient gθµ of sµ in the Schur expansion of Pθ is equal to the
number of shifted plactic classes of shifted shape θ contained in a fixed plactic class of shape µ. A simple
bijection (Theorem 23) recovers a theorem of Stembridge (19): gθµ is equal to the number of standard
Young tableaux of shape µ which rectify to a fixed standard shifted Young tableau of shape θ.

(Shifted) Tableau words. In the classical setting, an approach developed by Lascoux and his school
begins with the plactic monoid as the original fundamental object, and identifies each tableau T with a
distinguished canonical representative of the corresponding plactic class, the reading word read(T ). This
word is obtained by reading the rows of T from left to right, starting from the bottom row and moving up.
A word w such that w = read(T ) for some tableau T is called a tableau word. By construction, tableau
words are characterized by the following property. Each of them is a concatenation of weakly increasing
words w = ulul−1 · · ·u1, such that

(A) for 1 ≤ i ≤ l − 1, the longest weakly increasing subword of ui+1ui is ui.

For a tableau word w, the lengths of the segments ui are precisely the row lengths of the Young tableau
corresponding to w.

We develop an analog of this approach in the shifted setting by taking the shifted plactic monoid as
the fundamental object, and constructing a canonical representative for each shifted plactic class. Since
shifted Young tableaux have primed entries while the words in their respective shifted plactic classes have
not, the reading of a shifted Young tableau cannot be defined in as simple a manner as in the classical case.
Instead, we define the mixed reading word mread(T ) of a shifted tableau T as the unique word in the
corresponding shifted plactic class that has a distinguished special recording tableau. The latter notion is
a shifted counterpart of P. Edelman and C. Greene’s dual reading tableau (1).

A word w such that w = mread(T ) for some shifted Young tableau T is called a shifted tableau word.
Such words have a characterizing property similar to (A), with weakly increasing words replaced by hook
words (a hook word consists of a strictly decreasing segment followed by a weakly increasing one). We
prove that w is a shifted tableau word if and only if

(B) for 1 ≤ i ≤ l − 1, the longest hook subword of ui+1ui is ui.

For a shifted tableau word w, the lengths of the segments ui are precisely the row lengths of the shifted
Young tableau corresponding to w.

Semistandard decomposition tableaux. The proofs of our main results make use of the following ma-
chinery. Building on the concept of standard decomposition tableaux introduced by W. Kraśkiewicz (7)
and further developed by T. K. Lam (9), we define a (shifted) semistandard decomposition tableau (SSDT)
R of shifted shape λ as a filling of λ by entries inX such that the rows u1, u2, . . . , ul ofR are hook words
satisfying (B). We define the reading word of R by read(R) = ulul−1 · · ·u1, that is, by reading the rows
of R from left to right, starting with the bottom row and moving up.

As a semistandard analog of Kraśkiewicz’s correspondence (7), we develop the SK correspondence.
This is a bijection between words in the alphabet X and pairs of tableaux with entries in X . Every word
corresponds to a pair consisting of an SSDT called the SK insertion tableau and a standard shifted Young
tableau called the SK recording tableau. We prove that the mixed recording tableau and the SK recording
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tableau of a word w are the same. Furthemore, we construct a bijection Φ between SSDT and shifted
Young tableaux of the same shape that preserves the reading word: read(R) = mread(Φ(R)). In light
of the conditions (A) and (B) above, one can see that the counterpart of an SSDT in the ordinary case is
nothing but a semistandard Young tableau.

This text is an extended abstract of the preprint (17), where complete proofs can be found.

Acknowledgements I am grateful to Sergey Fomin for suggesting the problem and for his comments
on the earlier versions of the paper. I would also like to thank Marcelo Aguiar, Curtis Greene, Tadeusz
Józefiak, Alain Lascoux, Thomas Lam, Cedric Lecouvey, Pavlo Pylyavskyy, Bruce Sagan, John Stem-
bridge, and Alex Yong for helpful and inspiring conversations.

Main results
Preliminaries: shifted Young tableaux and the mixed insertion
A strict partition is a sequence λ = (λ1, λ2, . . . , λl) ∈ Zl such that λ1 > λ2 > · · · > λl > 0. The shifted
diagram, or shifted shape of λ is an array of square cells in which the i-th row has λi cells, and is shifted
i− 1 units to the right with respect to the top row.

Throughout this paper, we identify a shifted shape corresponding to a strict partition λ with λ itself.
The size of λ is |λ| = λ1 + λ2 + · · ·+ λl. We denote `(λ) = l, the number of rows.
To illustrate, the shifted shape λ = (5, 3, 2), with |λ| = 10 and `(λ) = 3, is shown below:

.

A skew shifted diagram (or shape) λ/µ is obtained by removing a shifted shape µ from a larger shape
λ containing µ.

A (semistandard) shifted Young tableaux T of shape λ is a filling of a shifted shape λ with letters from
the alphabet X ′ = {1′ < 1 < 2′ < 2 < · · · } such that:

• rows and columns of T are weakly increasing;

• each k appears at most once in every column;

• each k′ appears at most once in every row;

• there are no primed entries on the main diagonal.

If T is a filling of a shape λ, we write shape(T ) = λ.
A skew shifted Young tableau is defined analogously.
The content of a tableau T is the vector (a1, a2, . . .), where ai is the number of times the letters i and i′

appear in T .

Example 1 The shifted Young tableau

T =
1 1 2 3′ 4

4 5 5
6 9′

has shape λ = (5, 3, 2) and content (2, 1, 1, 2, 2, 1, 0, 0, 1).
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A tableau T of shape λ is called standard if it contains each of the entries 1, 2, . . . , |λ| exactly once. In
particular, standard shifted Young tableaux have no primed entries. Note that a standard shifted tableau
has content (1, 1, . . . , 1).

M. Haiman (5) has introduced shifted mixed insertion, a remarkable correspondence between permuta-
tions and pairs of shifted Young tableaux. Haiman’s construction can be viewed as a shifted analog of the
Robinson-Schensted-Knuth correspondence.

The following is a semistandard generalization of shifted mixed insertion, which we call semistandard
shifted mixed insertion. It is a correspondence between words in the alphabetX and pairs of shifted Young
tableaux, one of them semistandard and one standard. Throughout this paper we refer to semistandard
shifted mixed insertion simply as mixed insertion.

Definition 2 (Mixed insertion) Let w = w1 . . . wn be a word in the alphabet X . We recursively con-
struct a sequence (T0, U0), . . . , (Tn, Un) = (T,U) of tableaux, where Ti is a shifted Young tableau, and
Ui is a standard shifted Young tableau, as follows. Set (T0, U0) = (∅, ∅). For i = 1, . . . , n, insert wi into
Ti−1 in the following manner:

Insert wi into the first row, bumping out the smallest element a that is strictly greater than wi (in the
order given by the alphabet X ′).

1. if a is not on the main diagonal, do as follows:

(a) if a is unprimed, then insert it in the next row, using step (1);

(b) if a is primed, insert it into the next column to the right, using the same procedure as in row
insertion;

2. if a is on the main diagonal, then it must be unprimed. Prime it, and insert it into the next column
to the right.

The insertion process terminates once a letter is placed at the end of a row or column, bumping no new
element. The resulting tableau is Ti.

The shapes of Ti−1 and Ti differ by one box. Add that box to Ui−1, and write i into it to obtain Ui.
We call T the mixed insertion tableau and U the mixed recording tableau, and denote them Pmix(w)

and Qmix(w), respectively.

Example 3 The word u = 3415961254 has the following mixed insertion and recording tableau

Pmix(u) =
1 1 2 3′ 4

4 5 5
6 9′

Qmix(u) =
1 2 4 5 9

3 6 8
7 10

.

The shifted plactic monoid
The following is a shifted analog of Knuth’s Theorem (6). It can be considered a semistandard general-
ization of theorems by Haiman (5) and by Kraśkiewicz (7).

Theorem 4 Two words u and v have the same mixed insertion tableau if and only if they are equivalent
modulo the following relations:

abdc≡ adbc for a ≤ b ≤ c < d in X; (1)
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acdb≡ acbd for a ≤ b < c ≤ d in X; (2)

dacb≡ adcb for a ≤ b < c < d in X; (3)

badc≡ bdac for a < b ≤ c < d in X; (4)

cbda≡ cdba for a < b < c ≤ d in X; (5)

dbca≡ bdca for a < b ≤ c < d in X; (6)

bcda≡ bcad for a < b ≤ c ≤ d in X; (7)

cadb≡ cdab for a ≤ b < c ≤ d in X. (8)

See Remark 7 for a concise alternative description of relations (1)–(8).

Definition 5 Two words u and v in the alphabet X are shifted plactic equivalent, denoted u≡ v, if they
have the same mixed insertion tableau. By Theorem 4, u and v are shifted plactic equivalent if they are
equivalent modulo the shifted plactic relations (1)–(8).

A shifted plactic class is an equivalence class under ≡. We can associate a shifted plactic class with
its corresponding shifted Young tableau, or with any of the words in the class, which insert to the corre-
sponding tableau. The shifted plactic class corresponding to the Young tableau T is denoted [T ], and the
shifted plactic class that contains a word u is denoted [u]. The Appendix at the end of (17) shows all kinds
of shifted plactic classes of 4-letter words.

For a word w = w1w2 · · ·wn in X , let PRSK(w) be its Robinson-Schensted-Knuth insertion tableau.
Two words u and v in the alphabetX are plactic equivalent if PRSK(u) = PRSK(v). Knuth (6) has proved
that the latter holds if and only if u and v are equivalent modulo the plactic relations

acb ∼ cab for a ≤ b < c in X, (9)

bca ∼ bac for a < b ≤ c in X. (10)

Remark 6 (cf. (16)) Relations (9)–(10) can be restated as follows.
Let us call w a line word if

w1 > w2 > · · · > wn

or
w1 ≤ w2 ≤ · · · ≤ wn.

Line words are precisely those words w for which the shape of PRSK(w) is a single row or a single
column.

Two 3-letter words w and w′ in the alphabet X are plactic equivalent if and only if:
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• w and w′ differ by an adjacent transposition, and

• neither w nor w′ is a line word.

Remark 7 The shifted plactic relations can be described in a similar way. Define a hook word as a word
w = w1 · · ·wl such that for some 1 ≤ k ≤ l, we have

w1 > w2 > · · · > wk ≤ wk+1 ≤ · · · ≤ wl. (11)

It is easy to see that w is a hook word if and only if Pmix(w) consists of a single row.
Two 4-letter words w and w′ in the alphabet X are shifted plactic equivalent if and only if:

• w and w′ are plactic equivalent, and

• neither w nor w′ is a hook word.

The following proposition can be verified by direct inspection.

Proposition 8 Shifted plactic equivalence is a refinement of plactic equivalence. That is, each plactic
class is a disjoint union of shifted plactic classes. To put it yet in another way: if two words are shifted
plactic equivalent, then they are plactic equivalent.

For 4-letter words, Proposition 8 is illustrated in the Appendix to (17).

Definition 9 The shifted plactic monoid is the set of shifted plactic classes where multiplication is given
by [u][v] = [uv]. Equivalently, the monoid is generated by the symbols in X subject to the relations (1)–
(8).

An alternative point of view is to identify the shifted plactic classes with the corresponding shifted
Young tableaux, thus giving a notion of a (shifted plactic) product of shifted tableaux.

The shape of a shifted plactic class is defined as the shape of the corresponding shifted Young tableau.
The shifted plactic algebra QS is the semigroup algebra of the plactic monoid.

Example 10 One can check that both words in each of the shifted plactic relations have the same mixed
insertion tableau. For example, for relation (1),

Pmix(abdc) = Pmix(adbc) = a b c
d

.

Example 11 The words u = 3415961254 and v = 3451196524 are shifted Knuth equivalent, because
Pmix(u) = Pmix(v). (cf. Example 3.) Furthermore, one can obtain v from u by the following a sequence
of shifted plactic relations (where the relation to be used is stated and highlighted in bold)

u = 3415961254 (1)
≡ 3415961524 (3)
≡ 3415916524 (3)
≡ 3415196524 (7)
≡ 3451196524
= v.



764 Luis Serrano

Plactic Schur P -functions and their applications
For a shifted Young tableau T , with content (a1, a2, . . .) define its corresponding monomial as xT =
xa1

1 x
a2
2 · · · .

For each strict partition λ, the Schur P -function is defined as the generating function for shifted Young
tableaux of shape λ, namely

Pλ = Pλ(x1, x2, . . .) =
∑

shape(T )=λ

xT .

The Schur Q-function is given by

Qλ = Qλ(x1, x2, . . .) = 2`(λ)Pλ,

or equivalently, as the generating function for a different kind of shifted Young tableaux, namely those in
which the elements in the main diagonal are allowed to be primed.

The skew Schur P - and Q-functions Pλ/µ and Qλ/µ = 2`(λ)−`(µ)Pλ/µ are defined similarly, on a skew
shifted shape λ/µ.

The following is an example of a Schur P -function in two variables:

Example 12 For λ = (3, 1),

Pλ(x1, x2) = x3
1x2 + x2

1x
2
2 + x2

1x
2
2 + x1x

3
2.

1 1 1
2

1 1 2′
2

1 1 2
2

1 2′ 2
2

The Schur P - and Q-Schur functions form bases for an important subring Ω of the ring Λ of symmetric
functions.

The shifted Littlewood-Richardson coefficients, bλµ,ν are of great importance in combinatorics, alge-
braic geometry, and representation theory. They appear in the expansion of the product of two Schur
P -functions,

PµPν =
∑
λ

bλµ,νPλ

and also in the expansion of a skew Schur Q-function

Qλ/µ =
∑
ν

bλµ,νQν .

The latter can be rewritten as
Pλ/µ =

∑
ν

2`(µ)+`(ν)−`(λ)bλµ,νPν .

Definition 13 A shifted plactic Schur P -function Pλ ∈ QS is defined as the sum of all shifted plactic
classes of shape λ. More specifically,

Pλ =
∑

shape(T )=λ

[T ].
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Example 14 We represent each shifted plactic class as [w], for some representative w, to obtain

P(3,1) = [1211] + [2211] + [1212] + [2212].

1 1 1
2

1 1 2′
2

1 1 2
2

1 2′ 2
2

The reader can check that each word gets mixed inserted into the tableau underneath, making it a valid
representative of its corresponding plactic class.

One can see that the Pλ are noncommutative analogs of the Schur P -functions. In the last example, P(3,1)

is the noncommutative analog of

P(3,1)(x1, x2) = x3
1x2 + 2x2

1x
2
2 + x1x

3
2 = s3,1(x1, x2) + s2,2(x1, x2). (12)

Theorem 15 The map Pλ 7→ Pλ extends to a canonical isomorphism between the algebra generated by
the ordinary and shifted plactic Schur P -functions, respectively. As a result, the Pλ commute pairwise,
span the ring they generate, and multiply according to the shifted Littlewood-Richardson rule. Namely,

PµPν =
∑
λ

bλµ,νPλ. (13)

Sagan (12) has extended the concept of jeu de taquin to shifted tableaux, and proved that, just as in the
ordinary case, the result of applying a sequence of (shifted) jeu de taquin moves is independent from the
order in which they are done. Throughout this paper we only apply shifted jeu de taquin to standard skew
tableaux, for which the process is exactly as it is done in the ordinary case. For pairs of standard skew
tableaux T and U , we say that T rectifies to U if U can be obtained from T by a sequence of shifted jeu
de taquin moves.

Our first application of Theorem 15 is a new proof (and a new version of) the shifted Littlewood-
Richardson rule. Stembridge (19) proved that the shifted Littlewood-Richardson number bλµ,ν is equal to
the number of standard shifted Young skew tableaux of shape λ/µwhich rectify to a fixed standard shifted
Young tableau of shape ν.

By taking the coefficient of the shifted plactic class [T ] corresponding to a fixed tableau T of shape λ
on both sides of (13), one obtains the following:

Corollary 16 (Shifted Littlewood-Richardson rule) Fix a shifted plactic class [T ] of shape λ. The
shifted Littlewood-Richardson coefficient bλµ,ν is equal to the number of pairs of shifted plactic classes
[U ] and [V ] of shapes µ and ν, respectively, such that [U ][V ] = [T ].

Remark 17 This rule can be restated in the language of words as follows. In Chapter 2 of (17) we
introduce a canonical representative of the shifted plactic class [T ] corresponding to the tableau T . This
representative is called the mixed reading word of T , and denoted mread(T ). A wordw is called a shifted
tableau word if w = mread(T ) for some shifted Young tableau T . The shape of a shifted tableau word is
given by the shape of the corresponding tableau.

With this terminology, the shifted Littlewood-Richardson rule can be restated as follows: Fix a shifted
tableau word w of shape λ. The shifted Littlewood-Richardson coefficient bλµ,ν is equal to the number of
pairs of shifted tableau words u, v of shapes µ, ν, respectively, such that w≡uv.
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Lemma 18 Fix a shifted tableau word w of shape λ and fix a standard shifted tableau Q of shape ν. The
number of pairs of shifted tableau words u, v of shapes µ and ν, respectively, such that uv = w is equal
to the number of standard shifted skew tableaux of shape λ/µ which rectify to Q.

As a corollary, we obtain the original result of Stembridge (19).

Corollary 19 Fix a standard shifted tableau Q of shape ν. The coefficient bλµ,ν is equal to the number of
standard shifted skew tableaux of shape λ/µ which rectify to Q.

Example 20 We compute b212,1 = 1. For this, we fix the shifted tableau word w = 132, associated to the
shifted Young tableau T = 1 2

3 . The only way to express w = uv where u and v are reading words of
shapes (2) and (1), respectively, is with u = 13, associated to the tableau U = 1 3 , and v = 2, associated
to the tableau V = 2 .

1 32 ≡ 13 · 2

1 2
3

1 3 2 .

The second application is a new proof (and a new version of) the Schur expansion of a Schur P -function.
Stembridge (19) has found a combinatorial interpretation for the coefficient gθµ in the sum

Pθ =
∑
µ

gθµsµ.

We find a different interpretation for the gθµ in terms of shifted plactic classes. Lascoux and Schützenberger
(11) have defined the plactic monoid P as follows. Two words are plactic equivalent if they have the same
Robinson-Schensted-Knuth insertion tableau. A plactic class is an equivalence class under plactic equiva-
lence. The plactic class of a word u in the alphabet X is denoted 〈u〉. P is the set of plactic classes where
multiplication is given by 〈u〉〈v〉 = 〈uv〉. Equivalently, it is generated by the symbols in X subject to the
Knuth relations (9)–(10).

Recall, by Proposition 8, any two shifted plactic equivalent words are plactic equivalent, or in other
words, plactic classes decompose into a union of shifted plactic classes. This yields the natural projection

π : S→ P,

in which the shifted plactic class [u] gets mapped to the plactic class 〈u〉.
We now consider the image of a plactic Schur P -function under π.

Theorem 21 The plactic Schur P -function Pθ gets mapped under π to a sum of plactic Schur func-
tions Sµ. The coefficients gθµ are the same as those in

π(Pθ) =
∑
µ

gθµSµ.

Moreover, gθµ is equal to the number of shifted plactic classes [u] of shifted shape θ such that π([u]) = 〈v〉
for some fixed plactic class 〈v〉 of shape µ.
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Example 22 Let µ be the ordinary shape (3, 1), and θ be the shifted shape (3, 1). We compute the
coefficient gθµ = 1; this is the coefficient of sµ in Pθ (cf. (12)). For this, we fix 〈u〉 = 〈2134〉, namely, the
plactic class corresponding to the Young tableau U = 1 3 4

2 . Note that the words in 〈u〉 are 2134, 2314,
and 2341. These get split into two shifted plactic classes, namely [2134] corresponding to the shifted
Young tableau 1 2′ 3 4 , and [2314] = [2341] corresponding to the shifted Young tableau 1 2′ 4

3 . Since the
only one of these plactic classes has shape µ, namely 〈2314〉, we get gθµ = 1.

Theorem 23 Let θ be a shifted shape, and Uθ a fixed standard shifted tableau of shape θ. Fix a plactic
class 〈Tµ〉 of shape µ. Let Gθµ be the set of shifted plactic classes [Tθ] of shape theta for which π([Tθ]) =
〈Tµ〉. Let Hθµ be the set of standard Young tableaux of shape µ which rectify to Uθ. Then the sets Gθµ and
Hθµ are in bijection.

As a corollary, we obtain the original result of Stembridge (19).

Corollary 24 The coefficient gθµ is equal to the number of standard Young tableaux Qµ of shape µ which
rectify to a fixed standard shifted Young tableau Qθ of shape θ.

For ordinary Young tableau, one uses the concept of rectification (under jeu de taquin) to obtain the
Littlewood-Richardson coefficients in the Schur expansion of a skew Schur function.

We have been unable to construct an analog of a jeu de taquin slide for skew semistandard shifted
tableaux, but nonetheless, we can define the rectification rect(T ) of such a tableau T ; see (17, Section
2.1). (In the notation of (17, Lemma 2.11), rect(T ) = Pmix(mread(T )).) We then define the shifted
plactic skew Schur P -function of shape λ/µ as the following element of QS:

Pλ/ν =
∑

shape(T )=λ/µ

[rect(T )].

Conjecture 25 Pλ/µ belongs to the ring generated by the plactic Schur P -functions.

Corollary 26 Fix a shifted Young tableau U of shape ν. The coefficient of Pν in Pλ/µ is equal to the
number of skew shifted Young tableaux T with rect(T ) = U .

Remark 27 For the moment we can prove a slightly weaker statement than Conjecture 25. The projection
π(Pλ/µ) (which lives in QP) belongs to the ring generated by the plactic Schur functions Sµ. This will
enable us to find a combinatorial interpretation for the coefficients in the Schur expansion of the skew
Schur P -functions.
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