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The q = −1 phenomenon for bounded (plane)
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Abstract. Algebraic complexes whose “faces” are indexed by partitions and plane partitions are introduced, and
their homology is proven to be concentrated in even dimensions with homology basis indexed by fixed points of an
involution, thereby explaining topologically two quite important instances of Stembridge’s q = −1 phenomenon. A
more general framework of invariant and coinvariant complexes with coefficients taken mod 2 is developed, and as a
part of this story an analogous topological result for necklaces is conjectured.

Résumé Complexes algébriques dont les “faces” sont indexées par des partitions et des partitions planes sont in-
troduits. Il est démontré que leur homologie est concentrée en dimensions paires, avec base de homologie indexée
par des points fixes d’une involution. Ce résultat explique d’une manière topologique deux instances du phénomène
q = −1 du a Stembridge. De plus, un cadre plus général des complexes invariants et coinvariants dont les coefficients
sont pris modulo 2 est développé. Comme part de cette histoire, nous conjecturons un résultat analogue pour des
colliers.
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1 Introduction
There is a rich history surrounding the enumeration of partitions in a rectangle or higher dimensional box,
as well as the enumeration of classes of partitions possessing various symmetries (see e.g. (1), (10)).
One reason for so much interest comes from connections to physics, while another is the important role
they play in representation theory, specifically in the theory of canonical bases (see e.g. (11) and (12)).
Richard Stanley used the Littlewood-Richardson rule in (10) to prove a recursive formula for the number
of complementary plane partitions of bounded value. John Stembridge proved that semistandard domino
tableaux are counted by this same formula, by showing that their enumeration formula satisfies the same
recurrence. This proved that the set of fixed points in a fundamental involution of Lusztig on a type A
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canonical basis also has this same cardinality, by virtue of a bijection due to Berenstein and Zelevinsky
between the elements of a canonical basis and semistandard Young tableaux (actually Gelfand-Tsetlin
patterns) such that this bijection sends Lusztig’s involution to evacuation. Stembridge examined this
connection between self-complementary partitions and canonical bases more closely, unveiling in the
process a phenomenon he dubbed the “q = −1 phenomenon”.

In (12), Stembridge defines the q = −1 phenomenon as the following situation. One has a set of
combinatorial objects B (such as tableaux), together with a generating function X(q) that enumerates the
objects in B according to some weight depending on q. The q = −1 phenomenon occurs when there is
a “natural” involution on B such that X(−1) is the number of fixed points of the involution. Stembridge
established various instances of this phenomenon by interpreting X(−1) as the trace of a matrix which is
conjugate to a permutation matrix for the involution.

It is natural to ask if the q = −1 phenomenon can be explained by an Euler characteristic computation.
To this end, we define a complex whose ranks of chain groups are the coefficients in the polynomial X(q)
so that its Euler characteristic is X(−1). On the other hand, the Euler characteristic is the alternating sum
of ranks of homology groups, so whenever homology is concentrated in even dimensions with homology
basis indexed by the fixed points of the involution, this would imply the phenomenon. Moreover, the
homology generating function then offers a natural q-analogue of the integer which is the Euler character-
istic. We carry out this plan in two quite central cases: the partitions in a rectangle and the plane partitions
of bounded value in a rectangle, i.e., the partitions in a three dimensional box.

In §2 we associate to any action of a finite group G regarded as a subgroup of Sn four algebraic
complexes over a field with 2 elements, and prove in Proposition 2.3 that their Euler characteristic is the
number of fixed points of the complementation involution in the action of G on the subsets of [n]. The
aforementioned case of partitions in a rectangle arises as the special case where G is a wreath product of
symmetric groups. We prove acyclicity of these complexes for anyG in which n is odd and also somewhat
more generally. In §3 we give an algebraic Morse matching lemma, which is then applied in §4 and §5 to
partitions in a rectangle and in a three dimensional box, respectively, establishing homology concentration
in even dimensions and explicit homology bases. The results in §4 and §5 may be regarded as sign-
reversing involutions with some extra topological structure. In §6, we conclude with an example showing
that not all G give rise to complexes with homology concentrated in even dimensions, namely Example
6.1, and finally we propose in Conjecture 6.5 that homology concentration in even ranks nonetheless does
hold for necklaces, i.e. the case where G is a cyclic group.

The authors are grateful to Vic Reiner for his numerous helpful suggestions.

2 The algebraic complexes
In this section we define the algebraic complexes, which are quotient complexes of the Boolean algebra
over a field of two elements. The boundary map is closely related to the down operator introduced in (9).
Let G be a subgroup of Sn, so G acts on [n] := {1, 2, . . . , n}. Then G also permutes the elements of the
Boolean algebra 2[n] of all subsets of [n], and permutes the subsets

(
[n]
i

)
of a given cardinality i. Consider

the following generating function that counts such G-orbits according to their cardinality, letting S be an
element in the orbit S, we have

X(G, q) :=
∑

G−orbits S̄ in 2[n]/G

q|S|



The q = −1 phenomenon via homology concentration 467

=
n∑
i=0

∣∣∣∣([n]
i

)
/G

∣∣∣∣ qi
It has been well-studied historically via algebraic means, perhaps starting with Redfield and Polya.

Theorem 2.1 ((9; 5)) The polynomial X(G, q) has symmetric, unimodal coefficients.

The idea is to show that the coefficients inX(G, q) are the ranks of the weight spaces in a representation
of sl2(C) by showing that the three operators D,U,DU − UD satisfy the appropriate relations.

See (6, Corollary 6.2) for the next result, which is due to de Bruijn.

Theorem 2.2 (de Bruijn)X(G,−1) is the number ofG-orbits S̄ of subsets of [n] which are self-complementary
in the sense that S̄ = [n]\S.

This was proven by finding two conjugate matrices, one having X(G,−1) as its trace and the other
of which is a permutation matrix acting on the G-orbits of subsets of [n] by complementation. As an
example, if G = 〈(12), (34)〉, then S = {{1, 3}, {2, 4}} is a self-complementary orbit. Theorem 2.2 may
be applied to our first main example, namely the case of partitions in a rectangle, but does not seem to
apply to our second example of plane partitions of bounded value in a rectangle.

One algebraic approach introduces, for any field F, the graded vector space C(F) :=
⊕n

i=0 Ci(F) in
which Ci(F) has an F-basis {eS : S ∈

(
[n]
i

)
}. It is useful to identify C ∼= V ⊗n, where V ∼= F2 has F-

basis {e0, e1}. Under this identification, the F-basis element eS in C(F) corresponds to the decomposable
tensor ei1 ⊗ · · · ⊗ ein in which ij = 1 for ij ∈ S and ij = 0 otherwise.

Define the up and down maps U,D : C(F)→ C(F) by

U(eS) =
∑

i∈[n]\S

eS∪{i}

D(eS) =
∑
j∈S

eS\{j}.

Note that U,D both commute with the G-action. As a consequence, they give well-defined maps on the
graded vector spaces of G-invariants C(F)G and G-coinvariants(i) C(F)G. Note that both C(F)G, C(F)G
will have F-bases indexed by G-orbits S̄ of subsets of [n]: for C(F)G, a typical basis element eS̄ is a sum
of eS as S varies over the elements of the orbit, while for C(F)G, a typical basis element is the image eS
of eS in the quotient for any S ∈ S.

We let F = F2 henceforth, in order to obtain a complex.

Proposition 2.3 The map D induced on C(F2)G or on C(F2)G make them algebraic chain complexes of
F2-vector spaces, i.e., D2 = 0 in each case. Likewise the map U makes them into cochain complexes, i.e.,
U2 = 0.

Each of these four complexes has Euler characteristic, i.e. alternating sum of the ranks of its chain
groups, equalling X(−1), or in other words the number of self-complementary G-orbits. In particular,
each Euler characteristic is nonnegative.

(i) Recall that the coinvariant space UG for an F-vector space U with a linear G-action is the quotient space U/F{u− g(u) : u ∈
U, g ∈ G}.
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Proof: Working over F2, these maps D,U on C(F2) coincide with the boundary and coboundary maps
∂i and ∂i in the usual simplicial chain complex for a simplex having vertex set [n]. Hence D2 = U2 = 0,
and the same holds after taking G-invariants or G-coinvariants.

For the second assertion, note that

dimF2 C(F2)Gi = dimF2 C(F2)iG =
∣∣∣∣([n]

i

)
/G

∣∣∣∣ .
and now apply Theorem 2.2. 2

Given a G-orbit S̄, let eS̄ :=
∑
S′∈S̄ eS′ denote the basis element of CG(F) corresponding to S̄; let eS

denote the basis element of C(F)G corresponding to S̄

Proposition 2.4 The map sending eS̄ 7→ eS induces isomorphisms of cochain complexes

(C(F2)G, U) ∼= HomF2((C(F2)G, D),F2)
(C(F2)G, D) ∼= HomF2((C(F2)G, U),F2).

The map sending eS̄ 7→ e[n]\S induces isomorphisms of chain complexes

(C(F2)G, D) ∼= (C(F2)G, U)op

(C(F2)G, D) ∼= (C(F2)G, U)op,

where here Cop for a cochain complex C denotes the opposite chain complex that one obtains by reindexing
in the opposite order and reversing all the arrows.

Proof: Let S̄, T̄ be G-orbits of subsets with |T | = |S| + 1. Then the boundary map coefficient DS̄,T̄ in
C(F2)G is the number of elements T ′ in the orbit T̄ which contain the fixed set S in S̄. Meanwhile the
boundary coefficient DS̄,T̄ in C(F2)G is the number of elements S′ in the orbit S̄ which are contained
in the fixed set T in T̄ . There are similar formulae for the coefficients US̄,T̄ in the two complexes. The
isomorphisms are not hard to verify, using the fact that set-complementation is an inclusion-reversing
bijection. 2

In light of the previous proposition, one may consider any one of the four complexes, as its homology
determines the homology of the others (either by turning it around in homological degree, or by taking
dual F2-vector spaces, or both).

Proposition 2.5 The complex (CG, D) is acyclic when n is odd. More generally, it is acyclic whenever
G has at least one orbit in its action on [n] of odd cardinality. Whenever (CG, D) is not acyclic, it must
have H0 = F2 and H1 = 0.

Proof: Let S ⊆ [n] be G-stable (although not necessarily pointwise fixed by G). Then one forms S-
masked versions of the up and down maps in C as follows:

U (S)(eT ) :=
∑
i∈S\T

eT∪{i}

D(S)(eT ) :=
∑

j∈S∩T
eT−{j}.
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The G-stability of S implies that these S-masked up and down maps commute with the G-action: the
crucial point in all these calculations is that g(S) = S, so that, for example,

S\g(T ) = g(S\T )
S ∩ g(T ) = g(S ∩ T ),

Hence one gets induced S-masked up and down maps U (S), D(S) on the G-invariant and G-coinvariant
complexes also.

An easy calculation, generalizing the commutator calculation DU − UD = (n − 2i)I on Ci is the
following:

(D · U (S) − U (S) ·D)(eT ) = (|S\T | − |S ∩ T |) · eT
= (|S| − 2|S ∩ T |) · eT .

When working with F2 coefficients, as in C(F2), C(F2)G, C(F2)G, this gives

D · U (S) + U (S) ·D = |S| · I.

Thus when |S| is odd, the S-masked up map U (S) gives an algebraic chain-contraction, showing that
the complex with D as boundary map is acyclic. We now analyze the consequences of this for the first
few boundary maps in (C(F2)G, D).

The boundary map D out of C0(F2)G = F2 is always the zero map, regardless of G. If all G-orbits
have even cardinality, the boundary map D out of C1(F2)G will also be the zero map, so the assertion
about H0 follows.

It remains to show that when allG-orbits have even cardinality, the mapD out of C2(F2)G is surjective.
But for this we can work within each G-orbit X on [n]. That is, it suffices to show that there is some
G-orbit Y = {i, j} of pairs with i, j ∈ X for which D(eY ) has coefficient 1 on eX , not zero. However,
fixingX , one can see that the sum of all of such boundary map coefficients incident toX and coming from
G-orbits of pairs contained in X will be |X| − 1, an odd number. Thus one of them must be non-zero in
F2, as desired. 2

Remark 2.6 Examples like G = 〈(123)(456)〉 in S6, where G has orbits on [n] of odd size but n is even
and G is not a product G1 × G2 show that the Künneth formula doesn’t suffice to prove the previous
proposition (or at least it’s not obvious how to deduce it from Künneth).

In light of Proposition 2.3 and the calculations of H0, H1 in Proposition 2.5, one might be tempted to
make the conjecture (true up through n = 5) that the homology is always concentrated in even dimension.
However, Section 6 gives a counterexample to this. Section 4 does confirm this behavior for wreath
products of symmetric groups, and we conjecture it for cyclic groups in Section 6 as well.

3 An algebraic Morse matching lemma
In this section we give a general result, Lemma 3.2, on matchings in partially ordered sets, called Morse
matchings. If the complex of §2 is supported by a partially ordered set, and the Morse matching is good
enough, in a sense that will be made precise, it may be used to give a homology basis and prove homology
concentration in even dimensions for the complex. In this case the basis is indexed by fixed points of the
Morse matching, which must be equinumerous with X(G,−1).
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Definition 3.1 Say that a graded poset P =
⊔n
i=0 Pi supports an algebraic complex (C, d) of F-vector

spaces if Ci has an F-basis {ep} indexed by p ∈ Pi, and the differential di has (di)p,q = 0 unless q <P p.
As usual, say that a partial matching M of the Hasse diagram of a poset P is an acyclic matching, or

Morse matching, if the digraph D, obtained by starting with the Hasse diagram directed downward and
then reversing all the directions of the edges in M , is acyclic.

Given an acyclic matching M on P , let the subsets

PM, P unM, PM
i , P

unM
i

respectively denote theM -matched andM -unmatched elements in P , and the same sets restricted to rank
i. The elements of P unM are called critical elements. Let q = M(p) denote that q is matched by M to p.
Let <D be the partial order on P that results from taking the transitive closure of D.

Lemma 3.2 Let P be a graded poset supporting an algebraic complex (C, d) and assume P has a Morse
matching M such that for all q = M(p) with q < p, one has dp,q ∈ F×. Let Qi be the set of poset
elements of rank i which are matched with elements of rank i− 1. Then

(i) dimHi(C, d) ≤ |P unM
i |.

(ii) if |Qi| = rank(di) for every i, then dimHi = |P unM
i |. (For example, this condition is met

whenever all unmatched poset elements live in ranks of the same parity.)

(iii) if dq,p = dp,r = 0 for all p ∈ P unM and all q, r ∈ P , then the homology H(C, d) has F-basis
{ep : p ∈ P unM}.

Proof: To prove (i), we want to show that the boundary maps di have sufficiently large ranks, which we’ll
do by showing that they have some large, nonsingular square submatrices. We make the following claim:
consider the subset Qi of PM

i consisting of those elements matched below them into PM
i−1. Then ordering

Qi as q1, . . . , qr by any linear extension of the partial order <D, the square submatrix of di having
columns indexed q1, , . . . , qr and rows indexed M(q1), . . . ,M(qr) will be invertible upper-triangular.

To prove the claim, note that the hypothesis dp,q ∈ F× for q < p implies that the diagonal entries of
this square matrix are all in F×, since q = M(p) implies q < p or p < q. Hence one only needs to verify
upper-triangularity. So assume that the boundary map di has (di)qj ,M(qk) 6= 0 for some k 6= j. Since
the complex C was supported on P , this implies that qj >P M(qk) and hence D has an edge directed
qj → M(qk). There is also the matching edge in D, directed upward as M(qk) → qk, and thus by
transitivity, qj <D qk. Hence j < k, yielding the claim.

The claim implies that rank(di) ≥ |Qi| for all i. As usual letting Zi = ker di and Bi = imdi+1, note
that

dimHi = dimZi − dimBi

= |Pi| − (rank(di) + rank(di+1))
≤ |Pi| − (|Qi|+ |Qi+1|)
= |Pi| − |PM

i |
= |P unM

i |

as desired.
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Now the hypothesis in (ii) makes the weak inequality into an equality in the above string of equalities
and weak inequalities, implying the desired equality in (ii). To prove (iii), note that the hypothesis dp,r = 0
for all r < p ensures that {ep|p ∈ P unM

i } spans a subspace of Hi(C, d) for each i, while dq,p = 0 for
all q > p implies linear independence of the set. Since |P unM

i | ≥ dimHi(C, d), this set also must span
Hi(C, d), hence is a homology basis. 2

Lemma 3.2 is closely related to results of Jöllenbeck-Welker, of Sköldberg, and of Kozlov (see (3), (8),
and (4)) developing algebraic versions of discrete Morse theory.

4 Application to partitions in a rectangle
Consider the subgroup G = S` o Sk inside Sk`, acting on the cells of a rectangle with k rows and
` columns, by permuting arbitrarily within each row, but also allowing wholesale swaps of one row for
another. In this section, we will show how all three parts of Lemma 3.2 apply to the complex (C(F2)G, D)
for G = S` o Sk, yielding homology concentration in even dimensions. The G-orbits are indexed by
partitions λ = (λ1, . . . , λk) with

` ≥ λ1 ≥ · · · ≥ λk ≥ 0.

The number λi indicates the number of boxes in row i not belonging to the set S serving as orbit repre-
sentative. Thus, the complex C(F2)G is supported on the Gaussian poset P (k, `) of all such λ ordered by
reverse inclusion of their Ferrers diagrams. One may check directly that the entries in the boundary maps
d take the following form: if µ is obtained from λ by reducing the part λi to λi − 1, then

dλ,µ = (`− λi + 1)(multλ(λi−1) + 1) (1)

where multλ(s) is the multiplicity of the part s in λ and µ covers λ in the poset supporting the complex.
In fact, d is derived from the down operator D which acts on faces of a simplex, by using the fact that
D commutes with the group action. D deletes a box from the orbit representative S in all possible ways,
each of which has the impact of lengthening some part of λ by one.

Here is the matching M we will use. Given a partition λ, find the smallest part λi which is either

• non-zero and of the same parity as `, in which case you should subtract 1 from it in order to obtain
M(λ), or

• possibly zero and of opposite parity to `, but with odd multiplicity, in which case you should add 1
to it in order to obtain M(λ).

It is not hard to check that this is indeed a well-defined matching.

Remark 4.1 The unmatched partitions also correspond to the lattice paths in a k×l rectangle delineating
the shape λ, specifically those lattice paths from (l, k) to (0, 0) comprised of steps (−2, 0) and (0,−2)
until either (i, 0) or (i, 1) is reached, after which there is a step (0,−1) in the latter case.

To see that these are equinumerous with self-complementary partitions in a k × l rectangle, notice that
there is a bijection sending an unmatched path to a path fixed under 180 degree rotation by replacing each
step of length 2 with a step in the same direction of length 1 to obtain the first half of the path with 180
degree rotational symmetry.



472 P. Hersh, J. Shareshian and D. Stanton

Theorem 4.2 The above matching on the Gaussian poset P (k, `) is acyclic, with the partitions λ in P unM

being those described in Remark 4.1. Moreover, the homology is concentrated in even dimensions.

Proof: It is easy to verify hypotheses (i), (ii), and (iii) of Lemma 3.2 and the description of P unM directly
from these descriptions and (1). Let us check acyclicity ofM . Suppose one had a directed cycleC. If λi is
the smallest even value ever incremented inC, then there must be some downward step inC decrementing
the value λi + 1. However, since no smaller values ever change, this downward step is across a matching
edge, a contradiction. 2

Question 4.3 Is there some connection between the Poincaré series for the homology here and T. Eisenkölbl’s
recent (−1)-enumerations of self-complementary plane partitions which appears in (2)? In particular,
what happens in her situation when the k × `×m box in which the plane partitions live has m = 1?

5 Application to plane partitions of bounded value in a rectangle
In this section, we construct a mod 2 complex (C(c, r, t), d) whose i-dimensional cells are indexed by
plane partitions of volume i in a c × r × t box. We prove homology concentration in Theorem 5.6 and
also give a homology basis. Since we are not aware of a way to regard partitions in a c × r × t box as
orbits of a group action permuting cells, we devised a different, though related construction.

It will be more convenient to use another indexing set of equal cardinality, namely the semistandard
Young tableaux (SSYT) of shape λ = (c)r in which all entries have value between 0 and r + t − 1.
The bijection comes from taking a Young tableaux filling with entries that weakly increase in rows and
columns to a column strict one by adding i− 1 to each entry in row i.

We now define the complex (C(c, r, t), d), with coefficients taken mod 2, by letting the chain group
generators be the SSYT of c×r rectangular shape with entries between 0 and t+r−1. Let us call an odd
value 2i + 1 in row R decrementable if it does not have the value 2i immediately above it in row R − 1.
Define the boundary map d as follows. For T an SSYT, dT is a sum over SSYT obtained by subtracting
one from the leftmost copy in some row R some odd value 2k + 1 having the following property: there
are an odd number of decrementable copies of 2k + 1 in row R. In other words,

dT =
∑

T ′∈d(T )

T ′

for d(T ) the set of SSYT obtained by deleting one from a decrementable odd entry λi,j of T located at
position (i, j). One may verify:

Proposition 5.1 (C(c, r, t), d) is a chain complex, i.e., d2 = 0.

Next we give an acyclic matching M on the set of such SSYT. M will have the property that for each
pair S, T of matched tableaux with |S| < |T |, S appears with nonzero coefficient in dT .

Matching M: Let T be a SSYT satisfying our requirements on its entries. Consider the earliest row R
in T having at least one of the following items:

1. an odd value i such that there are an odd number of decrementable copies of i in row R

2. an even value i in row R not having the value i + 1 immediately below it such that the number of
decrementable copies of i+ 1 in row R is even (possibly zero)
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Match T toM(T ) by choosing the smallest value i in the chosen rowRmeeting one of these conditions;
now subtract one from the leftmost such copy of i in row R if i is odd, or add one to the rightmost such
copy of i in row R if i is even.

Proposition 5.2 M is a matching and is acyclic, hence a Morse matching.

The proof is quite similar to the one discussed in the last section. One may also check that M meets
the requirements of Lemma 3.2. Now we describe P unM.

Lemma 5.3 In any element of P unM, every even value 2i with 2i < t + r − 1 has the odd value 2i + 1
just below it. For each odd value 2i+ 1 with 2i+ 1 < t+ r − 1, the number of decrementable copies of
2i+ 1 in a given row is even.

Proof: Start with the top row, and proceed downward from row R to row R + 1 by induction as follows.
In row 1, notice that each odd value 2i + 1 must occur with even multiplicity, since otherwise we could
match by decrementing by one the leftmost copy of 2i+ 1. Thus, each even value 2i in row 1 will have an
even number of copies (possibly 0) of 2i+ 1 just to its right; therefore we could match by increasing the
rightmost copy of 2i to 2i+ 1 unless there were a 2i+ 1 just below it. Since our fillings are semistandard,
this implies we must have 2i + 1 just below all the other copies of 2i in that row, putting each 2i in row
one in a vertical domino and each 2i+ 1 in a horizontal domino.

The same argument works at row R + 1 once the claim has been proven through row R: we may have
some odd values in row R + 1 which already belong to dominoes shared with row R, but all remaining
spots to be filled in row R + 1 will have odd values just above them. This ensures that each odd value
2i + 1 in row R + 1 must occur with even multiplicity (not counting those in dominoes shared with row
R) to avoid matching by decrementing 2i+1. And again any even value 2i in rowR+1 will have an even
number of decrementable copies of 2i + 1 to its right, allowing matching by incrementing the rightmost
2i unless either it has a copy of 2i+ 1 just below it or it is the absolute largest allowable value. 2

Corollary 5.4 The first row has even sum. If row lengths are odd, then row sums alternate in parity.
Otherwise, all row sums have even parity. Therefore the critical cells are concentrated in dimensions all
of the same parity.

Proposition 5.5 The elements of P unM are all in ranks of the same parity. They are also in bijection with
the semistandard domino tableaux of c × r rectangular shape comprised of odd values between 0 and
t+ r − 1.

The idea is to show that our description of P unM amounts to saying the shapes are tiled by two types
of dominos: (1) horizontal dominos in which both entries of the domino have odd value 2i + 1, and (2)
vertical dominos in which the top entry is 2i and the bottom entry is 2i + 1, along with perhaps some
monominoes in the bottom row of maximal allowed value.

Theorem 5.6 The complex (C(c, r, t), d). has homology concentration in ranks all of the same parity.
Moreover, a basis is given by Lemma 5.3.

Now we will use the following result from (12):

Theorem 5.7 (Stembridge, Theorem 3.1) The following quantities are equal.

• (a) The number of self-evacuating tableaux in Sλ
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• (b) (−1)k(λ)sλ((−1)0, (−1)1, (−1)2, . . . , (−1)(n−1)) for k(λ) = λ2 + λ4 + · · ·

Moreover, if n is even, or more generally if we allow monominos of maximal value in a domino tableau,
then these quantities also equal

• (c) The number of semistandard domino tableaux with entries ≤ n/2 and shape λ

Since the map sending a plane partition in a rectangle to a SSYT by adding i− 1 to each entry of row i
has the effect of sending the self-complementary partitions exactly to the self-evacuating tableaux of the
same rectangular shape, we may use Stembridge’s result to deduce that our homology basis has the same
cardinality as the self-complementary plane partitions with entries of value at most t.

Our matching, together with a straightforward verification that quantity (b) has positive sign, also gives
a combinatorial proof that (b) equals (c) by a sign-reversing involution on the SSYT counted by (b) which
has as its fixed points a set that is in trivial bijection with the objects counted by (c).

6 A counterexample and a conjecture
Example 6.1 Embed G = PSL2(F5) in S6 via its action on the 6 points of the projective line over F5.
To be explicit, one can start with these generators for SL2(F5)

a =
[

0 1
1 0

]
, b =

[
2 0
0 3

]
, c =

[
1 1
0 1

]
and then if one numbers the points of the projective line over F5 as 1, 2, 3, 4, 5, 6 according their slopes
0, 1, 2, 3, 4,∞, the images of a, b, c in PSL2(F5) permute [6] as follows:

a = (16)(34)
b = (25)(34)
c = (12345).

One can check that this subgroup G = 〈a, b, c〉 of S6 acts transitively on
(

[6]
i

)
for i = 0, 1, 2, 4, 5, 6, and

has these two orbits on
(

[6]
3

)
:

{123, 234, 345, 145, 125, 136, 246, 356, 146, 256},
{124, 235, 134, 245, 135, 126, 236, 346, 456, 156}.

An easy computation then shows that C(F2)G has H0 = H3 = F2 and no other nonvanishing homology
groups.

Proposition 6.2 G ≤ Sn has a self-complementary orbit if and only if a Sylow 2-subgroup ofG contains
a derangement.

Proof: Note first that a Sylow 2-subgroup of G contains a derangement if and only if some element of
g contains no cycle of odd length in its cycle decomposition. Indeed, a derangement of 2-power order is
such an element, while if g has no cycle of odd length and order 2kd with d odd then gd is a derangement
of order 2k. Now if g has no cycle of odd length then it is easy to construct S ⊆ [n] with Sg = [n] \ S.
On the other hand, say Sg = [n] \ S and (i1 . . . ik) is a cycle in g. We may assume that i1 ∈ S. Then
ij ∈ S if and only if j is odd, and since ikg = i1, we must have ik 6∈ S, so k is even. 2
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Corollary 6.3 If G is a transitive subgroup of Sn with n even, and G contains no derangement in a
Sylow 2-subgroup, then the homology of C(F2)G is not concentrated in even dimensions.

Proof: By Theorem 2.2 and Proposition 6.2, the Euler characteristic of C(F2)G is zero. On the other
hand, by Proposition 2.5, we have H0(C(F2)G) 6= 0. 2

Although the homology of our mod 2 complexes is not always concentrated in even dimensions, we are
still interested in interesting families of groupsG for which this concentration does occur. In this situation,
the Poincaré polynomial for the homology of, say C(F2)G, can be interpreted as giving a grading on the
set of self-complementary G-orbits.

We conclude with evidence that this holds for G a cyclic group Cn generated by an n-cycle in Sn. In
this case the orbits are necklaces, as in (7). Here are homology calculations from Mathematica on Cn
for n even; the case of n odd already follows from Proposition 2.5.

n homologyranks

2 1, 0, 0
4 1, 0, 1, 0, 0
6 1, 0, 0, 0, 1, 0, 0
8 1, 0, 1, 0, 1, 0, 1, 0, 0
10 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0
12 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0
14 1, 0, 0, 0, 3, 0, 2, 0, 3, 0, 0, 0, 1, 0, 0
16 1, 0, 1, 0, 3, 0, 5, 0, 5, 0, 3, 0, 1, 0, 1, 0, 0
18 1, 0, 0, 0, 4, 0, 6, 0, 8, 0, 6, 0, 4, 0, 0, 0, 1, 0, 0

The following calculation of X(Cn, q), X(Cn,−1) may be done using Polya-Redfield theory or Burn-
side’s lemma.

Proposition 6.4 For n > 2,

X(Cn, q) =
1
n

∑
d:d|n

ϕ(d)(1 + qd)
n
d

X(Cn,−1) =
1
n

∑
d:d|n
deven

ϕ(d)2
n
d

Note that the above homology data suggests that

• Hi(CC2n) = 0 for i odd, and for i = 2n− 1, 2n, and

• H2j(CC2n) = H2n−2−2j(CC2n).

But one can be much more precise. Note that using the formula in Proposition 6.4 for X(Cn,−1), one
can easily check that it satisfies the recursion

X(C2n,−1) =
X(Cn,−1) +X(Cn, 1)

2
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This recursion may be modified to a recursion predicting the homology Poincaré series. For notational
convenience, define

An(q) :=
n∑
i=1

dimHi(C(F2)Cn)qi and Xn(q) := X(Cn, q).

Conjecture 6.5 For any positive integer n, one has Hi(CC2n) = 0 if i is odd, so that A2n(q) is a polyno-
mial in q2, and one has the recursion

A2n(q1/2) =
qAn(q) +Xn(q)

1 + q

Conjecture 6.5 has some strong evidence. It is correct at q = 1. It holds through n = 18, as shown
earlier. We have proven it for n odd, although we do not include a proof here. In addition, it is correct
with regard to its prediction about H2(CC2n).
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