FPSAC 2009, Hagenberg, Austria DMTCS proc. AK, 2009, 793-804

A further correspondence between
(bc, b)-parking functions and (bc, b)-forests

Heesung Shin| and Jiang Zeng]'

Université de Lyon; Université Lyon 1; Institut Camille Jordan, CNRS UMR 5208; 43 boulevard du 11 novembre
11918, F-69622 Villeurbanne Cedex, France

Abstract. For a fixed sequence of n positive integers (a, b) := (a, b, b, ..., b), an (a, b)-parking function of length n
is a sequence (p1, p2, . .., pn) of positive integers whose nondecreasing rearrangement ¢; < g2 < - -+ < gy, satisfies
g <a+(i—1)bforanyi = 1,...,n. A (a,b)-forest on n-set is a rooted vertex-colored forests on n-set whose
roots are colored with the colors 0,1,...,a — 1 and the other vertices are colored with the colors 0,1,...,b — 1.
In this paper, we construct a bijection between (bc, b)-parking functions of length n and (bc, b)-forests on n-set with
some interesting properties. As applications, we obtain a generalization of Gessel and Seo’s result about (c, 1)-
parking functions [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. 11(2)R27, 2004] and a refinement of
Yan’s identity [Catherine H. Yan, Adv. Appl. Math. 27(2-3):641-670, 2001] between an inversion enumerator for
(bc, b)-forests and a complement enumerator for (b, b)-parking functions.

Résumé. Soit (a,b) := (a,b,b,...,b) une suite d’entiers positifs. Une (a, b)-fonction de parking est une suite
(p1,p2,...,pn) d’entiers positives telle que son réarrangement non décroissant ¢1 < g2 < --- < gy satisfait
¢ < a+ (i—1)bpourtouti = 1,...,n. Une (a,b)-forét enracinée sur un n-ensemble est une forét enracinée
dont les racines sont colorées avec les couleurs 0, 1,...,a — 1 et les autres sommets sont colorés avec les couleurs
0,1,...,b— 1. Dans cet article, on construit une bijection entre (bc, b)-fonctions de parking et (bc, b)-foréts avec des
des propriétés intéressantes. Comme applications, on obtient une généralisation d’un résultat de Gessel-Seo sur (c, 1)-
fonctions de parking [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. 11(2)R27, 2004] et une extension de
I’identité de Yan [Catherine H. Yan, Adv. Appl. Math. 27(2-3):641-670, 2001] entre I’énumérateur d’inversion de
(bc, b)-foréts et I’énumérateur complémentaire de (be, b)-fonctions de parking.

Keywords: Bijection, Forests, Parking functions

1 Introduction

It is well-known [Sta99] that parking functions and (rooted) forests on n-set are both counted by Cayley’s
formula (n + 1)"~1. Foata and Riordan [FR74] gave the first bijection between these two equinumerous
sets. In the past years, many generalizations and refinements of this result were obtained (See [MR68,

Thshin@math.univ-lyon1.fr
zeng@math.univ-lyon1.fr

1365-8050 (© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France


http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAKind.html

794 Heesung Shin and Jiang Zeng

Kre80, [Yan01l ISP02, KYO03\ I(GS06]). In particular, Stanley and Pitman [SP02] introduced the notion of
(a,b)-parking functions where a and b are two positive integers.

Recall that an (a, b)-parking function (of length n) (see [SPO2])) is a sequence (p1,ps, . . ., Pn) of pos-
itive integers whose nondecreasing rearrangement ¢; < g2 < .-+ < ¢, satisfies ¢; < a + (i — 1)b for
1 < ¢ < n. Itis shown [SP02] that the number of (a, I_J)-parking functions is

a(a +bn)" L.

Looking for its forest counter parts, Yan [YanOT] defined a (rooted) (a, B)-forest (see section b to be
a vertex-colored forest in which all roots are colored with the colors 0, 1,...,a — 1 and the other vertices
are colored with the colors 0,1,...,b — 1. She proved that the enumerator P,Ea’b) (¢) of complements of
(a,b)-parking functions and the enumerator JAR (q) of (a,b)-forests by the number of their inversions
are identical, i.e.,

11 (q) = P\ (q). )

It is an open problem to give a bijective proof of the identity (I). Generalizing a bijection of Foata and
Riordan [[FR74], Yan [YanOI] did give a bijection between (a,b)-forests and (a,b)-parking functions
which is a bijective proof of (I)) for ¢ = 1, but this bijection does not keep track of the statistics involved
in (I) even in ordinary a = b = 1 case. Note that Eu et al. [EFL05]] were able to extend the bijection of
Foata and Riordan to enumerate (a, b)-parking functions by their leading terms. Recently, Shin [Shi0§]
gave a bijective proof of (I) whena = b = 1.

A different refinement of Cayley’s formula was given by Gessel and Seo [[GS06]]. Using generating
functions, they showed that the enumerator of forests with respect to proper vertices and the number of
trees and the lucky enumerator of (a, 1)-parking function are both equal to

n—1

au H(i+u(n—i+a)).

=1

Bijective proof of above results for a = 1 have been given by Seo and Shin [SSO7]] and Shin [Shi08]].

In this paper, we prove three main results. First, in Theorem |, we establish a bijection between
(be, b)-parking functions and (bc, b)-forests, which is a generalization of the first author’s recent bijection
[ShiO8]. Secondly, in Theorem we generalize the aforementioned formula of Gessel and Seo to (bc, b)
case. Finally, in Theorem [5] we extend Gessel and Seo’s hook-length formula [GS06, Corollay 6.3] for
forests to (a, b)-forests.

The rest of this paper is organized as follows: In Section[2} we introduce definitions of various statistics
on general parking functions and forests. The main theorems of this paper are presented in Section[3] The
proofs of main theorems are given in Sections 4] [5] [6]

2 Definitions
2.1 Statistics on (be, b)-parking functions

From now on, we fix a = bc. We define a parking algorithm for (bc, b)-parking functions by generalizing
algorithm in [GS06] for (c, 1)-parking functions. Suppose that there are 1,2,. .., (n + ¢ — 1)b parking
lots with only n + ¢ — 1 available parking spaces at b, 2b, ..., (n + ¢ — 1)b, that means the positions are
multiples of b.



A further correspondence between (bc, b)-parking functions and (be, b)-forests 795

4507 8®I10111©1314@ 1617 ©
OO0 1005000004002

Parking Space 1 2
Cars’ Number,¢ 0O O

jump(P;¢) jump(P) = 10
block(P; c) @

jumnp g (P ) jumnp g (P) = 19
lucky car lucky(P) = 2

critical car

sel=[e]=®
[=]=1=]
HEE
NNEIEIE
=
53
Q
by
\E ~
I
— o

(\
{\
o
=.
=
Il
w |l

10
JUMP  3(P) = ( L1

O =
o O
o o
o o
o O
_= O
o o
o o
S—

Fig. 1: A (bc, b)-parking function P = (5, 16, 3, 15, 2) of length 5 and statistics of P for b = 3, ¢ = 2 where circled
numbers are available parking spaces

Entrance
This is a one-way road

Given a (bc, b)-parking function P = (p1, pa, . . ., pn) of length n, suppose that Cars 1,2, ..., n come to
the parking lots in this order and car ¢ prefers parking space p;. We can park the n cars withn + ¢ — 1
parking spaces by the following parking algorithm: If p; is occupied or non-available, then car ¢ takes the
next available space. If g; be the actual parking space with ¢-th car forz = 1, ..., n, we define

park(pi,...,pn) = (q1,-- -, qn)-

In Figure we give an example of a (bc, b)-parking function (5, 16,3, 15,2) for b = 3 and ¢ = 2. By the
Parking Algorithm, we get a sequence with length 5,

park(5, 16,3, 15, 2) = (6,18,3,15,9).

The difference between the favorite parking space p; and the actual parking space g; is called the jump
of car i, and denoted by jump(P; ), that is,

jump(P;i) = ¢; —p; if  park(pi,...,pn) = (¢1,.--,Gn)-

Let jump(P) denote the sum of the jumps of P, that is,
jump(P) = Zjump(P; i).

Clearly jump(P;4) > 0. We say that car 4 is lucky if jump(P;¢) = 0. Denote the number of lucky cars
of P by lucky(P).

After parking all the n cars, there are ¢ — 1 non-occupied parking spaces which divide the parking
lots into ¢ blocks of parking lots. Let block(P;¢) be the number of non-occupied parking spaces on the



796 Heesung Shin and Jiang Zeng

right of car 4 after running parking algorithm. Let block(FP) denote the sum of blocks of all cars, i.e.,
block(P) = ), block(P;i). We define (bc, b)-jump of (be, b)-parking function

jump e 5y (P34) = jump(P;é) + b - block(P; i),
unp e (P) = Jup(P) + - bock(P) = ben + (3 Jo - .
where | P| = 3" p;. Note that (bc, b)-jump is identical to the complement of | P| in [YanO1].

Let lucky; ;. (P) denote the number of cars i such that block(P; i) = j and jump(P; i) = k. We define
the multi-statistic JUMP ;. 3 by

IUCkYO,o(P) IUCkYo,l(P) thkYo,N(P)

lucky; o(P) lucky, ;(P) -+ lucky, n(P)
JUMP,, ;(P) = o o . o ;

thkyc—l,o(P) thkyc—Ll(P) thkyc—l,N(P)

where N = (”jl)b —n.

A car cis called critical if there are only former cars parked on the right of the block containing c after
parking. If car c is critical in a (bc, b)-parking function P, crit(P;c) = 1. Otherwise, crit(P;c) = 0.
Denote the number of critical cars in a (bc, b)-parking function P by crit(P).

As an example, a (bc, b)-parking function is given in Figurefor b = 3 and ¢ = 2 in order to illustrate
different statistics.

2.2 Statistics on (bc, b)-Forests

A (rooted) forest is a simple graph on [n] = {1, ..., n} without cycles, whose every connected component
has a distinguished vertex, called a root. A (rooted) (a,b)-forest on [n] is a pair (F, x) where F is a forest
on [n],  is a mapping from the set of vertices in F' to non-negative integers such that k(v) < aif vis a
root and k(v) < b, otherwise.

In a rooted forest F, a vertex j is called a descendant of a vertex i if the vertex ¢ lies on the unique
path from the root to the vertex j. In particular, every vertex is a descendant of itself. Denote the set of
descendants of a vertex v by Dp(v). The hook-length h, of v is defined by the number of descendants of
v in a forest. A vertex v is a parent of w if v and u are connected by one edge and w is a descendant of v.

As defined by Mallows and Riordan [MR68], an inversion in a rooted forest is an ordered pair (i, j)
such that ¢ > j and j is a descendant of i. Let Inv(F’;v) denote the set of ordered pairs (v, z) such that
v > x and x € Dp(v). Denote the number of all inversions in a rooted forest F' by inv(F'). We need
to generalize the notion of inversions to (b, b)-forests as follows: Let %(v) denote the remainder of (v)
modulo b, i.e.,

k(v) =R(v) modb with0 <E(v) <b-—1.
Define the inversion inv(F;v) of a (be, b)-forest F by

inv(F;v) = |Inv(F;v)| + &(v) - [Dp(v)].



A further correspondence between (bc, b)-parking functions and (be, b)-forests 797

Foog 4 o[0] 20[2]
5 @{0]

H
(=]

Vertex v 12345

K(v) 12500

|Inv(F';v)| 00100

7(v) 12200

IDp(v)] 11311

inv(F; v) 12700 |mv(F) =10
tcol(F';v) 10101 |tcol(F)=3
invigs(Fiv) 4 2100 3 | invigs) (F) =19
proper vertex v v | prop(F) =2
root e tree(F) = 3

101 0 0 0 OO0 O 0
INV<673>(F)<1 10000010 0)

Fig. 2: A (bc, b)-forest I on [5] and statistics of F for b = 3, ¢ = 2 where x(v) is boxed

Let inv(F) denote the sum of inv(F; v) over all vertices v of F, i.e.,

inv(F) = Z inv(F;v).

v

Given a (bc, b)-forest F, a vertex v is called a proper vertex if the vertex v is the smallest among all its
descendants and its color is a multiple of b, that is, inv(F; v) = 0. Let prop(F") denote the number of all
proper vertices in a rooted forest . By definition, every leaf v with &(v) = 0 is a proper vertex.

Denote the root of the tree including a vertex v in an (bc, b)-forest F' by R(v). A tree-color tcol(F;v)
of a vertex v in a (b, b)-forest I is defined by tcol(F;v) = L@J. Let tcol(F) denotes the sum of
root colors of all vertices, i.e., tcol(F) = Y tcol(F;v). We define the (bc, b)-inversion of (be, b)-forest
F by

v e 5 (F50) = inv(F;v) + b teol(F;v),
inv .5 (F) = inv(F)+b-tcol(F).
Note that (be, b)-inversion is identical to the (be, b)-inversion in [YanOT]].

Let prop; , (F") denote the number of vertices such that tcol(F';v) = j and inv(F';v) = k. We define
the multi-statistic IN'V ;. 7, by

proPo,o(F) propO,l(F) prOPo,N(F)
prop; o(F)  prop; ;(F) -+ prop; n(F)
INV 45 (F) = . . . ,

PTOPcho(F) prOpchl(F) Pr0pc71,N(F)



798 Heesung Shin and Jiang Zeng

where N = ("31)b —n.

If a vertex v is a root of a forest F', we define tree(f;v) = 1. Otherwise, tree(f;v) = 0. Denote the
number of trees (or roots) in a (be, b)-forest F' by tree(F).

In Figure an example of a (bc, b)-forest F' on n-set is given for b = 3 and ¢ = 2 in order to illustrate

different statistics.

3 Main Results

Let PF,. 5 be the set of (bc, b)-parking functions of length n and Fye.p) be the set of (be, b)-forests
on [n]. First of all, we recall the mapping ¢ : F1,1) — PF{1 1) between forests and ordinary parking
functions in [Shi08)]]. Given a forest F' € F (1,7) and a vertex v € [n], let h, be the number of descendants
of vin F and Dr(v) = {dy,da,...,dp,} is the set of descendants of v in F. We define a cyclic
permutation 6,, on D (v) by

91, = (dldg e dk_ﬂ})

where d; > do > ... > dj_; are all the descendants of v € V(F') greater than v and 0, (d;) = d; 11 for
1<i<k-—1landf,(v)=d;. LetOp = 0165 --0,,. We attach to each vertex v in F' a triple of labels

(0p(v),inv(F : v),post(0r(F) : Op(v)))

where 0 (F) is a forest by relabeling v by 6 (v) and post(F : v) is a postorder index of v in F'. We
define the mapping f : [n] — [n] by

v = post(0p(F) : Op(v)) — inv(F : v)
for every vertex v. The bijection ¢ : F; 1y — PF(y 1) is defined by

P(F) = (f(0R' (1) f(OF'(2)), .. f(OF' (n)))- 2

Now we generalize the mapping ¢ to a bijection between (bc, b)-forests and (b, b)-parking functions.
We define the mapping ¢ : Fy,. 3 — PF{y. 5 as follows: Givena F' € F{;, 5), the connected components
of a forest F' can be classified according to tree-colors. Let F}, be the sub-forests of F' satisfying

teol(F :v) = k

for all v € F}. We define a cyclic permutation 6, on D (v) as above. When we define a postorder index
post(F : v) of vin F, forests F.._1, Fr_o, ..., Fy are traversed in this order. We attach to each vertex v
in F' a quadruple of labels

(OF(v),inv(F : v),post(0r(F) : 0p(v)), tcol(F : v))
where 0 (F') is a forest by relabeling v by 0 (v). After that, we define the mapping f : [n] — [n] by
v — (post(0p(F) : 0p(v)) + ¢ —1—tcol(F : v))b — inv(F : v)

on every vertex v. The mapping ¢ : Fiy. 3y — PF{y. 3 is also defined by (). For example, the forest F
in Figure [2] goes to the parking function P in Figure[I|by the mapping ¢.



A further correspondence between (bc, b)-parking functions and (be, b)-forests 799

Theorem 1 (Main Theorem) The mapping ¢ is a bijection between (bc, b)-forests and (be, b)-parking
functions satisfying
(INV(ng)7 tree)(F) = (JUMP(bC’B), crit)p(F),

for all (be, b)-forests F.

By definitions, the statistics inv(bc@, inv, tcol, and prop can be written as follows:

v (.5 (F) = inv(F)+b-teol(F),
inv(F) = (1,1,1,...,1)INV 4,5 (F)(0,1,2,...,N)",
tcol(F) = (0,1,2,...,(c—1))INV 4. 5 (F)(1,1,1,...,1)7,
prop(F) = (1,1,1,...,1)INV .5 (F)(1,0,0,...,0)".

Similarly, the statistics jump, 3), jump, block, and lucky can also be written as follows:

jump .5 (P) = jump(P) +b - block(P),
jump(P) = (1,1,1,...,1)JUMPy,.;(P)(0,1,2,...,N)",
block(P) = (0,1,2,...,(c=1)) JUMP .5 (P)(1,1,1,...,1)T,
lucky(P) = (1,1,1,...,1)JUMP 4,5 (P)(1,0,0,...,0)".

As a consequence, we derive the following corollary from Theorem [T}

Corollary 2 The bijection ¢ : Fy,. 5y — PF. ) has the following property:
(inv (4,5, inv, tcol, prop, tree) (F) = (jump .. 5, jump, block, lucky, crit)p(F),
fOVF c F(bc,E)'

Introduce the following enumerators of (be, b)-forest and (be, b)-parking functions:

I,(Lbc’g)(q,u,t) _ Z qinva}c‘g)(F)uprop(F)ttree(F)’
FEF .5

pébc,l;)(q,uJ) _ Z qjump(bc‘w(P)ulucky(P)tcrit(P)'
PEPF . 5

Then we can derive a partial refinement of () from Corollary [2]
Corollary 3 We have B )
1% (g u,t) = POY (g, u, t).
Define the homogeneous polynomial

n—1

Py (a,b,c) ZCH(ai-I-b(n—i)—i—c).

i=1



800 Heesung Shin and Jiang Zeng

Theorem 4 We have

Z ulucky(P)tcrit(P) — Z uprop(F)ttree(F) — Pn(b7 b—1+ u, le(b — 14 u)) (3)
PEPF .5 FeF . 5

Remark. Forb = ¢ = 1 and b = t = 1, we recover, respectively, two results of Gessel and Seo [GS06,
Theorem 6.1 and Corollay 10.2].

Theorem 5 We have the hook-length formula of (a, b)-forests

Z ctree(F) H (1 + Oé) — Pn(b7b(1 + Oz),ac(l + Oé))v (4)

hy
FeF, v

where the sum is over all (a, b)-forests on n-set.

Remark. For a = b = 1 this is Gessel and Seo’s hook-length formula [GS06, Corollay 6.3].

4 Proof of Theorem

The inverse map of the extended mapping ¢ can be defined like the method in the paper [ShiOS]]: Given
a (bc, b)-parking function P, all cars are parked by the parking algorithm. At that time, we record the
jump(P; c) for every car in next row. After finishing, we draw an edge between the car ¢ and the closest
car on its right which is larger than c in its same block. We get the forest-structure on the cars as vertices.
That is a forest D. By defining

linv(F;v)| = jump(P;¢c) mod |Dp(v)|,

we can recover two forests I and F'. By k(v) := L%J, we can recover the color of v in F' where

Or(v) =c.
We can prove that  is weight preserving by the following lemma.

Lemma 6 There is a bijection ¢ : F,.5) — PF,p) between (be, b)-forests and (bc, b)-parking func-
tions such that
(inv, teol, tree) (F; v) = (jump, block, crit) (@ (F); 0 (v)),

for all (be,b)-forests F and all vertices v € F.

Proof: If we use the function d — (g+c¢—1—k)binstead of d — (g+c¢—1—k)b— i, all cars are lucky
since all images of f are different. So using the original function d — ((g + ¢ — 1 — k)b — 4), the value
of jump(P : ¢) increases by inv (7" : v) where O (v) = ¢. Thus inv(F : v) = jump(p(F) : p(v)).
Suppose that tcol(F'; v) = k, which means that a vertex v is in F). So a label of Oz (v) is also in Dj,.
Then car 0 (v) is parked actually in a k-th block. Then block(p(F); 0r(v)) = k.
If a vertex v is a root of a tree in F', a parent of 6 (v) is the root of D. So there is no car larger than the
car O (v) on its right in same block. Hence the car 6 (v) is critical. O



A further correspondence between (bc, b)-parking functions and (be, b)-forests 801
5 Proof of Theorem

The first equality follows from Corollary [3|for ¢ = 1, i.e.,

§ : uprop(F)ttree(F) _ § : ulucky(P)tcrit(P)'
FEF (e 5 PEPF,, 5

To prove the second equality in Theorem ] we need to appear for two Priifer-like algorithms: the
colored Priifer code [CKSS04] and reverse Priifer algorithm in [SSO7]. Given a (b, E)-forest F, deleting
the largest leaves successively v, . . ., v1 where o; is the parent of v; or o; = — teol(F : v;) if v; is aroot
and the color ¢; = K(v;). Then the colored Priifer code of F is defined by

o= () (e ()

In order to count the number of proper vertices, we define the reverse colored Priifer algorithm as
On Onp-—-1 -°° 01

follows: Starting from a colored Priifer code o = > . Let F be the forest with
1

Cn Cn—1
unlabeled single vertex v, by tcol(F : v1) = —oy. Foreachi = 2,...,n, we assume that F;_; is the

Oj—1 0Oj—2 *++ 01

forest obtained from the subcode . Let £ be the minimal element in [n] which

Ci—2
does not appear in F;_. To construct F; from F;_; and (o;, ¢;—1), we should consider the following two
cases.

1. Suppose that o; appears in F;_;. Then the unlabeled vertex v in F;_; is labeled by ¢ with color
c;—1 in T;. Since the new label ¢ is minimal among the unused labels in 7; 1, the vertex v with the
color ¢;_; is a proper vertex in 7" if and only if ¢;_; = 0.

2. Suppose that o; does not appear in 7;_;. Then the unlabeled vertex v in F;_; is labeled by o; in
F;.

(a) If o; <0, then the vertex v is a proper vertex in F, as in case @ and the unlabeled vertex in
F; becomes a root in F'.

(b) If 0; = [, then the vertex v is a proper vertex in F, as in case ().

(c) If o; # [, then the vertex v will have a descendant labeled by ¢. Thus, the vertex v is not

proper vertex in F'.

So there are exactly ¢+ — 1 + ¢ choices of ¢; and one choice of ¢;_; in case , case (2a)), and case @,
such that the newly labeled vertex v is a proper vertex in F'. Because the number of 7’s such that o; < 0in
a colored Priifer-code equals the number of the roots in F', tree(F’) is enumerated by nonpositive number



802 Heesung Shin and Jiang Zeng

in the colored Priifer-code of a forest F'. Thus we have the following formula:

D upropigiree®) = o by oy € {0,-1,...,—(c— 1)}
FGF(ij,)
x [Jom —i+1)+ (i -1+ ct)(b—1+u)) by (04, ¢i—1)
=2
x(b—14u) by ¢n—1

=P,(b,b — 1+ u,ct(b—1+u)).

This completes the bijective proof of equation (3).

6 Proof of Theorem B

By Theorem 4] the right side of @) is

Z (1_’_ba)prop(F)(%)tree(F).
FEF(b,{))

Replacing a by /b in @), it suffices to prove the identity:

Z Ctree(F) H (1 +

FeF(, 5

o' ac
bhv) — Z (1 +Oé)prop(F)(?)tree(F)' 5)
FeFq
We follow Gessel and Seo’s proof [GS06] in the case of a = b = 1. For each (unlabeled) forest F
on n sets, a labeling of F is a bijection from V (F) to [n] and (a, b)-coloring & is a mapping from V' (F)
to nonnegative numbers such that x(v) < a if v is a root and x(v) < b otherwise. Define the set of
(a,b)-forests

Lip(F) = {(L7 k) : L is alabeling and & is a (a, b)-coloring of F} .

Lemma 7 Let E be a (unlabeled) forest with n vertices. If S is a subset of V(ﬁ‘ ), then the number of

labelings L € L, 5 (F) such that every vertex in S is a proper vertex is

n!b"

[T (0h) ©)

Proof: Clearly the cardinality of L, () is n!b". Among the elements of L, 3y ("), the probability that

some vertex v € S is a proper vertex equals 7—. In other words, the number of labelings L € L(bj)(ﬁ‘)

such that every vertex in S is a proper vertex is ﬁ times the number of labelings in which every vertex

in 5\ {v} is a proper vertex. By induction on | S|, we are done. O




A further correspondence between (bc, b)-parking functions and (be, b)-forests 803

Let us consider the formula

ro ac ree ac ree
Z (1+a)P p(L)(?)t (L) — Z ZQISI(f)t ()

LEL b5 (F) LeLg 5 (F) S

where S runs over the subsets of the set of proper vertices of L. Reversing the order of two summations,
it follows by Lemma(7] that

Z (%C)tree(ﬁ) Z oS!
L

AC\ ree(F)y _ MO" g
> o

bh,
SCV(E) SCV(E) [es(
7 ac ree 2 &7
= nlb (ﬁt 11 (1+5-),
VeV (F) v

where L € L, 3 (F') such that every vertex in .S is a proper vertex. Therefore,

rop(L) % tree(L) __ n % tree(F) o
Do (Tkayrert gyt — i (30) II a+30) ()
LeL, 5 (F) veV(F)

Let us say that two labelings with colorings of a forest F are equivalent if there is an automorphism
of I that takes one labeling with coloring to the other. Let F be a forest on n set with automorphism
group G. Then the n!b»—tree(F) gtree(F) Jabelings with colorings of F fall into n!b™—tree(F) gtree(F) /||
equivalence classes. Define

Ii(a_yg)(l“:’) = {L € F, ) : The underlying graph of L is ﬁ'} .

Clearly ‘INJ(G@ (F)‘ = plpn—tree(E) gtree(F) /|G| and equivalent labelings with coloring have the same
number of proper vertices of trees, dividing (7)) by |G|, so we obtain the following.

ro A€\ tree T I ree(F -
S e < Ly ()] O T o),
LEL, 5)(F) veV(F) !

Summing over all (unlabeled) forests F yields

> Y e (®) = 3T L (F)
F

F LeLg, 5 (F)

Ctree(ﬁ') H (1+ « )

bh
veV(F) v

As Fap) = U fi(a,g)(f’), we obtain (3)).
F

7 Concluding Remarks

In this paper, we give a bijective proof of () in the (bc, b) case. The problem of giving a bijective proof
of (I) in the general (a,b) case is still open. It seems that the construct of such a bijection in the (1,b)
case is crucial.



804

Heesung Shin and Jiang Zeng

Acknowledgement

This work is supported by la Région Rhone-Alpes through the program “MIRA Recherche 2008”, project
08 034147 01.

References
[CKSS04] Manwon Cho, Dongsu Kim, Seunghyun Seo, and Heesung Shin, Colored Priifer codes for

[EFLOS5]

[FR74]

[GS06]

[Kre80]

[KYO03]

[MR68]

[Shi08]
[SPO2]

[SS07]

[Sta99]

[YanO1]

k-edge colored trees, Electron. J. Combin. 11 (2004), no. 1, Note 10, 7 pp. (electronic).

Sen-Peng Eu, Tung-Shan Fu, and Chun-Ju Lai, On the enumeration of parking functions by
leading terms, Adv. in Appl. Math. 35 (2005), no. 4, 392-406.

Dominique Foata and John Riordan, Mappings of acyclic and parking functions, Aequationes
Math. 10 (1974), 10-22.

Ira M. Gessel and Seunghyun Seo, A refinement of Cayley’s formula for trees, Electron. J.
Combin. 11 (2004/06), no. 2, Research Paper 27, 23 pp. (electronic).

G. Kreweras, Une famille de polynomes ayant plusieurs propriétés énumeratives, Period.
Math. Hungar. 11 (1980), no. 4, 309-320.

Joseph P. S. Kung and Catherine Yan, Goncarov polynomials and parking functions, J. Com-
bin. Theory Ser. A 102 (2003), no. 1, 16-37.

C. L. Mallows and John Riordan, The inversion enumerator for labeled trees, Bull. Amer.
Math. Soc. 74 (1968), 92-94.

Heesung Shin, A new bijection between forests and parking functions, arXiv:0810.0427.

Richard P. Stanley and Jim Pitman, A polytope related to empirical distributions, plane trees,
parking functions, and the associahedron, Discrete Comput. Geom. 27 (2002), no. 4, 603—-634.

Seunghyun Seo and Heesung Shin, A generalized enumeration of labeled trees and reverse
Priifer algorithm, J. Combin. Theory Ser. A 114 (2007), no. 7, 1357-1361.

Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Math-
ematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-
Carlo Rota and appendix 1 by Sergey Fomin.

Catherine H. Yan, Generalized parking functions, tree inversions, and multicolored graphs,
Adv. in Appl. Math. 27 (2001), no. 2-3, 641-670, Special issue in honor of Dominique Foata’s
65th birthday (Philadelphia, PA, 2000).



	Introduction
	Definitions
	Statistics on (bc,)-parking functions
	Statistics on (bc,)-Forests

	Main Results
	Proof of Theorem 1
	Proof of Theorem 4
	Proof of Theorem 5
	Concluding Remarks

