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Unital versions of the higher order peak
algebras
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2 Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée, 77454 Marne-la-Vallée cedex 2, France

Abstract. We construct unital extensions of the higher order peak algebras defined by Krob and the third author in
[Ann. Comb. 9 (2005), 411–430], and show that they can be obtained as homomorphic images of certain subalgebras
of the Mantaci-Reutenauer algebras of type B. This generalizes a result of Bergeron, Nyman and the first author
[Trans. AMS 356 (2004), 2781–2824].

Résumé. Nous construisons des extensions unitaires des algèbres de pics d’ordre supérieur définies par Krob et le
troisième auteur dans [Ann. Comb. 9 (2005), 411–430], et nous montrons qu’elles peuvent être obtenues comme
images homomorphes de certaines sous-algèbres des algèbres de Mantaci-Reutenauer de type B. Ceci généralise un
résultat dû à Bergeron, Nyman et au premier auteur [Trans. AMS 356 (2004), 2781–2824].
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1 Introduction
A descent of a permutation σ ∈ Sn is an index i such that σ(i) > σ(i+1). A descent is a peak if moreover
i > 1 and σ(i) > σ(i − 1). The sums of permutations with a given descent set span a subalgebra of the
group algebra, the descent algebra Σn. The peak algebra P̊n of Sn is a subalgebra of its descent algebra,
spanned by sums of permutations having the same peak set. This algebra has no unit. Descent algebras
can be defined for all finite Coxeter groups [19]. In [2], it is shown that the peak algebra of Sn can be
naturally extended to a unital algebra, which is obtained as a homomorphic image of the descent algebra
of the hyperoctahedral group Bn.

The direct sum of the peak algebras turns out to be a Hopf subalgebra of the direct sum of all descent
algebras, which can itself be identified with Sym, the Hopf algebra of noncommutative symmetric func-
tions [9]. As explained in [5], it turns out that a fair amount of results on the peak algebras can be deduced
from the case q = −1 of a q-identity of [11]. Specializing q to other roots of unity, Krob and the third
author introduced and studied higher order peak algebras in [12]. Again, these are non-unital, and it is
natural to ask whether the construction of [2] can be extended to this case.
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We will show that this is indeed possible. We first construct the unital versions of the higher order
peak algebras by a simple manipulation of generating series. We then show that they can be obtained as
homomorphic images of the Mantaci-Reutenauer algebras of typeB. Hence no Coxeter groups other than
Bn and Sn are involved in the process; in fact, the construction is related to the notion of superization, as
defined in [16], rather than to root systems or wreath products.

2 Notations and background
2.1 Noncommutative symmetric functions
We will assume familiarity with the notations of [9] and with the main results of [12]. We recall a few
definitions for the convenience of the reader.

The Hopf algebra of noncommutative symmetric functions is denoted by Sym, or by Sym(A) if
we consider the realization in terms of an auxiliary alphabet A. Linear bases of Symn are labelled by
compositions I = (i1, . . . , ir) of n (we write I � n). The noncommutative complete and elementary
functions are denoted by Sn and Λn, and SI = Si1 · · ·Sir . The ribbon basis is denoted by RI . The
descent set of I is Des(I) = {i1, i1 + i2, . . . , i1 + · · ·+ ir−1}. The descent composition of a permutation
σ ∈ Sn is the composition I = D(σ) of n whose descent set is the descent set of σ.

Recall from [8] that for an infinite totally ordered alphabet A, FQSym(A) is the subalgebra of C〈A〉
spanned by the polynomials

Gσ(A) =
∑

std(w)=σ

w, (1)

that is, the sum of all words inAn whose standardization is the permutation σ ∈ Sn. The noncommutative
ribbon Schur function RI ∈ Sym is then

RI =
∑

D(σ)=I

Gσ . (2)

This defines a Hopf embedding Sym → FQSym. The Hopf algebra FQSym is self-dual under the
pairing (Gσ , Gτ ) = δσ,τ−1 (Kronecker symbol). Let Fσ := Gσ−1 , so that {Fσ} is the dual basis of
{Gσ}. The internal product ∗ of FQSym is induced by composition ◦ in Sn in the basis F, that is,

Fσ ∗ Fτ = Fσ◦τ and Gσ ∗Gτ = Gτ◦σ . (3)

Each subspace Symn is stable under this operation, and anti-isomorphic to the descent algebra Σn of Sn.
For fi ∈ FQSym and g ∈ Sym, we have the splitting formula

(f1 . . . fr) ∗ g = µr · (f1 ⊗ · · · ⊗ fr) ∗r ∆rg , (4)

where µr is r-fold multiplication, and ∆r the iterated coproduct with values in the r-th tensor power.

2.2 The Mantaci-Reutenauer algebra of level 2
We denote by MR the free product Sym ? Sym of two copies of the Hopf algebra of noncommutative
symmetric functions [14]. That is, MR is the free associative algebra on two sequences (Sn) and (Sn̄)
(n ≥ 1). We regard the two copies of Sym as noncommutative symmetric functions on two auxiliary
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alphabets: Sn = Sn(A) and Sn̄ = Sn(Ā). We denote by F 7→ F̄ the involutive automorphism which
exchanges Sn and Sn̄. The bialgebra structure is defined by the requirement that the series

σ1 =
∑
n≥0

Sn and σ̄1 =
∑
n≥0

Sn̄ (5)

are grouplike. The internal product of MR can be computed from the splitting formula and the conditions
that σ1 is neutral, σ̄1 is central, and σ̄1 ∗ σ̄1 = σ1.

In [15], an embedding of MR in the Hopf algebra BFQSym of free quasi-symmetric functions of
type B (spanned by colored permutations) is described. Under this embedding, left ∗-multiplication by
Λn = Gnn−1...2,1 corresponds to right multiplication by nn− 1 . . . 2, 1 in the group algebra of Bn. This
implies that left ∗-multiplication by λ1 is an involutive anti-automorphism of BFQSym, hence of MR.

2.3 Noncommutative symmetric functions of type B

The hyperoctahedral analogue BSym of Sym, defined in [6], is the right Sym-module freely generated
by another sequence (S̃n) (n ≥ 0, S̃0 = 1) of homogeneous elements, with σ̃1 grouplike. This is a
coalgebra, but not an algebra. It is endowed with an internal product, for which each homogeneous
component BSymn is anti-isomorphic to the descent algebra of Bn.

3 Solomon descent algebras of type B

3.1 Descents in Bn

The hyperoctahedral group Bn is the group of signed permutations. A signed permutation can be denoted
by w = (σ, ε) where σ is an ordinary permutation and ε ∈ {±1}n, such that w(i) = εiσ(i). If we set
w(0) = 0, then, i ∈ [0, n − 1] is a descent of w if w(i) > w(i + 1). Hence, the descent set of w is
a subset D = {i0, i0 + i1, . . . , i0 + i1 + · · · ir−1} of [0, n − 1]. We then associate to D a so-called
type-B composition (a composition whose first part can be zero) (i0−0, i1, . . . , ir−1, n− ir−1). The sum
of all signed permutations whose descent set is contained in D is mapped to S̃I := S̃i0S

I′ by Chow’s
anti-isomorphism [6], where I ′ = (i1, . . . , ir).

3.2 Noncommutative supersymmetric functions
An embedding of BSym as a sub-coalgebra and sub-Sym-module of MR can be deduced from [14].
To describe it, let us define, for F ∈ Sym(A),

F ] = F (A|Ā) = F (A− qĀ)|q=−1 (6)

(the supersymmetric version of F ). The superization of F ∈ Sym(A) can also be given by

F ] = F ∗ σ]1 . (7)

Indeed, σ]1 is grouplike, and for F = SI , the splitting formula gives

(Si1 · · ·Sir ) ∗ σ
]
1 = µr[(Si1 ⊗ · · · ⊗ Sir ) ∗ (σ]1 ⊗ · · · ⊗ σ

]
1)] = SI] . (8)
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We have
σ]1 = λ̄1σ1 =

∑
ΛīSj . (9)

The element σ̄1 is central for the internal product, and

σ̄1 ∗ F = F̄ = F ∗ σ̄1 . (10)

Hence,
σ̄1 ∗ σ]1 = λ1σ̄1 =: σ[1 . (11)

The basis element S̃I of BSym, where I = (i0, i1, . . . , ir) is a type B-composition, can be embedded
as

S̃I = Si0(A)Si1i2···ir (A|Ā) . (12)

We will identify BSym with its image under this embedding.

3.3 A proof that BSym is ∗-stable
We are now in a position to understand why BSym is a ∗-subalgebra of MR. The argument will be
extended below to the case of unital peak algebras. Let F,G ∈ Sym. We want to understand why
σ1F

] ∗ σ1G
] is in BSym. Using the splitting formula, we rewrite this as

µ[(σ1 ⊗ F ]) ∗∆σ1∆G]] =
∑
(G)

(σ1G
]
(1))(F

] ∗ σ1G
]
(2)). (13)

We now only have to show that each term F ] ∗ σ1G
]
(2) is in Sym]. We may assume that F = SI , and for

any G ∈ Sym,

SI] ∗ σ1G
] =

∑
(G)

µr[(S
]
i1
⊗ · · · ⊗ S]ir ) ∗ (σ1G

]
(1) ⊗ · · · ⊗ σ1G

]
(r))] (14)

so that it is sufficient to prove the property for F = Sn. Now,

σ]1 ∗ σ1G
] = (λ̄1σ1) ∗ σ1G

]

=
∑
(G)

(λ̄1 ∗ σ1G
]
(1))(σ1G

]
(2))

=
∑
(G)

(σ̄1 ∗ λ1 ∗ σ1G
]
(1)) · σ1 ·G](2)

(15)

Now,
λ1 ∗ σ1G

]
(1) = (λ1 ∗G](1))(λ1 ∗ σ1) = (λ1 ∗G](1))λ1, (16)

since λ1 is an anti-automorphism. We then get

σ]1 ∗ σ1G
] =

∑
(G)

(σ̄1 ∗ ((λ1 ∗G](1))λ1) · σ1 ·G](2)

=
∑
(G)

(σ̄1 ∗ λ1 ∗G](1)) · (σ̄1 ∗ λ1)σ1 ·G](2)

=
∑
(G)

(λ̄1 ∗G](1)) · σ
]
1 ·G

]
(2)

(17)
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Now, the result will follow if we can prove that λ̄1 ∗G] is in Sym] for any G ∈ Sym.
For G = SI ,

λ̄1 ∗ SI] = λ1 ∗ σ̄1 ∗ SI ∗ σ]1 = λ1 ∗ SI ∗ σ̄1 ∗ σ]1 = λ1 ∗ SI ∗ σ[1 . (18)

Since left ∗-multiplication by λ1 in an anti-automorphism, we only need to prove that λ1 ∗ S[n is of the
form G]. And indeed,

λ1 ∗ S[n =
∑
i+j=n

λ1 ∗ (ΛiSj̄)

=
∑
i+j=n

(λ1 ∗ Sj̄)(λ1 ∗ Λi)

=
∑
i+j=n

Λj̄Si = S]n .

(19)

This concludes the proof that BSym is a ∗-subalgebra of BFQSym.

4 Unital versions of the higher order peak algebras
As shown in [5], much of the theory of the peak algebra can be deduced from a formula of [11] for
RI((1 − q)A), in the special case q = −1. In [12], this formula was studied in the case where q is an
arbitrary root of unity, and higher order analogs of the peak algebra were obtained. In [2], it was shown
that the classical peak algebra can be extended to a unital algebra, which is obtained as a homomorphic
image of the descent algebra of type B. In this section, we construct unital extensions of the higher order
peak algebras.

Let q be a primitive r-th root of unity. All objects introduced below will depend on q (and r), although
this dependence will not be made explicit in the notation. We denote by θq the endomorphism of Sym
defined by

f̃ = θq(f) = f((1− q)A) = f(A) ∗ σ1((1− q)A) . (20)

We denote by P̊ the image of θq and by P the right P̊-module generated by the Sn for n ≥ 0. Note that
P̊ is by definition a left ∗-ideal of Sym.

Theorem 4.1 P is a unital ∗-subalgebra of Sym. Its Hilbert series is∑
n≥0

dimPntn =
1

1− t− t2 − · · · − tr
. (21)

Proof – Since the internal product of homogeneous elements of different degrees is zero, it is enough to
show that, for any f, g ∈ Sym, σ1f̃ ∗ σ1g̃ is in P . Thanks to the splitting formula,

σ1f̃ ∗ σ1g̃ = µ[(σ1 ⊗ f̃) ∗
∑
(g)

σ1g̃(1) ⊗ σ1g̃(2)]

=
∑
(g)

(σ1g̃(1))(f̃ ∗ σ1g̃(2)) .
(22)
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Thus, it is enough to check that f̃ ∗ σ1h̃ is in P̊ for any f, h ∈ Sym. Now,

f̃ ∗ σ1h̃ = f ∗ σ1((1− q)A) ∗ σ1h̃ , (23)

and since P̊ is a Sym left ∗-ideal, we only have to show that σ1((1 − q)A) ∗ σ1h̃ is in P̊ . One more
splitting yields

σ1((1− q)A) ∗ σ1h̃ = (λ−qσ1) ∗ σ1h̃

= µ[(λ−q ⊗ σ1) ∗
∑
(h)

σ1h̃(1) ⊗ σ1h̃(2)]

=
∑
(h)

(λ−q ∗ σ1h̃(1))(σ1h̃(2))

=
∑
(h)

(λ−q ∗ h̃(1))λ−qσ1h̃(2)

(24)

(since left ∗-multiplication by λ−q is an anti-automorphism, namely the composition of the antipode
and qdegree). The first parentheses (λ−q ∗ h̃(1)) are in P̊ since it is a left ∗-ideal. The middle term is
σ1((1− q)A), and the last one is in P̊ by definition.

Recall from [12, Prop. 3.5] that the Hilbert series of P̊ is∑
n≥0

dimP̊ntn =
1− tr

1− t− t2 − . . .− tr
. (25)

From [12, Lemma 3.13 and Eq. (3.9)], it follows that Sn 6∈ P̊ if and only if n ≡ 0 mod r, so that the
Hilbert series of P is ∑

n≥0

dimPntn =
1

1− t− t2 − . . .− tr
. (26)

5 Back to the Mantaci-Reutenauer algebra
The above proofs are in fact special cases of a master calculation in the Mantaci-Reutenauer algebra,
which we carry out in this section.

Let q be an arbitrary complex number or an indeterminate, and define, for any F ∈MR,

F ] = F ∗ σ1(A− qĀ) = F ∗ σ]1 . (27)

Since σ]1 is grouplike, it follows from the splitting formula that

F 7→ F ] (28)

is an automorphism of MR for the Hopf structure. In addition, it is clear from the definition that it is also
a endomorphism of left ∗-modules. We refer to it as the ] transform.
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We now define
Q̊ = MR], (29)

the image of the ] transform. Since the latter is an endomorphism of Hopf algebras and of left ∗-modules,
Q̊ is both a Hopf subalgebra of MR and a left ∗-ideal. When q is a root of unity, its image under the
specialization Ā = A is the non-unital peak algebra P̊ of Section 4 (and for generic q, it is Sym).

Let Q be the right Q̊-module generated by the Sn, for all n ≥ 0. Clearly, the identification Ā = A
maps Q onto P , the unital peak algebra of Section 4.

Theorem 5.1 Q is a ∗-subalgebra of MR, containing Q̊ as a left ideal.

Proof – Let F,G ∈ MR. As above, we want to show that σ1F
] ∗ σ1G

] is in Q. Using the splitting
formula, we rewrite this as

µ[(σ1 ⊗ F ]) ∗∆σ1∆G]] =
∑
(G)

(σ1G
]
(1))(F

] ∗ σ1G
]
(2)) (30)

and we only have to show that each term F ] ∗ σ1G
]
(2) is in Q̊. We may assume that F = SI , where I is

now a bicolored composition, and for any G ∈MR,

SI] ∗ σ1G
] =

∑
(G)

µr[(S
]
i1
⊗ · · · ⊗ S]ir ) ∗ (σ1G

]
(1) ⊗ · · · ⊗ σ1G

]
(r))] (31)

so that it is sufficient to prove the property for F = Sn or Sn̄. Now,

σ]1 ∗ σ1G
] = (λ̄−qσ1) ∗ σ1G

]

=
∑
(G)

(λ̄−q1 ∗ σ1G
]
(1))(σ1G

]
(2))

=
∑
(G)

(λ̄−q ∗G](1)) · σ
]
1 ·G

]
(2)

(32)

which is in Q̊, since it is a subalgebra and a left ∗-ideal, and similarly,

σ̄]1 ∗ σ1G
] = (λ−qσ̄1) ∗ σ1G

]

=
∑
(G)

(λ−q ∗ σ1G
]
(1))(σ̄1Ḡ

]
(2))

=
∑
(G)

(λ−q ∗G](1)) · σ̄
]
1 · Ḡ

]
(2)

(33)

is also in Q̊.

The various algebras introduced in this paper and their interrelationships are summarized in the follow-
ing diagram.

Q̊

����

⊆ Q

����

⊆ MR

����

⊆ BFQSym

����
P̊ ⊆ P ⊆ Sym ⊆ FQSym

(34)
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Note that in the special case q = −1, by the results of Section 3.3,Qn is the (Solomon) descent algebra
of Bn, Q is isomorphic to BSym, and P is the unital peak algebra of [2].

6 Further developments
6.1 Inversion of the generic ] transform
For generic q, the endomorphism (27) of MR is invertible; therefore

Q̊ ∼MR. (35)

The inverse endomorphism of MR arises from the transformation of alphabets

A 7→ (qĀ+A)/(1− q2), (36)

which is to be understood in the following sense:

σ1

(
qĀ+A

1− q2

)
:=
∏
k≥0

σq2k+1(Ā)σq2k(A) . (37)

Indeed,

σ1

(
qĀ+A

1− q2

)
∗ σ1(A− qĀ) =

∏
k≥0

σq2k+1(Ā− qA)σq2k(A− qĀ)

=
∏
k≥0

λ−q2k+2(A)σq2k+1(Ā)λ−q2k+1(Ā)σq2k(A)

= σ1(A) .

(38)

By normalizing the term of degree n in (37), we obtainBn-analogs of the q-Klyachko elements defined
in [9]:

Kn(q;A, Ā) :=
n∏
i=1

(1− q2 i)Sn

(
qĀ+A

1− q2

)
=
∑
I�n

q2 maj(I)RI(qĀ+A) . (39)

This expression can be completely expanded on signed ribbons. From the expression of RI in FQSym,
we have

RI(Ā+A) =
∑

C(σ)=I

Gσ(Ā+A) (40)

where Ā+A is the ordinal sum. If we order Ā by

ā1 < ā2 < . . . < āk < . . . (41)

then, arguing as in [16], we have

Gσ(Ā+A) =
∑

std(τ,ε)=σ

Gτ,ε (42)



Unital versions of the higher order peak algebras 21

so that
RI(Ā+A) =

∑
ρ(J)=I

RJ (43)

where for a signed composition J = (J, ε), the unsigned composition ρ(J) is defined as the shape of
std(σ, ε), where σ is any permutation of shape J .

Replacing Ā by qĀ, one obtains the expansion of the q-Klyachko elements of type B:

Kn(q;A, Ā) =
∑

J

qbmaj(J)RJ (44)

where
bmaj(J) = 2 maj(ρ(J)) + |ε| , (45)

where |ε| is the number of minus signs in ε.
For example,

K2(q) = R2 + q2R2 + q2R11 + q3R11 + q R11 + q4R11. (46)

K3(q) = R3 + q3R3 + q4R21 + q5R21 + q2R21 + q7R21 + q2R12 + q4R12

+ q R12 + q5R12 + q6R111 + q7R111 + q3R111 + q8R111

+ q5R111 + q6R111 + q4R111 + q9R111.

(47)

This major index of type B is the flag major index defined in [1].
Following [1] and considering the signed composition (where ε is encoded as boolean vector for readability)

J = (2, 1, 1, 3̄, 1̄, 2̄, 4, 1̄, 2, 2) = (2113124122, 00001111110000100000) (48)

we can take the smallest permutation of shape (2, 1, 1, 3, 1, 2, 4, 1, 2, 2), which is

α = 1 5 4 3 2 6 9 8 7 11 10 12 13 16 15 14 18 17 19 (49)

sign it according to ε, which yields
1 5 4 3 2̄ 6̄ 9̄ 8̄ 7̄ 11 10 12 13 16 15 14 18 17 19 (50)

whose standardized is
8 11 10 9 1 2 5 4 3 6 12 13 14 16 7 15 18 17 19 (51)

and has shape ρ(J) = (2, 1, 1, 3, 1, 6, 3, 2). The major index of ρ(J) is 55, the number of minus signs in ε is 7, so bmaj(J) =

2× 55 + 7 = 117.
The major index of type B can be read directly on signed compositions without reference to signed

permutations as follows: one can get ρ(J) by first adding the absolute values of two consecutive parts if
the left one is signed and the second one is not, then remove the signs and proceed as before.

A different solution consists in reading the composition from right to left, then associate weight 0 (resp. 1) to the rightmost part
if it is positive (resp. negative) and then proceed left by adding 2 to the weight if the two parts are of the same sign and 1 if not.
Finally, add up the product of the absolute values of the parts with their weight.

For example, with the same J as above we have the following weights:

J =(2, 1, 1, 3̄, 1̄, 2̄, 4, 1̄, 2, 2)

weights :14 12 10 9 7 5 4 3 2 0
(52)

so that we get 2 · 14 + 1 · 12 + 1 · 10 + 3 · 9 + 1 · 7 + 2 · 5 + 4 · 4 + 1 · 3 + 2 · 2 + 2 · 0 = 117.
This technique generalizes immediately to colored compositions with a fixed number c of colors 0, 1, . . . , c− 1: the weight of

the rightmost cell is its color and the weight of a part is equal to the sum of the weight of the next part and the unique representative
of the difference of the colors of those parts modulo c belonging to the interval [1, c].
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6.2 Generators and Hilbert series
For n ≥ 0, let

S±n = Sn(A)± Sn(Ā) , (53)

and denote byHn the subalgebra of MR generated by the S±k for k ≤ n. For n ≥ 0, we have

(S±n )] ≡ (1∓ qn)S±n mod Hn−1 , (54)

so that the (S±n )] such that 1∓ qn 6= 0 form a set of free generators in MR].

Conjecture 6.1 If r is odd, a basis of MR] will be parametrized by colored compositions such that parts
of color 0 are not ≡ 0 mod r and parts of color 1 are arbitrary. The Hilbert series is then

Hr(t) =
1− tr

1− 2(t+ t2 + · · ·+ tr)
. (55)

If r is even, there is the extra condition that parts of color 1 are not ≡ r/2 mod r. The Hilbert series is
then

Hr(t) =
1− tr

1− 2(t+ t2 + · · ·+ tr) + tr/2
. (56)

For example,
H2(t) = 1 + t+ 2 t2 + 4 t3 + 8 t4 + 16 t5 + 32 t6 + 64 t7 + 128 t8 +O

`
t9
´

(57)

H3(t) = 1 + 2 t+ 6 t2 + 17 t3 + 50 t4 + 146 t5 + 426 t6 + 1244 t7 + 3632 t8 +O
`
t9
´

(58)

H4(t) = 1 + 2 t+ 5 t2 + 14 t3 + 38 t4 + 104 t5 + 284 t6 + 776 t7 + 2120 t8 +O
`
t9
´

(59)

If these conjectures are correct, the Hilbert series of the right MR]-modules generated by the Sn are
respectively

1
1− 2(t+ t2 + . . .+ tr)

, (60)

or
1

1− 2(t+ t2 + . . .+ tr) + tr/2
. (61)

according to whether r is odd or even.

The cases r = 1 and r = 2 are easily proved as follows. Assume first that q = 1. Set

f = 1 + (σ+
1 )] = (σ1 + λ−1)(A− Ā) , (62)

g = (σ−1 )] − 1 = (σ1 − λ−1)(A− Ā) . (63)

Then, f2 = g2 + 4, so that

f = 2

„
1 +

1

4
g2
« 1

2
(64)

which proves that the (S+
n )] can be expressed in terms of the (S−m)].

Similarly, for q = −1, one can express
f =

X
n≥1

(S+
2n)] +

X
n≥0

(S−2n+1)] (65)
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in terms of
g =

X
n≥1

(S−2n)] +
X
n≥0

(S+
2n+1)] (66)

since, as is easily verified,

(f + 2)2 = g2 + 4 , i .e., f = −2 + 2

„
1 +

1

4
g2
« 1

2
. (67)

Apparently, this approach does not work anymore for higher roots of unity.

7 Appendix: monomial expansion of the (1− q)-kernel
The results of [16, 7] allow us to write down a new expansion of Sn((1− q)A), in terms of the monomial
basis of [4]. The special case q = 1 gives back a curious expression of Dynkin’s idempotent, first obtained
in [3].

Let σ be a permutation. We then define its left-right minima set LR(σ) as the values of σ that have
no smaller value to their left. We will denote by lr(σ) the cardinality of LR(σ). For example, with
σ = 46735182, we have LR(σ) = {4, 3, 1}, and lr(σ) = 3.

Let us now decompose Sn((1− q)A) on the monomial basis Mσ (see [4]) of FQSym. Thanks to the
Cauchy formula of FQSym [7], we have

Sn((1− q)A) =
∑
σ

Sσ(1− q)Mσ(A), (68)

where S is the dual basis of M. Given the transition matrix between M and G, we see that

Sσ =
∑
τ≤σ−1

Fτ , (69)

where≤ is the right weak order, e.g., S312 = F123+F213+F231. Thanks to [16], we know that Fσ(1−q)
is either (−q)k if Des(σ) = {1, . . . , k} or 0 otherwise. Let us define hook permutations of hook k the
permutations σ such that Des(σ) = {1, . . . , k}. Now, Sσ(1 − q) amounts to compute the list of hook
permutations smaller than σ. Note that hook permutations are completely characterized by their left-right
minima. Moreover, if τ is smaller than σ in the right weak order, then LR(τ) ⊂ LR(σ).

Hence all hook permutations smaller than a given permutation σ belong to the set of hook permutations
with left-right minima in LR(σ). Since by elementary transpositions decreasing the length, one can get
from σ to the hook permutation with the same left-right minima and then from this permutation to all the
others, we have:

Theorem 7.1 Let n be an integer. Then

Sn((1− q)A) =
∑
σ∈Sn

(1− q)lr(σ)Mσ. (70)

In the particular case q = 1, we recover a result of [3]:

Ψn =
∑
σ∈Sn
σ(1)=1

Mσ, (71)

where Ψn is the noncommutative power sum associated with Dynkin’s idempotent [11, Prop. 5.2].
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