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m-noncrossing partitions and m-clusters
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Abstract. Let W be a finite crystallographic reflection group, with root system Φ. Associated to W
there is a positive integer, the generalized Catalan number, which counts the clusters in the associated
cluster algebra, the noncrossing partitions for W , and several other interesting sets. Bijections have been
found between the clusters and the noncrossing partitions by Reading and Athanasiadis et al.

There is a further generalization of the generalized Catalan number, sometimes called the Fuss-Catalan
number for W , which we will denote Cm(W ). Here m is a positive integer, and C1(W ) is the usual
generalized Catalan number. Cm(W ) counts the m-noncrossing partitions for W and the m-clusters for
Φ. In this abstract, we will give an explicit description of a bijection between these two sets.

The proof depends on a representation-theoretic reinterpretation of the problem, in terms of exceptional
sequences of representations of quivers.

Résumé. Soit W un groupe de réflections fini et crystallographique, avec système de racines Φ. Associé
à W , il y a un entier positif, le nombre de Catalan généralisé, qui compte les amas dans l’algèbre amassée
associée, les partitions non-croisées de W , et plusieurs autres ensembles intéressantes. Des bijections
entre les amas et les partitions non-croisées ont été données par Reading et Athanasiadis et al.

On peut encore généraliser le nombre de Catalan généralisé, obtenant le nombre Fuss-Catalan de W , que
nous noterons Cm(W ). Ici m est un entier positif, et C1(W ) est le nombre Catalan généralisé standard.
Cm(W ) compte les partitions m-non-croisées de W et les m-amas de Φ. Dans ce résumé, nous donnerons
une bijection explicite entre ces deux ensembles.

La démonstration dépend d’une réinterprétation des objets du point de vue des suites exceptionnelles de

représentations de carcois.
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1 Fuss-Catalan numbers

Let W be a finite reflection group, with a set of simple reflections S of cardinality n. For basic
facts on reflections groups, see [Hu]. We will assume throughout that W is irreducible, that is to
say, W is not the direct product of two smaller reflection groups; all our statements generalize in
a completely straightforward way to the reducible case.

A Coxeter element for W is the product of the simple reflections of W , taken in some order.
All Coxeter elements are conjugate, so they have a well-defined order, called the Coxeter number,
and denoted h.

Associated to W are a collection of positive integers called its exponents, e1, . . . , en. The
Fuss-Catalan number for W is given by the following formula:

Cm(W ) =
∏n
i=1mh+ ei + 1∏n

i=1 ei + 1
.

If we set m = 1, we get the generalized Catalan number for W .
In the case that W is the symmetric group Sn+1, the Coxeter element is an n+1-cycle, h = n+1,

and the exponents are the numbers from 1 to n. In this case, the generalized Catalan numbers
are just the usual Catalan numbers.

As we shall explain in more detail below, the Fuss-Catalan numbers count the maximal faces in
the m-cluster complex associated to W and the m-noncrossing partitions for W . Bijections have
been constructed between these two sets in the m = 1 case by Reading [Re] and Athanasiadis et
al. [ABMW]. Our goal in this extended abstract is to construct a bijection for arbitrary m.

In order for m-clusters and m-noncrossing partitions to be well-defined, we do not need to
assume that W is crystallographic. However, the techniques of our proof, which rely on quiver
representations, do require that assumption. We will make clear at what point we have to add
the crystallographic assumption.

The Fuss-Catalan numbers also arise in the study of the Shi arrangement and its generalizations
(see [At]). At this point, even for m = 1, no type-free bijection is known from either clusters or
noncrossing partitions to the regions of the Shi arrangement inside the dominant chamber (which
are also counted by the generalized Catalan number).

2 Reflection group conventions

Let T be the set of all reflections for W . By definition, T = {wsw−1 | w ∈ W, s ∈ S}. Let N be
the cardinality of T .

Associated to W is a Coxeter diagram whose vertices correspond to elements of S, and where
two vertices are connected by an edge iff the corresponding simple reflections do not commute.

The Coxeter diagram of a finite reflection group is always a tree, so in particular it is a bipartite
graph. Therefore, we can divide S into two parts, S+ and S− such that no two vertices in either
part are adjacent. (This division is unique up to the labelling of the parts.) Number the reflections
in S+ as s1 to sr, and the reflections in S− as sr+1 to sn.

Fix the Coxeter element c = s1 . . . sn.
For 1 ≤ i ≤ N , let ri be defined as s1s2 . . . si−1sisi−1 . . . s1, where the indexing of simple

reflections is taken mod n, so that sn+1 = s1, etc.
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Each reflection in T occurs as ri for exactly one value of i with 1 ≤ i ≤ N . Define a total order
on T by saying that ri < rj iff i < j.

3 m-noncrossing partitions

In this section we discuss m-noncrossing partitions for a reflection group W . The definition is
due to Armstrong; for further information, see [Ar1].

Define `T : W → N by letting `T (w) be the minimal length of an expression for w as a product
of elements of T . (Note that this is not the classical length function for W , which would consider
instead only expressions for w as a product of elements of S.) We also note, for future use, that
`T (c) = n.

We can partially order W as follows: u <T v iff there is a minimal-length expression for v
as a product of elements of T which has a minimal-length expression for u as a prefix. The
usual (type-free) definition of noncrossing partitions is to take NC(W ) to be the interval from
the identity element e to c in this order [BW1, Be]. The number of elements of NC(W ) is the
generalized Catalan number C1(W ).

We now give an m-ified version. For w ∈ W , define a minimal k-factorization of w to be a
k-tuple (u0, . . . , uk−1) of elements of W such that

w = u0 . . . uk−1 and `T (w) =
∑
i

`T (ui).

We define NC(m)(W ), the m-noncrossing partitions of W to be the collection of minimal m+1-
factorizations of c. (Note that there is a bijection from NC(1) to NC, defined by sending (u, v)
to u.)

Armstrong obtained the following enumeration of the m-noncrossing partitions.

Theorem 1 ([Ar1]) |NC(m)(W )| = Cm(W ).

4 Coloured factorizations

A coloured factorization of the Coxeter element c is simply an expression for c as a product of n
elements of T , where each reflection has an associated colour in Z. We will write the colour as a
superscript in parentheses.

We define an m-increasing coloured factorization to be a coloured factorization whose colours
are chosen from 0 to m, such that the colours appear in weakly increasing order, and among the
reflections of a given colour, the order of the reflections is increasing with respect to the total
order on T .

Proposition 1 There is a bijection between m-noncrossing partitions and m-increasing coloured
factorizations.

To construct the bijection, we use the following result:

Theorem 2 ([ABW]) Let u ≤T c, with `T (u) = r. There is a unique factorization of u as a
product of r reflections u = t1 . . . tr such that t1 < . . . < tr.
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This factorization appears in [ABW] as the set of labels on the increasing chain from e to u in
an EL-labelling for NC.

We now return to the problem of constructing an m-increasing factorization of c from an m-
noncrossing partition. Let u = (u0, . . . , um) be an m-noncrossing partition. Note that ui <T c
for all i, so Theorem 2 applies to each ui. Let (ti1, . . . , tiri) be the factorization of ui obtained
from Theorem 2. The m-increasing coloured factorization associated to u is

(t(0)01 , . . . , t
(0)
0r0
, t

(1)
11 , . . . , t

(1)
1r1
, . . . , t(m)

mrm
).

In other words, we take the factorizations of each of the ui from Theorem 2, concatenate them,
and colour the reflections corresponding to ui with the colour i.

It is clear that this map from m-noncrossing partitions to m-increasing factorizations can be
inverted, and thus defines a bijection.

5 m-clusters

Let Φ be a root system for W , with simple roots Π = {α1, . . . , αn} corresponding (in order)
to the simple reflections s1, . . . , sn. We do not (yet) assume that Φ is crystallographic. The
m-coloured almost positive roots consist of m copies of Φ>0, each indexed by a number from 0
to m − 1, together with a single copy of −Π, the negative simple roots. The set of m-coloured
almost positive roots is denoted Φ(m)

≥−1.
The m-cluster complex was defined by Fomin and Reading [FR] as a certain simplicial complex

on this set. We will give an equivalent definition, which is due to Tzanaki [Tz] (up to some changes
of convention).

Define an m-decreasing coloured factorization of c as follows:

• The colours of the reflections are integers from 0 to m.

• The colours appear in weakly decreasing order.

• Among the reflections of a fixed colour, the reflections appear in decreasing order with
respect to the total order on T .

• The only reflections of colour m which are allowed are {ri = s1s2 . . . si . . . s2s1 | 1 ≤ i ≤ n}.

There is a bijection φ from the set of roots Φ(m)
≥−1, to the set of coloured reflections that can

appear in an m-decreasing factorization of c. It is defined as follows:

• φ sends the coloured positive root β(i) to the coloured reflection t(i)β , where tβ is the reflection
through the hyperplane perpendicular to β,

• φ sends the negative simple root −αi to the reflection r
(m)
i .

Note that for si ∈ S−, φ(−αi) is not the reflection si.
The result of Tzanaki (which generalizes a result of [BW2] in the m = 1 case), and which we

can take as the definition of m-clusters, is the following:
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Theorem 3 ([Tz]) m-clusters can be characterized as those sets of n elements from Φ(m)
≥−1 such

that, if their corresponding reflections under φ are ordered in decreasing order (by colour and
then with respect to the total order on T ), the result is an m-decreasing factorization of c.

The enumeration of m-clusters was carried out by Fomin and Reading:

Theorem 4 ([FR]) The number of m-clusters for Φ is NC(m)(W ).

We have now defined the objects which we are interested in, the m-noncrossing partitions for
W and the m-clusters for Φ, and have recalled that they have the same cardinality. We will now
proceed to define a bijection between them, or rather, between the m-increasing and m-decreasing
factorizations of c.

6 Mutation of coloured factorizations
There is a mutation procedure which allows one to replace one coloured factorization of c by
another. The term mutation does not come from cluster algebras, but rather from the theory of
exceptional sequences. See the final section for more details and references.

For 1 ≤ i ≤ n− 1, define an operation µi on coloured factorizations as follows.

µi(t
(c1)
1 , . . . , t

(ci)
i , t

(ci+1)
i+1 , . . . , t(cn)

n ) = (t(c1)1 , . . . , t
(ci+1)
i+1 , (ti+1titi+1)(d), . . . , t(cn)

n )

where d = ci + 1 if ti+1titi+1 < ti, otherwise d = ci.

Lemma 1 The operations µi satisfy the braid relations, that is to say, µiµi+1µi = µi+1µiµi+1,
and µiµj = µjµi if |i− j| ≥ 2.

Define µrev = µ1(µ2µ1)(µ3µ2µ1) . . . (µn−1µn−2 . . . µ1). (Note that, since the µi satisfy the
braid relations, there are many equivalent ways to define µrev.)

Then we have the following theorem:

Theorem 5 µrev defines a bijection from the m-decreasing coloured factorizations of c to the
m-increasing coloured factorizatons of c.

Together with the bijections we have already established between m-clusters and m-decreasing
factorizations of c, and between m-noncrossing partitions and m-increasing factorizations of c,
this defines a bijection between m-clusters and m-noncrossing partitions, as desired.

7 Example: A2, m = 2
In this section, we consider a small example. W is the symmetric group on 3 letters, generated
by s1 = (12) and s2 = (23). Let m = 2.
S+ = {s1}, S− = {s2}. c = s1s2 = (123). h = 3. Write t for s1s2s1 = (13), the unique

non-simple reflection. The total order on the reflections is s1 < t < s2. Write α1 and α2 for the
simple roots, and β for the unique non-simple positive root. The Fuss-Catalan number is 12.

In the table below, we list the twelve 2-clusters for A2, their corresponding decreasing coloured
factorizations as in Theorem 3, the result of applying µrev = µ1 to the 2-decreasing coloured
factorization (which yields a 2-increasing factorization), and the corresponding 2-noncrossing
partition.
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{β(0), α
(0)
1 } → (t(0), s(0)1 )→ (s(0)1 , s

(0)
2 )→ (s1s2, e, e)

{β(1), α
(0)
1 } → (t(1), s(0)1 )→ (s(0)1 , s

(1)
2 )→ (s1, s2, e)

{−α2, α
(0)
1 } → (t(2), s(0)1 )→ (s(0)1 , s

(2)
2 )→ (s1, e, s2)

{α(0)
2 , β(0)} → (s(0)2 , t(0))→ (t(0), s(1)1 )→ (t, s1, e)

{α(1)
2 , β(0)} → (s(1)2 , t(0))→ (t(0), s(2)1 )→ (t, e, s1)

{α(1)
1 , α

(0)
2 } → (s(1)1 , s

(0)
2 )→ (s(0)2 , t(1))→ (s2, t, e)

{−α1, α
(0)
2 } → (s(2)1 , s

(0)
2 )→ (s(0)2 , t(2))→ (s2, e, t)

{β(1), α(1)} → (t(1), s(1)1 )→ (s(1)1 , s
(1)
2 )→ (e, s1s2, e)

{−α2, α
(1)
1 } → (t(2), s(1)1 )→ (s(1)1 , s

(2)
2 )→ (e, s1, s2)

{α(1)
2 , β(1)} → (s(1)2 , t(1))→ (t(1), s(2)1 )→ (e, t, s1)

{−α1, α
(1)
2 } → (s(2)1 , s

(1)
2 )→ (s(1)2 , t(2))→ (e, s2, t)

{−α2,−α1} → (t(2), s(2)1 )→ (s(2)1 , s
(2)
2 )→ (e, e, s1s2)

8 Positive parts
There is a subcomplex of the m-cluster complex which is called its positive part, that is, the
part which does not involve any of the negative simple roots. Under the correspondence of The-
orem 3, the positive m-clusters (the m-clusters in the positive part) correspond to m-decreasing
factorizations of c in which no reflections with the colour m appear.

Theorem 6 ([FR]) The number of m-clusters in the positive part of the cluster complex for Φ
is:

|C−m−1(W )| =
∏n
i=1mh+ ei − 1∏n

i=1 ei + 1
.

We can give the following description of the image of the positive m-clusters under our bijection.
We use the definition of ri from Section 2.

Theorem 7 The image under µrev of the m-decreasing factorizations of c corresponding to pos-
itive m-clusters, consists of those m-increasing factorizations in which the coloured reflections
{r(m)
N−i+1 | 1 ≤ i ≤ n} do not appear.

In fact, as was conjectured by Armstrong [Ar2], there is a whole family of natural bijections.
In Section 2 we defined r1, . . . , rN . We will now extend that definition. For i ≥ 1, define ri to be
the coloured reflection (s1s2 . . . si . . . s1)(bi/Nc).

Totally order the coloured reflections by ri < rj iff i < j. Define a decreasing coloured
factorization of c to be a factorization of c into coloured reflections such that the factors are
decreasing with respect to this order, and define an increasing coloured factorization of c similarly.

Then Proposition 1 can be restated as saying that m-noncrossing partitions are in bijection with
increasing factorizations of c using coloured reflections from the set {r1, . . . , r(m+1)N}. Theorem 3
can be restated as saying that m-clusters are in bijection with decreasing factorizations of c using
coloured reflections from the set {r1, . . . , rmN+n}, while the positive m-clusters are in bijection
with decreasing factorizations using coloured reflections from the set {r1, . . . , rmN}.

We have the following generalization of Theorems 5 and 7:
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Theorem 8 For any 0 ≤ m and 0 ≤ k, the image under µrev of the decreasing factorizations
of c using coloured reflections {ri} with 1 ≤ i ≤ Nm + (k + 1)n, consists of the increasing
factorizations of c using coloured reflections {ri} with 1 ≤ i ≤ N(m+ 1) + kn.

Other than the cases described by Theorems 5 and 7, there do not seem to be enumerative
results known for these families.

9 Representation theory

In this section, we shall sketch the approach taken in our proofs of the preceding results. This
approach depends heavily on the theory of quiver representations, of which we will attempt to
sketch some elements. The interested reader is urged to consult [ARS, ASS] for an accessible
introduction to this topic.

Assume that W is a finite, simply laced reflection group, with root system Φ. (We shall discuss
more general settings at the end of the section.) Let Q be the directed graph obtained by taking
the Coxeter diagram of W and orienting the edges from S− to S+. Fix an algebraically closed
ground field k.

A representation V of Q is an assignment of a finite dimensional vector space Vi over k to each
vertex i of Q, and a linear map Vα between the corresponding vector spaces to each arrow α of
Q. A morphism from V to W is a collection of linear maps fi : Vi →Wi which makes all squares
commute. The representations of Q form an abelian category, which is denoted rep(Q). This
category is equivalent to the category of finitely generated modules over the path algebra of Q.

If V,W ∈ rep(Q), we can define a k-vector space Hom(V,W ). Using standard homological
algebra, one can then define Exti(V,W ) for i > 0. Note that rep(Q) is hereditary, that is to say,
Exti(V,W ) = 0 for i ≥ 2.

A representation of Q is called indecomposable if it is not the direct sum of two subrepre-
sentations. By Gabriel’s theorem, the indecomposable representations of Q are naturally in 1-1
correspondence with Φ>0, or, equivalently, with T . (If Q is non-Dynkin, the situation is more
complex.)

Following [Cr], define an exceptional sequence of representations of Q to be a sequence of
indecomposable representations (F1, . . . , Fr) such that Hom(Fi, Fj) = 0 = Ext1(Fi, Fj) for i < j.
(Note that this reverses the usual convention for the order of an exceptional sequence. Also, one
normally must also require that Ext1(Fi, Fi) = 0 for all i, but this is automatic in the present
setting where Q is Dynkin.) The maximal length of an exceptional sequence is n.

The notion of exceptional sequence is related to the concepts we have been discussing via the
following theorem:

Theorem 9 ([IT]) For β1, . . . , βn a collection of n positive roots, (Eβ1 , . . . , Eβn) is an excep-
tional sequence iff tβ1 . . . tβn = c.

(This theorem is shown in [IT] in the case which we need here, when Q is Dynkin, and also
when Q is affine; for arbitrary Q without oriented cycles, it is proved in [IS].)

There are well-defined mutation operations on the set of exceptional sequences of a given length.
Given an exceptional sequence (E1, . . . , En), which, for convenience, we assume to have maximal
length, for 1 ≤ i ≤ n− 1, the operation µi is defined by:
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µi(E1, . . . , Ei, Ei+1, . . . , En) = (E1, . . . , Ei+1,M, . . . , En)

where M is uniquely determined by the fact that µi(E1, . . . , En) forms an exceptional sequence.
Now, consider the collection of all factorizations of c as a product of n reflections. Clearly,

there is also a mutation operation on such factorizations: just consider the mutation operation
from Section 6, but ignore colour. It is a theorem of [Cr] that mutation of exceptional sequences
can also be defined in more Coxeter-theoretic terms, from which it follows that mutation of
exceptional sequences agrees via Theorem 9 with the mutation operation which we have just
defined on factorizations of c.

In order to interpret coloured factorizations representation-theoretically, we must pass from
rep(Q) to its bounded derived category Db(Q). As usual, we think of rep(Q) sitting inside Db(Q)
in degree 0. Thanks to the shift functor [1] of Db(Q), for any indecomposable V ∈ rep(Q), we have
indecomposable objects V [i] ∈ Db(Q) for all i ∈ Z. Because rep(Q) is hereditary, there are no
other indecomposable objects in Db(Q). Thus, there is a bijection between coloured reflections
and indecomposable objects in Db(Q). The notions of exceptional sequences and mutations
extend naturally to Db(Q), and these mutation operations agree precisely with those of Section
6.

Next, one has to study the special types of exceptional sequences which correspond to m-
increasing and m-decreasing coloured factorizations. One has:

Proposition 2 If (t(c1)1 , . . . , t
(cn)
n ) is a coloured factorization of c, and (E1, . . . , En) is the corre-

sponding exceptional sequence in Db(Q), then the factorization is m-increasing iff:

• For all i, Ei ∈ rep(Q)[k] for some 0 ≤ k ≤ m,

• For all i 6= j, Extk(Ei, Ej) = 0 for −m ≤ k ≤ 0.

Proposition 3 If (t(c1)1 , . . . , t
(cn)
n ) is a coloured factorization of c, and (E1, . . . , En) is the corre-

sponding exceptional sequence in Db(Q), then the factorization is m-decreasing iff:

• For all i, Ei ∈ rep(Q)[k] for some 0 ≤ k < m or Ei = P [m] for some indecomposable
projective P ,

• For all i, j, Extk(Ei, Ej) = 0 for 1 ≤ k ≤ m.

Note that this latter proposition is closely related to the usual approach to categorifying the
m-cluster combinatorics of [FR], see [Zh, Th, Wr] and subsequent papers.

Theorem 5 is then proved by showing that µrev transforms the exceptional sequences of Propo-
sition 3 into those of Proposition 2. Theorems 7 and 8 are proved similarly.

If W is a non-simply laced but crystallographic reflection group, then our techniques can be
made to apply by a folding argument, or by working over a non-algebraically closed ground field
and applying [Ri]. If W is non-crystallographic, our techniques do not apply. Note that the
definition we have given of the bijection from m-increasing factorizations of c to m-decreasing
factorizations of c still makes sense, but we cannot prove that it is a bijection.

There is nothing in our approach which really requires that W be finite; all we really need is
the much weaker condition that Q have no oriented cycles. In this much more general setting,
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however, there are some additional aspects which must be taken care of. We are preparing a
paper in which we will explain these extra aspects, and provide the proofs of the assertions in
this extended abstract.
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