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k-Parabolic Subspace Arrangements
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Abstract. In this paper, we study k-parabolic arrangements, a generalization of the k-equal arrangement for any
finite real reflection group. When k = 2, these arrangements correspond to the well-studied Coxeter arrangements.
Brieskorn (1971) showed that the fundamental group of the complement of the type W Coxeter arrangement (over C)
is isomorphic to the pure Artin group of type W . Khovanov (1996) gave an algebraic description for the fundamental
group of the complement of the 3-equal arrangement (over R). We generalize Khovanov’s result to obtain an algebraic
description of the fundamental group of the complement of the 3-parabolic arrangement for arbitrary finite reflection
group. Our description is a real analogue to Brieskorn’s description.

Résumé. Nous généralisons les arrangements k-égaux à tous les groupes de réflexions finis réels. Les arrange-
ments ainsi obtenus sont dits k-paraboliques. Dans le cas où k = 2 nous retrouvons les arrangements de Coxeter
qui sont bien connus. En 1971, Brieskorn démontra que le groupe fondamental associé au complément (complexe)
de l’arrangement de Coxeter de type W est en fait isomorphe au groupe pure d’Artin de type W . En 1996, Kho-
vanov donne une description algébrique du groupe fondamental du complément (réel) de larrangement 3-égaux.
Nous généralisons le résultat de Khovanov et obtenons une description algébrique du groupe fondamental de l’espace
complément d’un arrangement k-parabolique pour tous les groupes de réflexions finis et réels. Il se trouve que notre
description est l’analogue réel de la description de Brieskorn.
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1 Introduction
A subspace arrangement A is a collection of linear subspaces of a finite-dimensional vector space V , such
that there are no proper containments among the subspaces. Examples of subspace arrangements include
real and complex hyperplane arrangements. One of the main questions regarding subspace arrangements
is to study the structure of the complementM(A ) = V −∪X∈AX . A combinatorial tool that has proven
useful in studying the complement is the intersection lattice, L(A ), which is the lattice of intersections of
subspaces, ordered by inclusion. Many results regarding the homology and homotopy theory ofM(A )
can be found in the book by Orlik and Terao [17], when A is a real or complex hyperplane arrangement.

There are two interesting problems regarding homotopy ofM(A ) that we will concern ourselves with.
The first problem is determining whether or notM(A ) is an Eilenberg-MacLane space. An Eilenberg-
MacLane space (or K(π,m)-space) is a space X such that πk(X) = 0 for i 6= m and πm(X) = π.
A K(π, 1) subspace arrangement is an arrangement whose complement is a K(π, 1) space. It is worth
noting that not all complex hyperplane arrangements are K(π, 1)-spaces. The second problem is to find a
presentation for the fundamental group ofM(A ).
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We will look at several motivating examples where both questions have been answered. One example
of a complexK(π, 1) hyperplane arrangement is the braid arrangement, which is the collection of “diago-
nals” zi = zj for 1 ≤ i < j ≤ n from a complex n-dimensional vector space. In 1963, Fox and Neuwirth
[14] showed that the fundamental group of the complement is isomorphic to the pure braid group. It was
also shown by Fadell and Neuwirth [12] that the higher homotopy groups of the complement are trivial.
Thus this is an example of a K(π, 1)-arrangement.

An example of a realK(π, 1) subspace arrangement is the 3-equal arrangement, which is the collection
of all subspaces of the form xi = xj = xk for 1 ≤ i < j < k ≤ n in a real n-dimensional vector space.
It was Khovanov, in 1996, who proved that this is a K(π, 1) subspace arrangement [16]. He also gave a
presentation for the fundamental group of the complement. The presentation of this group, as well as the
presentation of the pure braid group, use the symmetric group in their construction. It is well known that
the symmetric group is generated by adjacent transpositions si = (i, i + 1), i ∈ [n − 1], subject to the
following relations:

1. s2
i = 1

2. sisj = sjsi, if |i− j| > 1

3. sisi+1si = si+1sisi+1

The braid group has presentation given by the same generating set, but subject only to relations 2 and
3. The pure braid group is the kernel of the surjective homomorphism, ϕ, from the braid group to the
symmetric group, given by ϕ(si) = si for all i ∈ [n − 1]. Khovanov’s presentation of the fundamental
group of the complement of the 3-equal arrangement is very similar. He defines the triplet group, which we
shall denote A′n−1. This group has a presentation given by the generators si, but subject only to relations
1 and 2, and he defines the pure triplet group to be the kernel of the surjective homomorphism, ϕ′ :
A′n−1 → An−1, given by ϕ′(si) = si for all i ∈ [n − 1]. Khovanov showed that the fundamental group
of the complement of the 3-equal arrangement is isomorphic to the pure triplet group. Thus, Khovanov
found a “real analogue” to the results of Fadell, Fox and Neuwirth.

The work of Fadell and Neuwirth has been generalized to other hyperplane arrangements. A simplicial
hyperplane arrangement is an arrangement whose regions are simplicial cones. In 1972, Deligne [11]
showed that the complexification of any simplicial hyperplane arrangement is a K(π, 1)-arrangement.
Given a finite real reflection group W , consider the complexification of the reflection arrangement associ-
ated toW . Since reflection arrangements are simplicial, their complexifications areK(π, 1)-arrangements.
Moreover, in 1971 Brieskorn [9] found that the fundamental group of the complement is isomorphic to
the pure Artin group of type W . We review the definition of Artin groups in Section 4.

Our primary interest is to give “real analogues” of these results for subspace arrangements in Rn that
correspond to finite real reflection groups. In particular, given a finite real reflection group W , we define
a family of (real) subspace arrangements which we call k-parabolic arrangements. We show in Theorem
4.1 that the fundamental group of the complement of a 3-parabolic arrangement has the following simple
description. We construct a new Coxeter group W ′ on the same generating set S as W , but we relax
all relations of W that are not commutative relations nor involutions. Then the fundamental group is the
kernel of a surjective homomorphism ϕ′ : W ′ → W given by ϕ′(s) = s for all s ∈ S. It turns out that
the 3-parabolic arrangement is also a K(π, 1) arrangement, a result due to Davis et al. (Theorem 0.1.9 in
[10]).
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Our primary tool for finding our presentation is the notion of discrete homotopy theory. Discrete homo-
topy theory is a theory that was developed in [2]. The theory involves constructing a bigraded sequence
of groups defined on an abstract simplicial complex that are invariants of a combinatorial nature. Instead
of being defined on the topological space of a geometric realization of a simplicial complex, the discrete
homotopy groups are defined in terms of the combinatorial connectivity of the complex. That is, we are
interested in how simplices intersect. In this paper, we show that the discrete fundamental group of the
Coxeter complex is isomorphic to π1 of the complement of the 3-parabolic arrangement. Thus, our result
shows that sometimes we can replace a group defined in terms of the topology of the space with a group
defined in terms of the combinatorial structure of the space.

In Section 2 we give a definition of the k-parabolic arrangement, and review some necessary definitions
related to Coxeter groups. We also relate k-parabolic arrangements to previous analogues of the k-equal
arrangement given by Björner and Sagan [7] for types B and D. In Section 3, we give a brief overview
of discrete homotopy theory and the definition of the Coxeter complex. Then we give an isomorphism
between the classical fundamental group of the complement of the 3-parabolic arrangement and the dis-
crete fundamental group of the corresponding Coxeter complex. In Section 4, we use this isomorphism
and a study of discrete homotopy loops in the Coxeter complex to obtain our algebraic description of the
fundamental group of the complement of the 3-parabolic arrangement. In Section 5 we conclude with
some open questions related to Wn,k-arrangements as well as a discussion on the K(π, 1) problem.

2 Definition of theWn,k-arrangement
Let W be a finite real reflection group acting on Rn and fix a root system Φ associated to W . Let Π ⊂ Φ
be a fixed simple system. Finally, let S be the set of simple reflections associated to Π. Assume that Π
spans Rn. We let m(s, t) denote the order of st in W . We know that m(s, s) = 1 and m(s, t) = m(t, s)
for all s, t ∈ S. Finally, given a root α, let sα denote the corresponding reflection, and let (·, ·) denote the
standard inner product.

Recall that there is a hyperplane arrangement associated toW , called the Coxeter arrangement H (W ),
which consists of hyperplanes Hα = {x ∈ Rn : (x, α) = 0} for each α ∈ Φ+. Since Π spans Rn, the
Coxeter arrangement is central and essential, which implies that the intersection of all the hyperplanes is
the origin.

Since we are generalizing the k-equal arrangement, which corresponds to the case W = An, we use
it as our motivation. For this paper, we will actually work with the essentialized k-equal arrangement.
The k-equal arrangement, An,k, is the collection of all subspaces given by xi1 = xi2 = . . . = xik
over all indices {i1, . . . , ik} ⊂ [n + 1], with the relation

∑n+1
1 xi = 0. The k-equal arrangement is an

arrangement that has been studied extensively ([6], [8], [16]). We note that the intersection poset L(An,k)
is a subposet of L(H (An)). There is already a well-known combinatorial description of both of these
posets. The poset of all set partitions of [n + 1] ordered by refinement is isomorphic to L(H (An)), and
under this isomorphism, L(An,k) is the subposet of set partitions where each block is either a singleton,
or has size at least k. However, our generalization relies on a lesser-known description of these posets in
terms of parabolic subgroups.

Definition 2.1 A subgroup G ⊆ W is a parabolic subgroup if there exists a subset T ⊆ S of simple
reflections, and an element w ∈W such that G =< wTw−1 >. If w can be taken to be the identity, then
G is a standard parabolic subgroup. We view (G,wTw−1) as a Coxeter system, and call G irreducible if
(G,wTw−1) is an irreducible system.
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It is well known that the lattice of standard parabolic subgroups, ordered by inclusion, is isomorphic
to the Boolean lattice. However, the lattice of all parabolic subgroups, P(W ), ordered by inclusion,
was shown by Barcelo and Ihrig [1] to be isomorphic to L(H (W )). Since this isomorphism is essential
to our generalization, we review it. The isomorphism is given by sending a parabolic subgroup G to
Fix(G) = {x ∈ Rn : wx = x, ∀w ∈ G}, and the inverse is given by sending an intersection of
hyperplanes X to Gal(X) = {w ∈W : wx = x, ∀x ∈ X}.

This Galois correspondence gives a description of L(H (An)) in terms of parabolic subgroups of An.
We also obtain another description of L(An,k) under this correspondence.

Proposition 2.2 The Galois correspondence gives a bijection between subspaces of An,k and irreducible
parabolic subgroups of An of rank k − 1.

Proof: Let X be a subspace of Rn+1 given by x1 = . . . = xk. The k-equal arrangement is the orbit of
X under the action of An = Sn+1, and Gal(X) =< (1, 2), ..., (k − 1, k) >, hence is irreducible. For
w ∈ An, Gal(wX) = wGal(X)w−1, so all of the subspaces in the k-equal arrangement have irreducible
Galois groups.

Conversely, every irreducible parabolic subgroup of rank k − 1 in An is the Galois group of some
subspace in the k-equal arrangement. To see this, consider an irreducible parabolic subgroup G of rank
k−1. Then there exists a standard parabolic subgroupH and an element w ∈W such thatG = wHw−1.
Since H is an irreducible standard parabolic subgroup, H =< (i, i+ 1), ..., (i+k− 1, i+k) > for some
1 ≤ i ≤ n+1−k. Thus, Fix(H) is given by xi = . . . = xk, and Fix(G) = Fix(wHw−1) = wFix(G)
is given by xw(i) = . . . xw(k), which is a subspace in the k-equal arrangement. 2

With this proposition as motivation, we give the following definition for a k-parabolic arrangement.

Definition 2.3 Let W be an finite real reflection group of rank n. Let Pn,k(W ) be the collection of all
irreducible parabolic subgroups of W of rank k − 1.

Then the k-parabolic arrangement Wn,k is the collection of subspaces

{Fix(G) : G ∈Pn,k(W )}.

The k-parabolic arrangements have many properties in common with the k-equal arrangements. Both
of these arrangements can be embedded in the corresponding Coxeter arrangement. That is, every sub-
space in these arrangements can be given by intersections of hyperplanes of the Coxeter arrangements.
Moreover, L(Wn,k) is a subposet of L(H (W )) = L(Wn,2), and these arrangements are invariant under
the action of W . Indeed, consider a subspace X in Wn,k and an element w ∈ W . Since X is in Wn,k,
Gal(X) is an irreducble parabolic subgroup of rank k− 1. It is clear that Gal(wX) = wGal(X)w−1, so
Gal(wX) is also an irreducible parabolic subgroup of rank k− 1, whence Gal(wX) ∈Pn,k(W ). Since
Fix(Gal(wX)) = wX , it follows that wX ∈ Wn,k.

When W is of type A, we see that we have recovered the k-equal arrangement. To see what happens
when W is type B or D, first we recall type B and D analogues of the k-equal arrangement. In 1996,
Björner and Sagan defined a class of subspace arrangements of type B and D [7], which they call the
Bn,k,h-arrangements and Dn,k-arrangements.

Definition 2.4 The Dn,k-arrangement consists of subspaces given by ±xi1 = ±xi2 = . . . = ±xik ,
over distinct indices i1, . . . , ik. The Bn,k,h-arrangements are obtained from the Dn,k-arrangements by
including subspaces given by xi1 = . . . = xih = 0 over distinct indices i1, . . . , ih, with h < k.
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The Betti numbers ofM(Bn,k,h) were computed by Björner and Sagan in [7], while the Betti numbers
ofM(Dn,k) were computed by Kozlov and Feichtner in [13].

Example 2.5 (When W is of type B) WhenW is of typeB, the k-parabolic arrangement is the Bn,k,k−1-
arrangement of Björner and Sagan [7]. Recall that Bn has presentation given by generators si, 0 ≤ i ≤
n, such that < s1, . . . , sn > generate the symmetric group, (s0s1)4 = 1, and s0si = sis0 for i > 1. It
is well-known that the Bn,k,k−1-arrangement is the orbit of two subspaces given by x1 = . . . = xk and
x1 = . . . = xk−1 = 0, under the action of Bn. Clearly the Galois groups of these two spaces are given
by < s1, . . . , sk−1 > and < s0, . . . , sk−2 >. These are both irreducible parabolic subgroups of rank
k− 1, so every subspace of the Bn,k,k−1-arrangement corresponds to an irreducible parabolic subgroup
of rank k − 1. Similarly, given an irreducible parabolic subgroup of rank k − 1, it is not hard to show
that this subgroup corresponds to a subspace in the Bn,k,k−1-arrangement. The argument is similar to
the case for type A, and we omit the details.

3 Discrete Homotopy Theory
To facilitate the proofs of our algebraic description for π1(M(Wn,k)), first we give a combinatorial de-
scription of π1(M(Wn,k)) in terms of discrete homotopy theory of the Coxeter complex for W . As
motivation, we mention the following result:

Theorem 3.1 Let M(An,k) be the complement of the k-equal arrangement An,k. Let C (An) be the
order complex of the Boolean lattice.

Then π1(M(An,k)) ∼= An−k+1
1 (C (An)), where Aq1 is a discrete homotopy group, to be defined below.

This result was shown independently by Björner [5] and Babson (appears in [3]) in 2001). It turns out
that the order complex of the Boolean lattice is the Coxeter complex of type A, which explains our choice
of notation.

One of the original motivations for discrete homotopy theory was to create a sequence of groups for
studying social networks being modeled as simplicial complexes. However, as Theorem 3.1 shows, dis-
crete homotopy theory has applications in other areas of mathematics. We will show that there is an
isomorphism between π1(M(Wn,k)) and the discrete fundamental group, An−k+1

1 , of the Coxeter com-
plex, a combinatorial structure associated to the Coxeter arrangement. Essentially, we are replacing a
topologically defined group with a combinatorially defined group. First, however, we give an overview
of some of the needed basic definitions and results from discrete homotopy theory. Many details and
background history of discrete homotopy theory can be found in [2].

Fix a positive integer d. Let ∆ be a simplicial complex of dimension d, fix 0 ≤ q ≤ d, and let σ0 ∈ ∆
be maximal with dimension ≥ q. Two simplicies σ and τ are q-near if they share q + 1 elements. A
q-chain is a sequence σ1, . . . , σk, such that σi, σi+1 are q-near for all i. A q-loop based at σ0 is a q-chain
with σ1 = σk = σ0.

Definition 3.2 We define an equivalence relation, ' on q-loops with the following conditions:

1. The q-loop
(σ) = (σ0, σ1, . . . , σi, σi+1, . . . , σn, σ0)

is equivalent to the q-loop

(σ)′ = (σ0, σ1, . . . , σi, σi, σi+1, . . . , σn, σ0),
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Fig. 1: An example of a homotopy grid

which we refer to as stretching.

2. If (σ) and (τ) are two q-loops that have the same length then they are equivalent if there is a
diagram as in figure 1. The vertices represent simplices, and two vertices are connected by an edge
if and only if the corresponding simplices are q-near. Thus, every row is a q-loop based at σ0, and
every column is a q-chain. Such a diagram is called a (discrete) homotopy between (σ) and (τ).

Define Aq1(∆, σ0) to be the collection of equivalence classes of q-loops based at σ0. Then the operation
of concatenation of q-loops gives a group operation onAq1(∆, σ0), the discrete homotopy group of ∆. The
identity is the equivalence class containing the trivial loop (σ0), and given an equivalence class [σ] for the
q-loop (σ) = (σ0, σ1, . . . , σk, σ0), the inverse [σ]−1 is the equivalence class of (σ0, σk, σk−1, . . . , σ2, σ1, σ0).
As in classical topology, if a pair of maximal simplices σ, τ of dimension at least q in ∆ are q-connected,
then Aq1(∆, σ) ∼= Aq1(∆, τ). Thus, in the case ∆ is q-connected, we will set Aq1(∆) = Aq1(∆, σ0) for any
maximal simplex σ0 ∈ ∆ of dimension at least q.

Before we use discrete homotopy theory, we need a result from [2] that relates discrete homotopy theory
of a simplicial complex to classical homotopy theory of a related space. Given 0 ≤ q ≤ d, let Γq(∆) be a
graph whose vertices are maximal simplices of ∆ of size at least q, and with edges between two simplices
σ, τ , if and only if σ and τ are q-near. Then the following result relates Aq1(∆, σ0) in terms of a cell
complex related to Γq(∆).

Proposition 3.3 (Proposition 5.12 in [2])

Aq1(∆, σ0) ∼= π1(XΓ, σ0)

where XΓ is a cell complex obtained by gluing a 2-cell on each 3- and 4-cycle of Γ = Γq(∆).

Let W,H(W ),Φ,Π, S be as in section 2. As mentioned previously, we study the discrete homotopy
groups of the Coxeter complex associated to W , and relate them to π1(M(Wn,k)). The majority of these
details can be found in Section 1.14 in Humphrey’s book on Coxeter groups [15]. The concepts regarding
fans and zonotopes can be found in Chapter 7 of Zeigler’s book on polytopes [18].

For a given set I ⊆ S, let WI =< I >, and ΠI = {α ∈ Π : sα ∈ I}. We can associate to WI the
set of points CI = {x ∈ Rn : (x, α) = 0,∀α ∈ ΠI , and (x, α) > 0,∀α ∈ Π − ΠI}. The set CI is the
intersection of hyperplanes Hα for α ∈ ΠI with certain open half-spaces. We see that C∅ corresponds to
the interior of a fundamental region, and CS is the origin.
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For a given coset wWI , we can associate the set of points wCI . The collection C (W ) of wCI for
all w ∈ W, and all I ⊆ S partitions Rn, and is called the Coxeter complex of W . The face poset of
the Coxeter complex can be viewed as the collection of cosets wWI for any w ∈ W, I ⊆ S, ordered by
reverse inclusion. We note that this poset is not L(H (W )). For W = An, we have already mentioned
that L(H (W )) is isomorphic to the partition lattice. The face poset of the braid arrangement, however,
is isomorphic to the order complex of the boolean lattice. Since chains in the boolean lattice are in one-
to-one correspondence with ordered set partitions, these two posets are related, but are very different.
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Fig. 2: Coxeter Complex and Zonotope for W = A3. Note that CS is the origin.

For a given w, I , the closure of wCI is a convex polyhedral cone. In fact, the collection of all wC̄I
forms a fan of Rn, which is the fan associated to H (W ). Under this view, the sets wC̄I are the faces of
the arrangement.

Recall that we can associate a zonotope to a hyperplane arrangement. That is, given line segments of
unit length normal to the hyperplanes, one can form a polytope by taking the Minkowski sum of these
line segments. For a Coxeter arrangement of type W this zonotope is called the W -Permutahedron.
Also, the fan of the arrangement is the normal fan of the zonotope. Thus, we can label the faces of
the W -Permutahedron by cosets wWI , where a face F gets the label wWI if the normal cone for F
is wC̄I . Under this labeling, the face poset of the W -Permutahedron is indexed by cosets wWI for all
w ∈W, I ⊆ S, ordered by inclusion.

We observe that in the W -Permutahedron, the vertices correspond to elements of W , and two vertices
share an edge if and only if the corresponding regions share an (n − 1)-dimensional boundary, that is if
and only if the corresponding elements of W differ by multiplication on the right by a simple reflection.
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From this it follows that the graph (one-skeleton) of the W -Permutahedron is the graph Γn−2(C (W ))
defined before Proposition 3.3.

We also characterize the cycles that are boundaries of 2-faces in the W -Permutahedron. Given a 2-
dimensional face F and a vertex w in F , we see that one edge adjacent to w in F is of the form w,ws
for some s ∈ S. Likewise, one of the two edges of F incident to the edge w,ws is the edge ws,wst,
where t ∈ S − s. Thus we see that the coset associated to the normal cone of F contains both wWs and
wsWt. Likewise, it is the smallest coset to contain these two cosets, so the corresponding coset is given
by wW{s,t}. The cycle that is the boundary of F is seen to have length 2m(s, t). This means that the
graph has no 3-cycles, and 4-cycles are boundaries of faces which correspond to a coset of W{s,t}, where
s, t ∈ S and m(s, t) = 2. The fact that the graph has no 3-cycles will turn out to be useful in section 4.

Now we turn to the main result of this section.

Theorem 3.4 LetM(Wn,k) be the complement of the k-parabolic arrangement Wn,k.
Then π1(M(Wn,k)) ∼= An−k+1

1 (C (W )).

The proof is given in the full version of the paper [4].

4 An algebraic description of π1(M(Wn,3))
In this section, we give a description of π1(M(Wn,k)) that is similar to the idea of a pure Artin group. In
our case, the group we consider is a (possibly infinite) Coxeter group. Recall thatW affords the following
presentation: W is generated by S subject to the relations:

1. s2 = 1, ∀s ∈ S

2. st = ts, ∀s, t ∈ S such that m(s, t) = 2

3. sts = tst, ∀s, t ∈ S, such that m(s, t) = 3
...

i. stst · · ·︸ ︷︷ ︸
i

= tsts · · ·︸ ︷︷ ︸
i

, ∀s, t ∈ S, such that m(s, t) = i

...

where of course we have no relation of the form st · · · = ts · · · if m(s, t) =∞.
If G is a group generated by S subject to every relation except relations of type 1, then G is an Artin

group. There is a surjective homomorphism ϕ : G → W given by ϕ(s) = s for all s ∈ S. The kernel
of ϕ is the pure Artin group. As stated in the introduction, the pure Artin group is isomorphic to the
fundamental group of the complement of the complexification of the Coxeter arrangement for W . The
goal of this section is to give a real analogue of this result for the Wn,3-arrangements.

In our case, let W ′ be a group on S subject to only the relations of type 1 and 2. Equivalently, W ′ is
subject to s2 = 1 for all s ∈ S, and two elements s, t ∈ S commute in W ′ if and only if they commute in
W . In essence, given the Dynkin diagram D for W , W ′ is obtained by replacing all the edge labels in D
with the edge label∞, and letting W ′ be the resulting Coxeter group.

Consider the surjective homomorphism ϕ′ : W ′ → W given by ϕ′(s) = s for all s ∈ S. Then the
following result holds:
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Fig. 3: Dynkin diagrams for W and W ′

Theorem 4.1 π1(M(Wn,3)) ∼= kerϕ′.

When W is of type A or B, Theorem 4.1 was shown by Khovanov [16], where the arrangements are
referred to using different terminology. However, we give a proof for any finite real reflection group.

As a result of Theorem 3.4, we know that we can study π1(M(Wn,k)) using discrete homotopy theory
of C (W ). Before we prove Theorem 4.1 we first investigate the structure of (n − 2)-loops in C (W ) in
more detail. For the duration of the section we will use the term loop to mean (n− 2)-loop. To any such
loop (σ) = (σ0, . . . , σ`, σ0) in C (W ) we associate a sequence of elements of S ∪ {1} of length ` in the
following way: For any i ∈ [`], if σi = σi−1, let si = 1. Otherwise let si be the unique element s of S
for which σi−1s = σi. Thus we associate a word f(σ) in S∗ to (σ): the product of the elements of the
corresponding sequence in order.

We note that if (σ) is a loop, then f(σ) = 1 in W . This implies that when viewing f(σ) as a product
in W ′, f(σ) ∈ kerϕ′. We also note that to any element w = s1 · · · sk in S∗ we can associate a chain
g(w) = (σ0, σ0s1, . . . , σ0s1 · · · sk), where the elements s1 · · · si are being viewed as elements of W . If
w = 1 when viewed as an element of W , then g(w) is actually a loop. It is easy to see that for two loops
(σ), (τ), f((σ) ∗ (τ)) = f(σ)f(τ), and if u, v ∈ S∗, u = v = 1 in W , then g(uv) = g(u) ∗ g(v).

Suppose there is a homotopy between two loops (σ) and (τ) of the same length. Since Γn−2(C(W ))
does not have any 3-cycles, it turns out that there is a (discrete) homotopy between them where adjacent
rows in the grid follow one of the three following discrete homotopy operations. In each case, we also
show how the associated words differ between the adjacent rows. Finally, e refers to the identity element
of W .

(T1) Repeating simplices. A simplex α is repeated consecutively on the top row, and a different simplex
β is repeated consecutively on the bottom row. Note that this results in no change in the associated
words.

σ

σ

e

e

τ

τ

α
r s t

r s t

α β

α β β

rst

rst

(T2) Inserting or removing a simplex. On one row there are three adjacent identical simplices α, and on
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the bottom row the middle simplex of this triple is replaced with a new simplex β that is (n−2)-near
α. Note that the corresponding words differ by an involution relation.

σ

σ

e
τ

τ

α
r t

r s t

α

α β

α

α

e

s

rt

rsst

(T3) Exchanging pairs that are (n − 2)-near. We happen to know that (α, β, τ, γ) is a loop of distinct
simplices. We construct a discrete homotopy as shown in the figure. We note that the resulting
words differ by an application of a commutative relation. It is also worth noting this operation can
only be performed when s, t commute.

σ

σ

τ

τ

α
r

r α

rst

rts

s t e

e t s

β τ

α γ

Thus for any discrete homotopy operation, the corresponding words are either equal, or differ by one
of the generating relations of W ′. In the full paper [4], we use this observation to prove the following
lemma.

Lemma 4.2 1. Let (σ), (τ) be loops. If (σ) ' (τ) then f(σ) = f(τ) in W ′.

2. Let w ∈ S∗. If w = 1 in W ′, then g(w) is contractible.

3. Let w, v ∈ S∗. If w = v in W ′, then g(w) ' g(v).

Proof of Theorem 4.1:
The isomorphism is given by sending the equivalence class with representative (σ) to f(σ), and the

inverse is given by sending an element w ∈ W ′, expressed as s1s2 · · · sk, k ∈ N, s1, . . . , sk ∈ S, to
g(s1 · · · sk). The details that these functions are well-defined isomorphisms is given in the full paper [4].
2

5 Conclusion and Open Problems
It follows as a result of Corollary 5 in [8] that for k > 3, the k-parabolic arrangements are not K(π, 1).
However, the Wn,3 -arrangement is aK(π, 1)-arrangement. As a result of Davis, Januszkiewicz and Scott,
if A is any collection of codimension 2 subspaces of H (W ) that are invariant under the action of W ,
then A is a K(π, 1)-arrangement (Theorem 0.1.9 in [10]).

Currently there is no presentation for the fundamental groups of the complement of such W -invariant
arrangements. Motivated by our results, and the work of Khovanov [16], we give the following conjec-
tured presentation.
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Conjecture 5.1 Let P be a collection of rank 2 parabolic subgroups of a finite real reflection group W
such that P is closed under conjugation, and let W = {Fix(G) : G ∈P} Define a new Coxeter group
W ′ with the same generating set S as W , and subject to:

m′(s, t) =
{
∞ if < s, t >∈P
m(s, t) else

and let ϕ : W ′ →W be given by sending s→ s for all s ∈ S. Then π1(M(W )) ∼= kerϕ.

In [2], a definition is given for higher discrete homotopy groups, which are denote Aqm(∆, σ0). A
natural question is whether or not these groups are related to the higher homotopy groups ofM(Wn,k).

Conjecture 5.2 LetM(Wn,k) be the complement of the k-parabolic arrangement Wn,k.
Then πm(M(Wn,k)) ∼= An−k+1

m (C (W )).

Form < k, it would suffice to show thatAn−k+1
m (C (W )) is trivial. The conjecture becomes interesting

for k > 3,m = k, because in this case the k-th homology group of M(Wn,k) is isomorphic to the
k-th homotopy group. Thus, one could find the formulas for the first non-zero Betti numbers using
discrete homotopy theory. Determining the Betti numbers for the k-parabolic arrangements is also an
open problem, in the case that W is an exceptional groups.

Finally, one may if it is possible to generalize Theorem 3.4 to other hyperplane arrangements. That is,
given a hyperplane arrangement H , let C (H ) be the face complex of H . Is there a subspace arrange-
ment A for which π1(M(A )) ∼= An−2

1 (C (H ))? This would be an example of using discrete homotopy
theory of a complex that arises from geometry to study a topological space related to the original complex.
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