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Blocks in Constrained Random Graphs with
Fixed Average Degree

Konstantinos Panagiotou
Max-Planck-Institute for Informatics, 66119 Saarbrücken, Germany

This work is devoted to the study of typical properties of random graphs from classes with structural constraints, like
for example planar graphs, with the additional restriction that the average degree is fixed. More precisely, within a
general analytic framework, we provide sharp concentration results for the number of blocks (maximal biconnected
subgraphs) in a random graph from the class in question. Among other results, we discover that essentially such
a random graph belongs with high probability to only one of two possible types: it either has blocks of at most
logarithmic size, or there is a giant block that contains linearly many vertices, and all other blocks are significantly
smaller. This extends and generalizes the results in the previous work [K. Panagiotou and A. Steger. Proceedings of
the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’09), pp. 432-440, 2009], where similar
statements were shown without the restriction on the average degree.
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1 Introduction
In the early 60’s Erdős and Rényi (5) introduced the random graph Gn,M , which is obtained by adding M
random edges to an initially empty graph with n labeled vertices. Since then, the Gn,M has been studied
extensively, and in the meanwhile there have been thousands of papers devoted to the analysis of its
typical properties. One property that has been of particular interest is the evolution of Gn,M . Of course,
when M = 0 then Gn,M is just the empty graph, and when M =

(
n
2

)
then Gn,M is the complete graph –

but are there critical values in between where interesting changes happen? The answer is yes, and many
such critical values of M have been discovered. Let us mention here only an example (the famous “phase
transition”), and we refer the reader to the excellent monograph (3) of Bollobás for many other exciting
results. Let M = cn. If c < 1, then Gn,M has with high probability(i) connected components of size
O(log n). On the other hand, if c > 1, then the largest connected component of Gn,M containts whp
Θ(n) vertices, and the second largest component contains only O(log n) vertices. In other words, the
connectivity structure of Gn,M changes dramatically when we “pass” the critical value c = 1.

Much less is known if we turn our attention to graph classes with structural constraints, like for example
planar graphs. How different does a random planar graph with 3

2n edges look like from a random planar
graph with 5

2n edges? In (11) the authors Gerke, McDiarmid, Steger and Weissl showed that for all

(i) whp, with probability tending to 1 when n→∞
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m = bcnc, where 1 < c < 3, a random planar graph with m edges contains linearly many copies of any
given planar graph. Moreover, they showed that the probability of connectedness is bounded away from 0
and 1. Except of these results we currently have only very sparse information about how the evolution of
a random planar graph does look like, and how random planar graphs with fixed average degree typically
behave.

The goal of this paper is to present a unified analytic framework, which allows us to make precise state-
ments about random graphs with fixed average degree drawn from a specified graph class. Our framework
includes specifically the classes of labeled outerplanar, series-parallel, and planar graphs, and more gen-
erally every class for which we have sufficient information about the generating function enumerating this
class. The parameter that we will study here is the block structure. Denote for any graph G by b(`; G) the
number of blocks, i.e. maximal biconnected subgraphs, that contain exactly ` vertices inG, and abbreviate
b(`0 . . . `1; G) =

∑`1
`=`0

b(`; G). Moreover, denote by lb(G) the number of vertices in the largest block
of G. Let C be a graph class, and let Cn,m be a random graph from C with n vertices and m edges. We
shall show that whp Cn,m belongs to one of the following categories, which differ vastly in complexity:

• lb(Cn,m) ∼n cn, where c = c(C) > 0 is given explicitly, and the second largest block contains nα

vertices, where α = α(C) < 1 (where x ∼n y means x = (1 + o(1))y for large n), or
• lb(Cn,m) = O(log n).

Moreover, we will show sharp concentration results for the quantities b(`; Cn,m) for all 2 ≤ ` ≤ n. As
a corollary we will obtain that for all c ∈ (1, 3) random planar graphs with bcnc edges belong to the
first category, while random outerplanar and series-parallel graphs with fixed average degree belong to
the second category. Finally, we will demonstrate that there are graph classes such that there a exists a
critical density c0 where the category to which a random graph with cn edges belongs to is different for
c > c0 and c < c0. We shall discuss this and related issues in more detail later.

Before we present our results in detail we need a technical definition. For any setC of complex numbers
and any δ > 0 let N(C, δ) be the set of all complex numbers that are closer than δ to some point of C.
We shall say that a function F (x, y) is of algebraic type for y in a compact subset S of (0,+∞) if there
exist δ > 0 and 0 < θ < π/2 such that

F (x, y) = P (x, y) +
(

1− x

ρ(y)

)−α
· (g(y) + E(x, y)), (1)

where

• P (x, y) is a polynomial,
• g(y) is analytic in N(S, δ), and g(y) 6= 0,
• ρ(y) has continuous third partial derivatives in N(S, δ), and α 6∈ Z≤0,
• E(x, y) is analytic in ∆ \ {ρ(y)} and E(x, y) = o(1) as x → ρ(y) uniformly for all y ∈ N(S, δ),

where
∆ = {z : |z| ≤ ρ(y) + δ, |arg(z − ρ(y))| ≥ θ}.

Functions of the algebraic type are commonly encountered in modern analytic combinatorics, and the
above assumptions, although quite technical, are needed to unfold the full power of the available machin-
ery. We refer the reader to Flajolet’s and Sedgewick’s book (7) for an excellent treatment and numerous
applications. All functions that we shall consider in this work are of algebraic type.
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The following definition describes precisely the graph classes that will be of interest in this paper, and
is a generalization of a similar definition in (13).

Definition 1 Let C be a class of labeled connected graphs and let B ⊂ C be the class of biconnected
graphs in C. The class C is called nice if it has the following two properties.

(i) Let C ∈ C and B ∈ B. Then the graph obtained by identifying any vertex of C with any vertex
from B is in C. Moreover, all graphs in C \ B can be constructed in such a way. Finally, the graph
consisting of a single isolated vertex is in C.

(ii) Let B(x, y) be the exponential generating function enumerating the graphs in C, where x marks the
vertices, and y marks the edges. Then ∂

∂xB(x, y) is of algebraic type for y ∈ [0,+∞), where we
will write R(y) := ρ(y), αB := α, and gB(y) := g(y).

The following statement says that the egf enumerating a nice class is also of algebraic type. We will use
it without any further reference.

Proposition 1 Let C be a nice class, and let SC be a subinterval of SB such that for all y ∈ SC it holds
R(y)B′′(R(y), y) 6= 1. Then x ∂

∂xC(x, y) is of algebraic type in SC .

In the proposition above we show that x ∂
∂xC(x, y), which is the exponential generating function enu-

merating vertex-rooted graphs from C, is of algebraic type. We do this solely for technical convenience
(instead of making a similar statement for C(x, y)): in what follows, we will study asymptotic properties
of random graphs from Cn, which do not depend on the root label. Hence, as there are exactly n distinct
ways to root each graph in Cn, any random variable defined on rooted graphs from Cn will be identically
distributed with the corresponding random variable defined on graphs from Cn.

Let us define some important notation that we shall use in the remainder of the paper without any
further reference. We will denote by R, ρ the singularities of ∂

∂xB(x, y) and x ∂
∂xC(x, y), and by αB , α

the critical exponents of the corresponding singular expansions (see (1)). Finally, we will write gB , g for
the function g in the definition (1), for ∂

∂xB(x, y) respectively x ∂
∂xC(x, y).

In order to formulate our main result we need one additional technical definition. For any function f(u)
we will write ∂uf(u) = d

duf(u). Given a such a function f(u), which is analytic at u = 1 and assumed
to satisfy f(1) 6= 0, we set

m(f) =
∂uf(1)
f(1)

, and v(f) =
∂2
uf(1)
f(1)

+ m(f)−m(f)2. (2)

Theorem 1 Let C be a nice class. Suppose that for all β ∈ SC

• v(ρβ) 6= 0, where ρβ(y) := ρ(βy) and
• ρβ(1) < |ρβ(u)| for all u ∈ {z | |z| = 1, z 6∈ N(S, δ)}.

Letm = b−βρ
′(β)

ρ(β) n+ βg′(β)
g(β) c, and let Cn,m be a random graph from Cn,m. Let c(β) = R(β)B′′(R(β), β).

Then the following is true with high probability.

(I) If c(β) > 1 then let 0 < τ(β) < R(β) be given by τB′′(τ, β) = 1, and set ξ(β) = τ(β)/R(β).
Then we have for all ε > 0:

1. lb(Cn,m) ≤ (|α|+ ε) log1/ξ(β) n.
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2. b(`; Cn,m) ∼ b`n for all 2 ≤ ` ≤ (1− ε) log1/ξ(β) n, where

b` = [x`−1]B′(x, β) · τ `−1 ∼`
gB(β)
Γ(αB)

· `αB−1ξ(β)`−1, (3)

3. b
(
(1− ε) log1/ξ(β) n . . . (|α|+ ε) log1/ξ(β) n; Cn,m

)
≤ n2ε.

(II) If c(β) < 1, then lb(Cn,m) ∼ (1− c(β))n. Moreover, we have αB < −1 and

1. b(`; Cn,m) = 0 for all ` = ω(n−1/αB ) and ` < lb(Cn),

2. b(`; Cn,m) ∼ b`n for all 2 ≤ ` and ` = o(( n
logn )1/(1−αB)), where

b` = [x`−1]B′(x, β) ·R(β)`−1 ∼`
gB(β)
Γ(αB)

· `αB−1, (4)

3. b(` . . . δ`; Cn,m) ∼ b`,δn for all 2 ≤ ` and ` = o(( n
logn )−1/αB ), where δ > 1 and

b`,δ =
δ∑̀
s=`

[xs−1]B′(x) ·R(β)s−1 ∼`
gB(β)

Γ(αB + 1)
· (1− δαB )`αB . (5)

Let us discuss a few implications of the theorem above. Exploiting the results in (12) we obtain as a
corollary the following result for random planar graphs with fixed average degree.

Corollary 1 Let Pn,m be a graph drawn uniformly at random from the set of all labeled connected planar
graphs with n vertices and m edges, where m = bcnc and c ∈ (1, 3). Then Pn,m is with high probability
of type (II).

By applying the results in (2) we obtain statements about random outerplanar and series-parallel graphs.

Corollary 2 Let On,m be a graph drawn uniformly at random from the set of all labeled connected
outerplanar graphs with n vertices and m edges, where m = bcnc and c ∈ (1, 2). Then On,m is with
high probability of type (I). The same is true for random series-parallel graphs.

One natural question that arises in the context of Theorem 1 is the following: is there a nice graph class
such that there a exists a critical density c0 where the type of a random graph with cn edges is different
for c > c0 and c < c0? The following result gives an affirmative answer.

Theorem 2 Let B be the class of biconnected planar graphs, and set B̃ = B ∪ {K8}, where K8 is the
complete graph with 8 vertices. Then the class C̃ in which every graph contains blocks only from B̃ is
nice, and there is a c0 ≈ 3.9995 such that

• if c > c0, then C̃n,bcnc is with high probability of type (I),
• if c < c0, then C̃n,bcnc is with high probability of type (II).

In fact, classes with two critical densities can be constructed, such that the type is different in each two
neighboring intervals. We do not give the explicit construction here, but these graph classes seem to be
very artificial. This raises the following questions. First, are there graph classes with arbitrarily many
critical densities? And second, are there natural classes with more than one critical density? The definition



Blocks in Constrained Random Graphs with Fixed Average Degree 737

of the term “natural” is of course a matter of taste – a possible candidate would be to require the class to
be hereditary, i.e., closed under taking subgraphs.

Remark The discussion in this paper can easily be adapted to cover an even wider class of functions.
Following (10), we say that a function is of algebraic-logarithmic type, if

F (x, y) = g(y) ·
(

1− x

ρ(y)

)α(y)

·
(

x

ρ(y)
log
(

1− z

ρ(y)

))β(y)

· (1 + E(x, y)),

where, in addition to the properties of (1), α(y) and β(y) have continuous third partial derivatives in
N(S, δ). With a little more technical work, and using the local limit theorems provided in (10), a more
general version of Theorem 1 can be proved. We leave the straightforward but tedious details to the reader.

Notation We shall fix some additional notation that we will use throughout without further reference.
Let G be any graph. We will denote by vG the number of vertices in G, and by eG the number of edges
in G. Moreover, for a graph class C we will denote by C• the class that contains vertex-rooted graphs
from C, i.e., pairs (C, v), where C ∈ C, and v is a vertex of C. Finally, we will denote by C•(x, y) the
egf for C•, i.e., C•(x, y) = x ∂

∂xC(x, y).

2 Preliminaries
In this section we collect some well-known facts and make some observations that we will exploit later.
The following theorem gives us information about the coefficients of algebraico-logarithmic functions.

Theorem 3 ((6)) Let F (x, y) be as in (1). Then, uniformly for y ∈ N(S, δ),

[xn]F (x, y) ∼ g(y)
Γ(α)

· nα−1 · ρ(y)−n,

where Γ(z) =
∫∞
0
tz−1e−tdt denotes the Gamma-function.

The next statement describes an important combinatorial property of nice graph classes, and is taken
from (13). Let us introduce some notation first. We denote by Z the graph class consisting just of one
graph that contains a single labeled vertex. For two graph classes X and Y , we write “G = X × Y” if
there is a 1-1 correspondence between the graphs in G and the class formed by the cartesian product of X
and Y , followed by a relabeling step, so as to guarantee that all labels are distinct for an object in X ×Y .
Moreover, Set(X ) is the class in which every graph can be represented by set of graphs in X . Finally, the
class X ◦ Y consists of all graphs that are obtained from graphs from X , where each vertex is replaced
by a graph from Y . This set of combinatorial operators (cartesian product, set, and substitution) appears
frequently in modern theories of combinatorial analysis (4; 7), as well as in systematic approaches to
random generation of combinatorial objects (4; 8). For a very detailed description of these operators and
numerous applications we refer to (7) and further references therein.

Lemma 1 Let C be a graph class having property (i) of Definition 1. Then

C• = Z × Set(B′ ◦ C•) and C•(x, y) = xeB
′(C•(x,y),y).
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2.1 Central & Local Limit Theorems
Let (pn,k)n≥1 be a sequence of discrete probability distributions with mean µn and standard deviation σn.
We say that the pn,k obey a central limit theorem (CLT) if there is a sequence εn → 0 such that

sup
x∈R

∣∣∣∣∣∣σn
∑

k≤µn+xσn

pn,k −
1√
2π

∫
t≤x

e−t
2/2dt

∣∣∣∣∣∣ ≤ εn. (6)

Note that a central CLT gives us very precise information about the (cumulative) distribution of the se-
quences pn,k. However, in general it fails to give us information about the individual probabilities. In this
case we are interested in a local limit theorem (LLT), which shows pointwise convergence. More precisely,
the sequence (pn,k)n≥1 is said to obey a LLT if there is a sequence εn → 0 such that

sup
x∈R

∣∣∣∣σnpn,bµn+xσnc −
1√
2π
e−x

2/2

∣∣∣∣ ≤ εn. (7)

The statement below provides us with a CLT in a general setting, that is commonly encountered in the
context of analytic combinatorics.
Theorem 4 (7, Theorem IX.8) Let (Xn)n≥1 be a sequence of discrete random variables supported by
N, with associated probability generating functions pn(u). Assume that, uniformly in a fixed complex
neighborhood Ω of 1, for sequences βn, κn → +∞, there holds

pn(u) = A(u)B(u)βn
(
1 +O(κ−1

n )
)
,

where A(u), B(u) are analytic at u = 1, and A(1) = B(1) = 1. Moreover, assume that v(B) 6= 0. Then,
Xn satisfies a CLT with εn = O(κ−1

n + β
−1/2
n ), and

µn = βnm(B) + m(A) +O(κ−1
n )

σ2
n = βnv(B) + v(A) +O(κ−1

n ).

Under a very light additional technical assumption, a similar LLT theorem can be shown. This assumption
will be fulfilled in all our applications, and is typical in the context of analytic combinatorics.
Theorem 5 (7, Theorem IX.14) Suppose that a random variable satisfies all conditions of Theorem 4.
Moreover, assume the existence of a uniform bound

|pn(u)| ≤ K−βn (8)

for some K > 1 and all u ∈ {|z| = 1 | z 6∈ Ω}. Then, Xn satisfies a LLT with µn, σn and εn as given in
Theorem 4.

2.2 Bounding Tail Probabilities
In our proofs we will often bound the probability that certain random variables assume values far away
from their expectation. The next lemma states the well-known Chernoff bounds.
Lemma 2 Let X be a binomially distributed variable. Then, for every 0 < ε < 1 we have

Pr [X 6∈ (1± ε)E [X]] ≤ 2e−ε
2E[X]/3.

The same bounds are true for Poisson distributed random variables.
Lemma 3 Lemma 2 is true when X is distributed like a Poisson variable.
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3 Sampling & Asymptotics
Let C be a nice graph class such that C•(x, y) is of algebraic type in a compact set S ⊆ (0,+∞). Recall
that for every fixed y ∈ S the quantity ρ(y) denotes the singularity of C•(x, y). Set

λC(y) = B′
(
C•(ρ(y), y), y

)
, (9)

where B(x, y) is the exponential generating function enumerating the biconnected graphs in C. Note that
a priori it is not clear whether λC(y) exists for all y ∈ S. However, as we shall argue later, the existence
is an inherent property of nice classes. Moreover, let ΓB′(x, y) be a randomized algorithm that generates
graphs from B′ according to the following distribution:

∀B′ ∈ B′ : Pr [ΓB′(x, y) = B′] =
xvB′ yeB′

B′(x, y)
, (10)

provided that B′(x, y) exists. The above distribution is called the Boltzmann distribution (or Gibbs distri-
bution), and was introduced in the context of the random generation of combinatorial objects by Douchon,
Flajolet, Louchard and Schaeffer in 2004, see (4). With this notation consider the following algorithm.

ΓC•(β) : γ ← a single node r
k ← Po(λC(β)) (?)
for j = 1, . . . , k
γ′ ← ΓB′

(
C•(ρ(β), β), β

)
, discard the labels of γ′ (??)

γ ← merge γ and γ′ at their roots
foreach vertex v 6= r of γ
γv ← ΓC•(β), discard the labels of γv

replace all nodes v 6= r of γ with γv
return γ, where the vertices are labeled uniformly at random

A similar version of this algorithm, for the special case β = 1, was studied already in (13). There the
authors determined the number of blocks in random graphs with constraints, but they did not consider any
restriction on the average degree. Here we are interested in general β, which makes the analysis more
involved. The following lemma will be one of the main tools in our analysis, and says that with some
reasonable probability the algorithm above will output a graph from C•n,m, for a very specific m = m(β).

Lemma 4 Let C be a nice graph class satisfying the assertions of Theorem 1. For any β ∈ SC there is a
c > 0 such that

Pr[ΓC•(β) ∈ C•n,bµ(β;n)c] ∼ cn
α−3/2 , where µ(β; n) = −βρ

′(β)
ρ(β)

n+
βg′(β)
g(β)

. (11)

Proof: The proof consists of three parts. First, we will show that ΓC• is well-defined for any β ∈ SC ,
i.e., we will show that λC(β) and B′(C•(ρ(β), β), β) exist. Second, we argue that for any γ ∈ C•

Pr[ΓC•(β) = γ] =
1

C•(ρ(β), β)
· ρ(β)vγ · βeγ

vγ !
. (12)
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Finally, we show that there is a constant C > 0 such that

|C•n,bµ(β;n)c| ∼ C · n
α−3/2 · ρ(β)−n · β−bµ(β;n)c · n!. (13)

Putting all three facts together proves then the statement. To see the first claim, apply Lemma 1 and note
that ψ(u) = ue−B

′(u,y) is the functional inverse of C•(x, y). Let R(y) be the singularity of B′(x, y). By
the Analytic and Singular Inversion Lemmas in (7, Lemma IV.2 and IV.3), for any y ∈ SC , the singularity
of C•(x, y) depends on whether ψ(u) is strictly monotone:

• if there is a unique 0 < τ(y) < R(y) such that ψ′(τ(y)) = 0, or equivalently, τ(y)B′′(τ(y), y) = 1,
then ρ(y) = ψ(τ(y)) and C•(ρ(y), y) = τ(y).
• Otherwise, ψ is strictly monotone in [0, R(y)), and then ρ(y) = ψ(R(y)) = R(y)e−B

′(R(y),y).
Moreover, we have in this case R(y)B′′(R(y), y) ≤ 1 and C•(ρ(y), y) = R(y).

Note that in both cases we have C•(ρ(y), y) < ∞. Moreover, in the first case we obviously have
C•(ρ(y), y) < R(y), which implies that λC(y) and B′(C•(ρ(y), y), y) are well-defined. Finally, in
the second case we have that B′′(R(y), y) < ∞, as R(y) > 0. But then, also B′(R(y), y) < ∞ is true,
which implies that also in this case λC(y) and B′(C•(ρ(y), y), y) are well-defined. This completes the
proof of the first part.

The identity (12) follows directly from the composition rules for Boltzmann samplers in (9) and (4), and
the decomposition of nice classes provided in Lemma 1. To prove (13) consider the function Cβ(x, y) =
C•(x, βy), and note that for any y such that βy ∈ SC its singularity is given by ρβ(y) = ρ(βy). Now,
consider a random variable X with probability generating function

pn(u) =
[xn]Cβ(x, u)
[xn]Cβ(x, 1)

,

and note that

[us]pn(u) = Pr[X = s] =
|C•n,s| 1n! · β

s

[xn]Cβ(x, 1)
. (14)

In the remainder we will estimate [us]pn(u) and [xn]Cβ(x, 1) directly, which will yield (13). By applying
Theorem 3 we obtain uniformly for u such that βu ∈ SC

pn(u) ∼ g(βu)
g(β)

(
ρβ(1)
ρβ(u)

)n
.

Note that the assertions of Theorem 4 are fulfilled, if we choose A(u) = g(βu)
g(β) , B(u) = ρβ(1)

ρβ(u) and
κn = ω(1), due to our assumptions. Moreover, from our assumptions follows that |ρβ(u)| = |ρ(βu)| >
ρ(β) = ρβ(1) for u ∈ {z | |z| = 1, z 6∈ N(S, δ)}, and we may infer that there is a K > 1 such that for all
such u

pn(u) < K−n.

All in all, the assertions of Theorem 5 are fulfilled, and we may conclude that

Pr [Xn = bE [Xn]c] ∼ (2πσn)−1/2,
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where

E [X] = nm(B) + m(A) + o(1) =
−βρ′(β)
ρ(β)

n+
βg′(β)
g(β)

+ o(1),

and σn = Var [Xn] = nv(B) + v(A). This calculations determine the left-hand side of (14). More-
over, by applying Theorem 3 to the expansion of Cβ(x, 1) = C•(x, β) we readily obtain that there is a
constant C ′ > 0 such that

[xn]Cβ(x, 1) ∼ g(β)
nα−1

Γ(α)
ρ(β)−n.

By plugging this and the above estimate for Pr [Xn = bE [Xn]c] into (14) we obtain (13). 2

The following lemma is essentially taken from (13), where the special case “β = 1” was considered. As
the proof is completely analogous, we refer the reader to (13). Before we state it let us introduce a little
additional notation. We follow an approach first used in (14; 1) and consider a sampler that simulates
an execution of ΓC•. Observe that ΓC• makes twice a random choice: first, when it chooses a random
value according to a Poisson distribution in the line marked with (?), and second, when it calls ΓB′ in
the line marked with (??). We now consider an algorithm that takes as input a sequence of non-negative
integers and a sequence of graphs from B′ and uses them instead of making the random choices. More
precisely, let K be an infinite sequence of numbers in N0, and let B′ be an infinite sequence of graphs
from B′. Then the algorithm ΓC•(β; K,B′), which simulates the execution of ΓC• by using the next
unused value from the provided lists, generates obviously every graph from C• with the same probability
as ΓC•, provided that the values in K and the graphs B′ are generated independently and according to
the appropriate probability distributions. In the sequel we will therefore assume that the notation ΓC•(β)
in fact denotes the sampler ΓC•(β; K,B′), where we often will omit the lists (K,B′).

Lemma 5 LetK = {k1, k2, . . . } be an infinite sequence of non-negative integers and letB′ = {B′1, B′2, . . . }
be an infinite sequence of graphs from B′. Suppose that ΓC•(β; K,B′) used the first n values in K and
the first m graphs in B′ to generate a graph γ ∈ C•. Then the following statements are true.

(1) n = |γ|.
(2) m =

∑n
j=1 kj .

(3) m =
∑
`≥2 b(`; γ).

(4) For any ` ≥ 2 we have that b(`; γ) =
∣∣{1 ≤ i ≤ m

∣∣ |B′i| = `− 1
}∣∣.

4 Blocks With ` Vertices in Cn,m
Let Cn,m be a graph with n vertices andm edges, drawn uniformly at random from Cn,m, where C is nice.
First, we apply Lemma 5 to deduce some information on the number of not too “large” blocks.

Lemma 6 Let C be a nice class satisfying the assertions of Theorem 1. Let β ∈ SC , n ∈ N, and set
m = b−βρ

′(β)
ρ(β) n+ βg′(β)

g(β) c and η = C•(ρ(β), β). Moreover, let 0 < ε = ε(n) < 1. For ` ≥ 2 define the
quantities

b` = [x`−1]B′(x, β) · η`−1 and `0 = `0(n, ε) = max
{
` | b`n ≥ 50ε−2α log n

}
.

Then we have for all 2 ≤ ` ≤ `0 and sufficiently large n

Pr [b(`; Cn,m) 6∈ (1± ε)b`n] ≤ e− ε
2

40 b`n. (15)
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Proof: The proof is similar to the proof of the analogous lemma in (13, Lemma 3.1); the sole difference
is that we have to deal here with the fixed number of edges. We give this proof in full detail.

Let ` ∈ [2, `0] and let S ⊂ Cn,m denote the set of labeled graphs in Cn,m whose number of blocks of
size ` is not in the interval (1± ε)b`n. Using Lemma 4 we obtain that there exists a constant ĉ > 0 such
that for all large enough n we have

Pr [Cn,m ∈ S] = Pr
[
ΓC• ∈ S | ΓC• ∈ C•n,m

]
≤ ĉnα+3/2Pr

[
ΓC• ∈ S and ΓC• ∈ C•n,m

]
. (16)

We write S = S1 ∪ S2, where S1 contains all graphs that satisfy
∑
`≥2 b(`; G) 6∈ (1 ± ε

3 )λC(β)n,
and S2 = S \S1. By using Lemma 5, statements (1)-(3), the event “ΓC• ∈ S1 and ΓC• ∈ C•n,m” implies
that the sum of n independent variables distributed like Po(λC(β)) is not in (1 ± ε

3 )λC(β)n. But this

probability is easily seen to be less than e−
ε2
30 λC(β)n, by applying Lemma 3.

Moreover, again by Lemma 5, this time Statement (4), the event “ΓC• ∈ S2 and ΓC• ∈ C•n,m” implies
that a sequence of N = (1± ε

3 )λC(β)n independent random graphs, which are drawn from B′ according
to the distribution (10) with parameters x = C•(ρ(β), β) = η and y = β, contains less than (1 − ε)b`n
or more than (1 + ε)b`n graphs with `− 1 non-virtual vertices. The probability that a single such random
graph has exactly `− 1 non-virtual vertices is precisely

t` := [x`−1]B′(x, β) · η`−1

B′(η, β)
. (17)

Hence, by applying the Chernoff bounds from Lemma 2 we deduce that the number of graphs with `− 1
non-virtual vertices among N independently drawn random graphs is less than (1 − ε

3 )t`N or more

than (1 + ε
3 )t`N with probability at most e−

ε2
30 t`N . The proof completes with N ∈ (1 ± ε

3 )λC(β)n, as
ΓC• ∈ S2, and the assumptions on `0 and ε. 2

Lemma 7 Let C be a nice class satisfying the assertions of Theorem 1. Let β ∈ SC , n ∈ N, and set
m = b−βρ

′(β)
ρ(β) n+ βg′(β)

g(β) c. Moreover, let 0 < ε = ε(n) < 1. For ` ≥ 1 and δ > 1 define the quantities

b`,δ =
δ∑̀
s=`

[xs−1]B′(x) ·R(β)s−1 ∼`
gB(β)

Γ(αB + 1)
· (1− δαB )`αB .

Set `0 = `0(δ) = max
{
` | b`,δn ≥ 50ε−2ααB log n

}
. If R(β)B′′(R(β), β) < 1, then we have for

all 1� ` ≤ `0 and sufficiently large n for a graph Cn,m drawn uniformly at random from Cn,m

Pr [b(` . . . δ`; Cn,m) 6∈ (1± ε)b`,δn] ≤ e− ε
2

40 b`,δn.

Proof: Note that R(β)B′′(R(β), β) < 1 implies that η = R(β) (see e.g. the discussion after (13)), and
that d. Now, by using exactly the same arguments as in Lemma 6 we can prove the first claim; the sole
modification has to be made in (17), where we use t` = b`,δ instead. To see the second claim we apply
Theorem 3 to the singular expansion of B′, and use straightforward Euler-McLaurin summation. 2
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Lemma 8 Let C be a nice class satisfying the assertions of Theorem 1. Let β ∈ SC , n ∈ N, and set
m = b−βρ

′(β)
ρ(β) n+ βg′(β)

g(β) c. IfR(β)B′′(R(β), β) < 1, then for sufficiently large n we have asymptotically
almost surely for a graph Cn,m drawn uniformly at random from Cn.m that lb(Cn,m) ∼ c(β)n, where

c(β) = 1−R(β)B′′(R(β), β).

Moreover, let ωn be a function satisfying lim
n→∞

ωn = ∞. Then, for all n−1/αBωn ≤ ` < lb(Cn,m) we

have b(`; Cn,m) = 0.

Proof: The proof proceeds in two steps: first, apply Lemmas 6 and 7 to count the number of vertices in
blocks with size at most n−1/αBωn. Then, show by tedious but straightforward counting that the most
probable case is that the remaining vertices form exactly one block. The details are similar to the details
in the proof of Lemma 3.4 in (13), and are omitted due to space limitations. 2

5 Graph Classes With Critical Densities
In this section we shall prove Corollary 1 and Theorem 2. Let us recall a few basic facts from (12). Let
B(x, y) be the egf enumerating biconnected labeled planar graphs, and let C(x, y) be the egf enumerat-
ing labeled connected planar graphs. In (12) the authors showed that B′(x, y) and C•(x, y) are of the
algebraic type for y ∈ (0,∞), where

B′(x, y) ∼ − 1
R(y)

(
B2(y) + 2B4(y)

(
1− x

R(y)

)
+

5
2
B5(y)

(
1− x

R(y)

)3/2
)
,

and

C•(x, y) ∼ R(y) +
R(y)2

2B4(y)−R(y)

(
1− x

ρ(y)

)
− 5

2
B5(y)

(
1− 2B4(y)

R(y)

)−5/2(
1− x

ρ(y)

)3/2

,

where ρ(y) = R(y)eB2(y)/R(y), and they also gave explicit expressions forR(y),B2(y),B4(y) andB5(y).
Moreover, they showed that ((12, Claim 2)) for all y ∈ (0,∞) it holds R(y)B′′(R(y), y) = 2B4(y)

R(y) < 1.
With those facts at hand Corollary 1 follows immediately.

Now we turn to the proof of Theorem 2. Recall that we set B̃ = B ∪ {K8}. Note that the singularity of
B̃(x, y) is the same as the singularity of B(x, y), i.e., R(y). Observe that

R(y)B̃′′(R(y), y) =
2B4(y)
R(y)

+
R(y)7y28

6!

Using the explicit expressions for all involved functions we readily obtain that for y ∈ (0, y0) it holds
R(y)B̃′′(R(y), y) < 1, while for y ∈ (y0,∞) we have R(y)B̃′′(R(y), y) > 1, where y0 ≈ 25.671.
Moreover, for y ∈ (0, y0) we have that

C̃•(x, y) ∼ R(y) + C̃2(y)
(

1− x

ρ1(y)

)
+ C̃3(y)

(
1− x

ρ1(y)

)3/2

,

where the C̃i(y) are given as functions of the Bi(y) and R(y), and ρ1(y) = R(y)eB2(y)/R(y)−R(y)7y28

7! .
Additionally, for y ∈ (y0,∞) we obtain by applying Theorem VI.6 in (7)
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C̃•(x, y) ∼ R(y)− C̃1(y)
(

1− x

ρ2(y)

)1/2

,

where ρ2(y) = τ(y)e−B
′(τ(y),y), 0 < τ(y) < R(y) is given by the solution of τ(y)B̃′′(τ(y), y) = 1, and

C̃1(y) is analytically given. To obtain c0 we determine limy→y−0
−yρ′1(y)
ρ1(y)y

= limy→y+
0

−yρ̃′2(y)
ρ̃2(y)

≈ 3.9995.
All numerical calculations performed in this section can be easily performed with MAPLE.
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