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Abstract. Let V' be a complex vector space with bagis:, z2,...,2z,} and G be a finite subgroup offL(V).
The tensor algebrd’(V') over the complex is isomorphic to the polynomials in the sommutative variables
x1,x2, ..., T, With complex coefficients. We want to give a combinatorideipretation for the decomposition
of T'(V') into simpleG-modules. In particular, we want to study the graded spaaevafiants inZ'(1") with respect

to the action ofG. We give a general method for decomposing the sff&dé) into simpleG-module in terms of
words in a particular Cayley graph 6f. To apply the method to a particular group, we require a stiviehomomor-
phism from a subalgebra of the group algebra into the charatgebra. In the case of the symmetric group, we give
an example of this homomorphism from the descent algebraenhis the dihedral group, we have a realization
of the character algebra as a subalgebra of the group algebthose two cases, we have an interpretation for the
graded dimensions of the invariant space in term of thoselsvor

Résune. Soit V' un espace vectoriel complexe de bgse,z2,...,z,} et G un sous-groupe fini d&L(V).
L'algébre T'(V') des tenseurs d& sur les complexes est isomorphe aux polyndmes a coetic@mmplexes en
variables non-commutatives, , z2, . . ., z,. Nous voulons donner une décompositionZdd”) en G-modules sim-
ples de maniére combinatoire. Plus particulierementsritudions I'espace gradué des invariantd'§&") sous
I'action deG. Nous présentons une méthode générale donnant langé@sition de7'(V') en modules simples via
certains mots dans un graphe de Cayley donné. Pour applagme&thode a un groupe particulier, nous avons besoin
d’'un homomorphisme surjectif entre une sous-algébrealgdbre de groupe et I'algébre des characteres. Poasle ¢
du groupe symétrique, nous donnons un example de cet hombisme qui provient de la théorie de I'algébre des
descentes. Pour le groupe diédral, nous avons une tgatisk 'algébre des characteres comme une sous-algebr
de l'algébre de groupe. Dans ces deux cas, nous avons @mprétation des dimensions graduées de I'espace des
invariants en terme de ces mots.
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1 Introduction

Let V be a vector space ov€rwith basis{z, zs, ..., z,} andG a finite subgroup of7L(V), then
TV)=CoVaVRoV®a...~Clry,xz,...,20)

is the ring of non-commutative polynomials in the basis elata where we use the notatiéfi*? =
VeV ®---@V. We will consider the subalgeb#@( V)% ~ C (21, z2, ..., :z:n>G as the graded space of
invariants with respect to the action@f It is convenientto conserve the information on the dimemsif
each homogeneous compon€ity, xo, . .., x,,)§ ~ (V®4)“ of degreel in theHilbert-Poincaré series

P(T(V)¥) =Y dim(ve)Gq.
d>0

Several algebraic tools allow us to study the invariantgT0r) with respect to the grou@. The graded
character off'(V') can be found in terms by what we might identify as a ‘masteott&’ for the tensor
space,

ot

1—tr(M(g))g”

where [¢?] represents taking the coefficient ¢f in the expression to the right and (¢) is a matrix
which represents the action of the group elemeon a basis oi/. The analogue of Molien’s theorem [3]
for the tensor algebra says that

XV (g) = tr(M(9))? = [¢%]

dim (V&&= [¢7] @ gezc 1—tr(M(g))q

In general, we can say that the invariaiitd”)“ are freely generated [4] by an infinite set of generators
(except wher(G is scalar,j.e. whenG is generated by a nonzero scalar multiple of the identityrinjat
[3]. No simple general description of the invariants or te@erators is known for large classes of groups
and these algebraic tools do not clearly show the underlgargbinatorial structure of these invariant
algebras.

Our goal is to find a combinatorial method for computing thedgrd dimensions af (V). The main
idea of a general theorem would be the following. Ta-anoduleV’, we associate a subalgebra of the
group algebra together with a homomorphism of algebrasthmaring of characters. Then we get as
a consequence a combinatorial description of the invariafif’(V') as words generated by a particular
Cayley graph ofG. To compute the coefficient @f? in the Hilbert-Poincaré series @f(1)%, it then
suffices to look at the multiplicity of the trivial il ©4). At this point, since there is not a general relation
between the group algebra and the character ring, we arebl@yo treat some examples that we decided
to present here and the method used gives rise to objectarthat priori not natural in that context. In
particular, we compute the graded dimensiong' 6§ )“ for V being the geometric module (see below)
of the symmetric group and fdf being any module of the dihedral group in term of words geteeray a
Cayley graph of+ in some specific generators. The subalgebra we use in thetdmesymmetric group
is the Solomon’s descent algebra, that will make the bridge/den words in a particular Cayley graph
in those generators and the decompositioff’'6¥) into simpleS,,-module. In the case of the dihedral
group, we present a new non-commutative realization of ftagacter ring as a subalgebra of the group
algebra.
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When the grouyg- is generated by pseudo-reflections acting on a vector dpatteen if V' is simple,V/
is called the geometric G-module. Whértis the symmetric grouys,, onn letters and acts on the vector
spacd/ spanned by the vectofs, =2, . . ., x,, } by the permutation action th&his generated by pseudo-
reflections, but is not a simpl€,-module. The spac€(z;,zo,... ,:z:n>s" is known as the symmetric
functions in non-commutative variables which was first &ddy Wolf [8] and more recently by Rosas-
Sagan [6]. The dimension ¢¥/®?)°» is the number of set partitions of the numbéis2, ..., d} into
at mostn parts. IfG is the symmetric group but acting on the vector space spahpdtie vectors
{1 — 29,22 — 23,..., 2,1 — 2, } (@gain with the permutation action on thg) then this is also a
group generated by pseudo-reflections but the invariargespél’ )~ is not as well understood. The
graded dimensions of the invariant space are given by thebauwf oscillating tableaux studied by
Chauve-Goupil [1]. This interpretation for the graded dirsiens has a very different nature to that
of set partitions. By applying the results in this paper wd ircombinatorial interpretation for the graded
dimensions of these spaces, and many others, which uniéi@stdrpretations of their graded dimensions.

The paper is organized as follows. In section 2 we recall #fanition of a Cayley graph and present
a technical lemma that we will need to link the number of warlengthd in a particular Cayley graph
of G to some coefficients in thé-th power of a particular element of the group algebra. Wé thén
present in section 3 the particular case of the symmetriom#), and make explicit the result far
being the geometri®,,-module. Since the bridge between the words in the Cayleghgod S,, and
the decomposition of (V) is the descent algebra, we will recall in section 3.3 someltgsbout the
Solomon’s descent algebra 8f. Section 3.6 contains some results about the invarianbeage( V)~
where we present a conjecture for a closed formula for thiegrilPoincaré series @t(V)°~, whereV/
is the geometric,,-module. Finally in section 4, we apply our general methothecase of the dihedral
group D,,, and then study in section 4.3 the particular case of the imwaalgebral’ (V)P whenV is
the geometric module and give a closed formula for the HitB@incaré series af (V).

2 Cayley graph of a group G

Let us recall the definition of a Cayley graph given in CoxgérA presentation of a finite grou@ with
generating sef' can be encoded by its Cayley graphCayley graphis an oriented graph = I'(G, S),
having one vertex for each element of the gra@uand the edges associated with generators.ifwo
verticesg; andg- are joined by a directed edge associated to S if go = ¢g1s. Then a path along the
edges corresponds to a word in the generatofs iA word whichreduces tgy € G in I' will be a path
along the edges from the vertex corresponding to the igetatithe one corresponding to the element
We will denote byw(g; d;I") the set of words of lengttd which reduce tg in I'. We will say that a word
does not cross the identitfyit has no proper prefix which reduces to the identity.

More generally, we will considereightedCayley graphg’(G, S). In other words, we will associate
a weightw(s) to each generater € S. Then we will define theveight of a wordw = sz - - - s, in the
generators to be the product of the weights of the generatorg = w(s1)w(s2) - - - w(s,). To simplify
the image, undirected edges will represent bidirectiodgés and non-labelled edges will represent edges
of weight one .

Example 2.1 Consider the dihedral group,,, with presentations,r | s> = r™ = srsr = e). The
Cayley graphd'(Ds, {s,7}), T'(D4, {s,7}) and more generally' (D, {s,r}) will look like
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T T T .

T8 s

s r2s s T°s

Example 2.2 The symmetric grouf,, onn letters is generated by the permutatidng) and(1n - - - 432)
(see [2]), hence also by the permutatiofi®), (132), (1432),...,(1n ---432), written in cyclic nota-
tion. The Cayley graph(Ss, {(12), (132)}) is

(132)

e (123)
(23

(12) (13)

Lemma 2.3 Letl’ = T'(G, {s1, s2, . .., s+ }) be a Cayley graph aff with associated weights(s;) = w;.
Then the coefficient of € G in the elementw;s; + wase + - -+ + w,s,.)¢ of the group algebraCG is

equal to
Y ww),

wew(o,d;T")
wherew(o, d; T') is the set of words of lengthwhich reduce ter in T.
Example 2.4 Let us consider the Cayley graph= (S3,{(12), (132)}) of Example 2.2. Set = (12)

andb = (132) to simplify. Then the table below shows that the coefficiatspecific element ifu + b)*
coincides with the number of words of length three which cedo that specific elementIn

(a+b)* =3e+2(12) +3(23) + 3(123) + 2 (132) + 3 (13)

e (12) (23) (123) (132) (13)
aaaa abbb aaba aabb abba aaab
abab bbba, baaa baab bbbb abaa
baba bbab bbaa babb

3 Symmetric group S,

We will give in that section a combinatorial way to decomptisetensor algebra ovi into simple.S,,-
modules, forl” being the geometri§,,-module, by means of words in a particular Cayley grapl§,af
We will also give a combinatorial way to compute the gradeudedisions of the invariant spag&V ),
which is the multiplicity of the trivial in the decompositiof 7'(1'). But first let us recall some definition
and the theory of the descent algebra.

3.1 Partitions and tableaux

To fix the notation, recall the definition of a partition.partition A of a positive integer. is a decreasing
sequence; > Ay > ... > )\ > 0 of positive integers such that= |\| = A1 + Ao + ... + Ap. We will
write A = (A1, A2, ... A¢) F n. For example, the partitions 8fare

(1,1,1) (2,1) (3).
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Itis natural to represent a partition by a diagram. Feeers diagramof a partition\ = (A1, A2, ... A¢)
is the finite subset = {(a,b) |0 < a </¢—1and0 < b < A\,+1 — 1} of N x N. Visually, each element
of A corresponds to the bottom left corner of a square of dimenisio 1 in N x N. A tableauof shape
A F n, denotedsh(t) = A, with values inT = {1,2,...,n} is a functiont : A — T. We can visualize
it with filling each square of a Ferrers diagram with the valuet(c). A tableau is said to bstandardif
its entries form an increasing sequence along each lineland aach column. We will denote 8/ ab,,
the set of standard tableau withsquares. For exampl§;'abs contains the four standard tableaux

The Robinson-Schensted correspondeisce bijection between the elementof the symmetric group
S, and pairs(P(c),Q(c)) of standard tableaux of the same shape, wiigre) is the insertion tableau
andQ@ (o) the recording tableau.

3.2 Simple S,-modules

Since the conjugacy classes i), are in bijection with the partitions of, it is natural to index the
simple S,,-modules by the partitions of n and we will denote them by*. In particular, the simple
S,,-moduleV (") indexed by the partitiorin) is the the trivial one. Let us consider the linear span-
L{x1,22,...,2,} On WhichsS,, acts by permuting the coordinates. Then we have

V=CL{zi4+zot+a3+...+an} D L{x1 — 22,220 —T3,...,Tp_1 — Tn},

so the decomposition df into simpleS,,-modules isV’ = V(") @ V(»=1L.1) Note that theS,,-module
Vv (n=L1) corresponds to the geometSg-module. LetX,, denote the set of variables, z», . . ., z,, and
Y,,_; denote the set of variablgs, iz, . . . , yn_1. If we identify T'(V) with R(X,,), thenT (V{*»~11)) ~
R(X,,)/(x1 + 22 + - -+ + x,) can be identified witlR (Y,,_1), wherey, = z; — 2,41 for1 <: <n —1.

3.3 Solomon’s descent algebra of S,

Surprisingly, the key to prove the general result is the theb descent algebra of the symmetric group.
Let us recall some of that theory here. et {1,2,...,n — 1}. The descent set af € S, is the set
Des(o) ={ie€Ilo(i)>o(i+1)}. ForK C I, set

dK = Z g.

ogESnp
Des(o)=K

The Solomon’s descent algebXas,, ) is a subalgebra of the group algef#d,, with basis{dx|K C I}
[7]. For a standard tableatof shape\ - n define

Zt = E g,

cE€Sn
Qo)=t

whereQ (o) corresponds to the recording tableau in the Robinson-Stéae correspondence. Then
consider the linear spa@,, = L£{z:| t € STab,}. Note in general tha®@,, is not a subalgebra &.5,,,
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for n > 4. Define the descent set of a standard tabieauDes(t) = {i|i + 1 is above iint}. Then

dK = Z Zt-.

teSTabnp
Des(t)=K

andX(S,) C Q,. There is an algebra morphigm X(.S,,) — ZlIrr(.S,,) due to Solomon [7]. Moreover,

there is a linear map [5] : Q, — ZIrr(S,) defined byd(z,) = x*"®), and# restricted toX(S,,)
corresponds t6. We can observe that

2 = (12) + (132) + (1432) + - + (1n ---432) = dyy)

(L[3]4f-In]

hencef(d(;y) = x"~ b,

3.4 General method for S,

We are developing a general combinatorial method for detengithe multiplicity of V* in V¥4, when
V is any S,-module. To this end, we will consider the algebra morphtsmXx(S,,) — Zlrr(S,,) of
section 3.3. The next proposition says that this multipfisi given as the sum of some coefficients(ih
whenf is an element oE(S,,) such that(f) = xV.

Proposition 3.1 Let V' be anS,,-module such tha#(f) = x", for somef € %(S,). For A i n, the
multiplicity of V* in V¥4 is equal to
PORENT

teSTabnp
sh(t)=X\

where[z] f? is the coefficient of; in f.

Although the next theorem is an easy consequence of the Le2n®nand Proposition 3.1, it provides
us with an interesting interpretation for the multiplici§ V* in the d-fold Kronecker product of &,-
module. This multiplicity is the weighted sum of words in atgaular Cayley graph of,, which reduce

to the element;, whereo; has recording tableadwof shape\ in the Robinson-Schensted correspondance.
Recall that thesupportof an elemeny of the group algebra is defined by sugp= {g € G|[g]f # 0}.

Theorem 3.2 Let V be anS,,-module such tha#(f) = xV, for somef € %(S,). For A - n, the

multiplicity of V* in V¥4 is
> 2 ww),

teSTab .
sh(t)a:;\l wew(o,d;T)

whereo; is such thatQ(o;) = ¢, I' = T'(S,, supdf)) with w(c) = [o](f) for eacho € supgf) and
w(oy, d; T') is the set of words of lengthwhich reduce t@, in T".
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3.5 Decomposition of 7'(V™~11) and words in a Cayley graph of S,

Since we are particularly interested in the geomeftiemodule, we make explicit the following two
corollaries respectively of Proposition 3.1 and Theorethr&eded to draw a connection between the
multiplicity of V* in (V(»=1.1))®d and words of lengtld in a particular Cayley graph df,,. To this end,

we use the fact that the elemefjt, of the descent algebra, which is the sum of elements,afiaving
descent sef1}, is sent toy("~ 1) under the# morphism.

Corollary 3.3 Let\ F n. The multiplicity oft’* in (V(»~1.1))®d jg

Z [Zt]d{l}d.

teSTabn
sh(t)=A

Corollary 3.4 Let\ F n. The multiplicity oft’* in (V(»~1.1))®d js equal to
Z |w(0t7 d7r)|7

teSTabn
sh(t)=A\

whereo; € S, is such that)(c;) = t andT’ = I'(S,,, {(12), (132),...,(1n --- 432)}). In particular,
the multiplicity of the trivial isjw(e, d; T')|.
Example 3.5 TheS3-module(V 3:1))®4 decomposes &V ) @ 5 V(1D @ 3 V(11D since

d{1}4 =3dy+ 3d{2} + Qd{l} + 3d{172}
=3z +3z +2z +3z..
These multiplicities can also be computed using CorolladyiB the following way. The Cayley graph
I' =T(5s3,{(12), (132)}) looks like

(132)
eve (123) 112[31%%
(2) RS
(12) N(13) HE >

and if we writea for (12) andb for (132) to simplify, and choose the representatives

o =(23) o. =(12) = (13)

g =€ g

the multiplicities are respectively given by the carditial of the sets of words (see Example 2.4)

74508 |w(e,4;T)] = [{aaaa, abab, baba}| = 3,
VED L w((23),4;,T)] + |w((12),4;T)| = |{aaba, baaa, bbab}| + |{abbb, bbba}| = 5,
VLD w((13),4;T)| = |{aaab, abaa, babb}| = 3.
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3.6 Invariant algebra T'(V("=11)% ~ R(Y,, ;)"

We have an interpretation of the invariant algeBit@ (»~11))S» in terms of words which reduce to the
identity in the Cayley grapl'(S,, {(12), (132), ...,(1n --- 432)}). As a corollary of Corollary 3.4,
we can now show that the dimensionofl’ (»~1:1))5» in each degred, which is also the multiplicity of
the trivial representation il (»~1:1))®¢ can be indexed by those precise words of length

Corollary 3.6 The dimension of(V (*~1:1))@d)Sn ~ R(Yn,lﬁn is equal to the number of words of
lengthd which reduce to the identity in the Cayley grapts,,, {(12), (132), ..., (1n --- 432)}).

Example 3.7 Consider the symmetric grougs. Using the Reynold’s operatdr’ o acting on the

monomials, a basis for the invariant spakeéy, , y2>f3 is given by the three following polynomials

2 2 2 2 2 2
Y1Y2 — Y1Y2y1 — Y2y1y2 + Y2Y1,
Y1Y2y1Y2 — Y1Y3Y1 — Y2Yiy2 + Y2y1Y2y1,
4 3 2 2 2 3 3 2 2 2 3 4
2y1 + Y1Y2 + Y1y2y1 + yay2yn + 3v1yay1 + vaye + Y2yt + 3y2yiye + y2y1ya + Yay1ye + yayr + 2y

which agree with the number of wordaaaa, abab, baba} in the lettersa = (12) andb = (132) which
reduce to the identity in the Cayley grapliSs, {(12), (132)}) (see Example 2.4).

Proposition 3.8 The number of free generatorsBfV (*~1:1))5» as an algebra are counted by the words
which reduce to the identity without crossing the identity' (S, {(12), (132), ...,(1n --- 432)}).

Example 3.9 The number of free generatorsBfV/ (1)) are counted by the number of words in the fol-
lowing subsets of words which reduce to the identity witlwasgsing the identity if'(Ss, {(12), (132)})

{aa}, {bbb}, {abab, baba}, {abbba, baabb, bbaab}, {abaaab, abbabb, baaaba, babbab, bbabba}, . ..
with cardinalities corresponding to the Fibonacci numbers

We present next a conjecture for a closed formula giving thieelrt-Poincaré series 6f (V (= 1:1))5»
which does not seem to obviously follow from our combinabiriterpretations for the dimensions.

Conjecture 3.10 The Hilbert-Poincaé series of"(V (*~1:1))5x s

n—1
- 1 q ¢*
P(T(V(n=bDySn) = + .
V) = T T Tt 20 (%9

4 Dihedral group D,,

The same kind of results can be observed for other finite grofgp example in the case of cyclic and
dihedral groups. We will present in this section the casehefdihedral group),,, with presentation
D,, = (s,7 | 2 = r™ = srsr = ¢). We will give a combinatorial way to decompose the tensor
algebra on anyD,,,-module into simple modules by looking to words in a paréecuCayley graph of
D,,. The bridge between those words and the decomposition déttsar algebra into simple modules
is made possible via a subalgebra of the group algBi?g and a surjective algebra morphism from this
subalgebra into the algebra of characters that we will prtaeenext section.
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4.1 Simple D,,-modules

For our purpose, let us first compute the irreducible charadif the dihedral group,,,. Form = 2k
even, there aré + 3 simple D,,,-modules (up to isomorphismg)i¢, V7, Ve, V€ andV?, for1 < i <
k — 1 with associated irreducible characters

id: D, — C v:Dp — C Xi:Dm — C
r o= 1 rT o= (=1)" r o 2cos(ZL)
s — 1 s = —1 s — 0
rs +— 1 rs +— 1 rs +— 0
e: D, — C ye: Dy, — C
o= 1 o= (=1)7
s — -1 s — 1
rs — —1 rs +— —1

Form = 2k + 1 odd, thek + 2 simple D,,,-modules (up to isomorphisms) avé?, V< andV?, for 1 <

1 < k and the associated irreducible characters are respgctied andy;. The next two propositions
define the surjective algebra morphism needed to link therdposition of7’(1') to words in a Cayley
graph ofD,,,.

Proposition 4.1 Lety; = r!~is + . Form = 2k even,@ = L{e,r* rs, 7" 1s y;, yirsti<i<k—1isa
subalgebra oZ.D,,,, and there is a surjective algebra morphism Q — ZIrr(D,,,) defined by(e) = id,
O(rs) =€, 0(r*) = v, 0(rF+1s) = ye andO(y;) = 0(yirs) = xi.

Proposition 4.2 Lety; = r'=%s +ri. Form = 2k + 1 odd, the linear spa® = L{e, s, yi, yirs}1<i<k
is a subalgebra of.D,,, and there is a surjective algebra morphism Q — ZIrr(D,,) defined by
O(e) =id, O(rs) = eandd(y;) = 0(yirs) = xi-

4.2 Decomposition of 7'(V') and words in a Cayley graph of D,,

To simplify the notation, we will denote the subalgebras aig®sition 4.1 and 4.2 bQ = L{b; }ie1,
where each element of the basis is sent to an irreducible characteflandV () will denote a simple
D,,-module with irreducible character”. As for the symmetric group, we have the following two
results. Recall that supp) = {g € G|[g]f # 0}.

Proposition 4.3 LetV be aD,,-module. Iff € Q is such tha?¥(f) = x", then the multiplicity of” (%)

in V®4 is equal to
> bl

b;
0(b;)=x"*)

Theorem 4.4 LetV be aD,,-module. Iff € Q is such tha#(f) = x", then the multiplicity of’*) in

V@d s equal to
> 2w,
b

i wew(o;,d;T")
0(b;)=xF)

whereo; € supp(b;), T = T'(D,,, supp(f)) withw(g) = [g](f) for eachg € supp(f).
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Example 4.5 Consider theD,-module(2 V! @ V7€)®2, By Theorem 4.1 , there is a subalgela=
L{e,r% rs,r3s, s+ r,r3 +r?s} of the group algebra and : Q — ZIrr(D,) defined by

O(e) =id, O(rs)=¢, O*) =7, 003s)=ve, O(s+7)=00>+1r%s)=x1.

Letf =2 (r® +r%s) +13s. Applyingd, f2 =5e+4rs+4r2 +4r3s+2(s+r) +2(r® +r2s) is sent
to0 (2x1 +ve)? =5id+4e+4v+4ve+2x1 + 2x1 So the decomposition into simple modules is

VeV =5Vl 4VepdV @4V @4V

These multiplicities can also be computed using words irGgey graphl’ = T'(Dy, {73,725, 13s})
with weightsu(r?) = w(r?s) = 2 andw(r®s) = 1. Applying Theorem 4.4, the multiplicities are

Vid . Z ww) =w(aa) +w(cc) =2-2+1-1=5
wew(e,2;T")

ve: Z ww)=w(ba) =2-2=14
wew(rs,2;T)

V7 Z w(w) =w(b)=2-2=4
wew(r?,2;T")

Ve Z ww)=w(ab) =2-2=14

wew(rds,2;T")
Vi Z w(w) + Z w(w) =w(ca) +wlac) =1-2+2-1=4.

wew(r,2T) wew(rd, 2T)

4.3 Invariant algebra T'(V1)Pm ~ R{xy, zo)Pm

We were particularly interested in studying the invarigreiee of the tensor algebra on the geometric rep-
resentatiori’! and we have the following results. Since the dimensiof{ B )®?)Pm ~ R(x,z9)5™

is equal to the multiplicity of the trivial irf{V/!)®? ~ R(z;, x5)q4, the following Corollary follows from
Theorem 4.4 and the fact thés + r) = x;.

Corollary 4.6 The dimension of(V!)®4)Pm ~ R(xy,22) 2™ is equal to the number of words of length
d which reduce to the identity in the Cayley graptD,,,, {r, s}).

Proposition 4.7 The number of free generators 6fV!)P~ as an algebra are counted by the words in
the Cayley graph'(D,,,, {r, s}) which reduce to the identity without crossing the identity.

Proposition 4.8 The Hilbert-Poincaé series of (V)P ~ R{xq, x5)Pm is

) 1 @om+ P () —2(5) (1 — 4¢%)
POV = +5( 2530/2J0(32><1+—4q2>i—<2q>m )

5 Appendix
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| Sp\d H 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 12 13 |
S3 1101|135 (11| 21 | 43 85 171 341 683 1365
Sa 1101141031 91 | 274| 820 | 2461 | 7381 | 22144 66430
Ss 1(0|1|1|4)|11| 40| 147 | 568 | 2227 | 8824 | 35123 | 140152 | 559923
Se 110]1|1|4|11| 41| 161 | 694 | 3151 | 14851 | 71621 | 350384 | 1729091

Tab. 1: Dimension of((V("=1:1))®@4)S» ~ R(y,,_;)5". Number of words of lengtl which reduce to the identity

inT(S,, {(12), (132), (1432), ..., (1 n --- 432)}).

(S [ S5 | S | Ss | Ss |
2 aa aa aa aa
3 bbb bbb bbb bbb
aaaa aaaa aaaa aaaa
4 abab abab  ccce abab  ccce abab  cccc
baba baba baba baba
aabbb aabbb  acchbe aabbb  acchbe aabbb  acchbe
abbba abbba  beace abbba  becace abbba  becace
5 baabb baabb  cacch baabb  caccb  ddddd baabb  cacchb  ddddd
bbaab bbaab  cbcac bbaab  cbcac bbaab  cbcac
bbbaa bbbaa  ccbea bbbaa  ccbea bbbaa  ccbea

Tab. 2: Words of length? in the lettersa = (12),b = (132), ¢ = (1432), d = (15432) which reduce to the identity

inIT'(Sn, {(12), (132), (1432),...,(1n --- 432)})
|l)m\d H O| l| 2| 3| 4 |5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
D3 1|10(1|1(3|5]11|21|43|85| 171 | 341 | 683 | 1365
Dy 1/0|1(0|4|0|16| O |64 0 |256]| O 1024 0
Ds 1/0|1(0|3|1|10| 7 |35|36| 127 | 165 | 474 | 715
Dg 1/0(1|0(3|0|11| 0 (43| 0 |172] O 683 0
Tab. 3: Dimension of((V')®®)Pm ~ R(zy,22)"™. Number of words in the letters and s of lengthd which
reduce to the identity if'(Dy,, {r, s}).
L d\Dm || Ds | Dy | Ds | Ds |
2 ss ss ss ss
3 rrr
5558 $888  TSTrS 5558 5558
4 rsrs rsrs rsrs
srsr srsr rrrr srsr srsr
SSTTT
rTSST
5 STTTS rrrrT
rTTSS
rSSrT

Tab. 4: Words of lengthd in the letters- ands which reduce to the identity ifi( Dy, {r, s}).
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