Unital versions of the higher order peak algebras

Marcelo Aguiar¹[†], Jean-Christophe Novelli² and Jean-Yves Thibon²[‡]

¹ Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

² Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée, 77454 Marne-la-Vallée cedex 2, France

Abstract. We construct unital extensions of the higher order peak algebras defined by Krob and the third author in [Ann. Comb. 9 (2005), 411–430], and show that they can be obtained as homomorphic images of certain subalgebras of the Mantaci-Reutenauer algebras of type B. This generalizes a result of Bergeron, Nyman and the first author [Trans. AMS 356 (2004), 2781–2824].

Résumé. Nous construisons des extensions unitaires des algèbres de pics d'ordre supérieur définies par Krob et le troisième auteur dans [Ann. Comb. 9 (2005), 411–430], et nous montrons qu'elles peuvent être obtenues comme images homomorphes de certaines sous-algèbres des algèbres de Mantaci-Reutenauer de type *B*. Ceci généralise un résultat dû à Bergeron, Nyman et au premier auteur [Trans. AMS 356 (2004), 2781–2824].

Keywords: Descent algebras, Noncommutative symmetric functions, Peak algebras

1 Introduction

A descent of a permutation $\sigma \in \mathfrak{S}_n$ is an index *i* such that $\sigma(i) > \sigma(i+1)$. A descent is a peak if moreover i > 1 and $\sigma(i) > \sigma(i-1)$. The sums of permutations with a given descent set span a subalgebra of the group algebra, the descent algebra Σ_n . The peak algebra $\mathring{\mathcal{P}}_n$ of \mathfrak{S}_n is a subalgebra of its descent algebra, spanned by sums of permutations having the same peak set. This algebra has no unit. Descent algebras can be defined for all finite Coxeter groups [19]. In [2], it is shown that the peak algebra of \mathfrak{S}_n can be naturally extended to a unital algebra, which is obtained as a homomorphic image of the descent algebra of the hyperoctahedral group B_n .

The direct sum of the peak algebras turns out to be a Hopf subalgebra of the direct sum of all descent algebras, which can itself be identified with **Sym**, the Hopf algebra of noncommutative symmetric functions [9]. As explained in [5], it turns out that a fair amount of results on the peak algebras can be deduced from the case q = -1 of a q-identity of [11]. Specializing q to other roots of unity, Krob and the third author introduced and studied *higher order peak algebras* in [12]. Again, these are non-unital, and it is natural to ask whether the construction of [2] can be extended to this case.

[†]Partially supported by NSF grant DMS-0600973.

[‡]Partially supported by ANR grant 06-BLAN-0380.

^{1365-8050 © 2009} Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

We will show that this is indeed possible. We first construct the unital versions of the higher order peak algebras by a simple manipulation of generating series. We then show that they can be obtained as homomorphic images of the *Mantaci-Reutenauer algebras* of type *B*. Hence no Coxeter groups other than B_n and \mathfrak{S}_n are involved in the process; in fact, the construction is related to the notion of superization, as defined in [16], rather than to root systems or wreath products.

2 Notations and background

2.1 Noncommutative symmetric functions

We will assume familiarity with the notations of [9] and with the main results of [12]. We recall a few definitions for the convenience of the reader.

The Hopf algebra of noncommutative symmetric functions is denoted by \mathbf{Sym}_n or by $\mathbf{Sym}(A)$ if we consider the realization in terms of an auxiliary alphabet A. Linear bases of \mathbf{Sym}_n are labelled by compositions $I = (i_1, \ldots, i_r)$ of n (we write $I \models n$). The noncommutative complete and elementary functions are denoted by S_n and Λ_n , and $S^I = S_{i_1} \cdots S_{i_r}$. The ribbon basis is denoted by R_I . The *descent set* of I is $\text{Des}(I) = \{i_1, i_1 + i_2, \ldots, i_1 + \cdots + i_{r-1}\}$. The *descent composition* of a permutation $\sigma \in \mathfrak{S}_n$ is the composition $I = D(\sigma)$ of n whose descent set is the descent set of σ .

Recall from [8] that for an infinite totally ordered alphabet A, $\mathbf{FQSym}(A)$ is the subalgebra of $\mathbb{C}\langle A \rangle$ spanned by the polynomials

$$\mathbf{G}_{\sigma}(A) = \sum_{\mathrm{std}(w)=\sigma} w,\tag{1}$$

that is, the sum of all words in A^n whose standardization is the permutation $\sigma \in \mathfrak{S}_n$. The noncommutative ribbon Schur function $R_I \in \mathbf{Sym}$ is then

$$R_I = \sum_{\mathcal{D}(\sigma)=I} \mathbf{G}_{\sigma} \,. \tag{2}$$

This defines a Hopf embedding Sym \rightarrow FQSym. The Hopf algebra FQSym is self-dual under the pairing $(\mathbf{G}_{\sigma}, \mathbf{G}_{\tau}) = \delta_{\sigma,\tau^{-1}}$ (Kronecker symbol). Let $\mathbf{F}_{\sigma} := \mathbf{G}_{\sigma^{-1}}$, so that $\{\mathbf{F}_{\sigma}\}$ is the dual basis of $\{\mathbf{G}_{\sigma}\}$. The *internal product* * of FQSym is induced by composition \circ in \mathfrak{S}_n in the basis F, that is,

$$\mathbf{F}_{\sigma} * \mathbf{F}_{\tau} = \mathbf{F}_{\sigma \circ \tau} \quad \text{and} \quad \mathbf{G}_{\sigma} * \mathbf{G}_{\tau} = \mathbf{G}_{\tau \circ \sigma} \,. \tag{3}$$

Each subspace \mathbf{Sym}_n is stable under this operation, and anti-isomorphic to the descent algebra Σ_n of \mathfrak{S}_n . For $f_i \in \mathbf{FQSym}$ and $g \in \mathbf{Sym}$, we have the splitting formula

$$(f_1 \dots f_r) * g = \mu_r \cdot (f_1 \otimes \dots \otimes f_r) *_r \Delta^r g, \qquad (4)$$

where μ_r is r-fold multiplication, and Δ^r the iterated coproduct with values in the r-th tensor power.

2.2 The Mantaci-Reutenauer algebra of level 2

We denote by MR the free product Sym \star Sym of two copies of the Hopf algebra of noncommutative symmetric functions [14]. That is, MR is the free associative algebra on two sequences (S_n) and $(S_{\bar{n}})$ $(n \geq 1)$. We regard the two copies of Sym as noncommutative symmetric functions on two auxiliary

alphabets: $S_n = S_n(A)$ and $S_{\bar{n}} = S_n(\bar{A})$. We denote by $F \mapsto \bar{F}$ the involutive automorphism which exchanges S_n and $S_{\bar{n}}$. The bialgebra structure is defined by the requirement that the series

$$\sigma_1 = \sum_{n \ge 0} S_n \text{ and } \bar{\sigma}_1 = \sum_{n \ge 0} S_{\bar{n}}$$
(5)

are grouplike. The internal product of **MR** can be computed from the splitting formula and the conditions that σ_1 is neutral, $\bar{\sigma}_1$ is central, and $\bar{\sigma}_1 * \bar{\sigma}_1 = \sigma_1$.

In [15], an embedding of **MR** in the Hopf algebra **BFQSym** of free quasi-symmetric functions of type *B* (spanned by colored permutations) is described. Under this embedding, left *-multiplication by $\Lambda_n = \mathbf{G}_{n n-1...2,1}$ corresponds to right multiplication by n n - 1...2, 1 in the group algebra of B_n . This implies that left *-multiplication by λ_1 is an involutive anti-automorphism of **BFQSym**, hence of **MR**.

2.3 Noncommutative symmetric functions of type B

The hyperoctahedral analogue **BSym** of **Sym**, defined in [6], is the right **Sym**-module freely generated by another sequence (\tilde{S}_n) $(n \ge 0, \tilde{S}_0 = 1)$ of homogeneous elements, with $\tilde{\sigma}_1$ grouplike. This is a coalgebra, but not an algebra. It is endowed with an internal product, for which each homogeneous component **BSym**_n is anti-isomorphic to the descent algebra of B_n .

3 Solomon descent algebras of type B

3.1 Descents in B_n

The hyperoctahedral group B_n is the group of signed permutations. A signed permutation can be denoted by $w = (\sigma, \epsilon)$ where σ is an ordinary permutation and $\epsilon \in \{\pm 1\}^n$, such that $w(i) = \epsilon_i \sigma(i)$. If we set w(0) = 0, then, $i \in [0, n-1]$ is a descent of w if w(i) > w(i+1). Hence, the descent set of w is a subset $D = \{i_0, i_0 + i_1, \dots, i_0 + i_1 + \dots + i_{r-1}\}$ of [0, n-1]. We then associate to D a so-called type-B composition (a composition whose first part can be zero) $(i_0 - 0, i_1, \dots, i_{r-1}, n - i_{r-1})$. The sum of all signed permutations whose descent set is contained in D is mapped to $\tilde{S}^I := \tilde{S}_{i_0} S^{I'}$ by Chow's anti-isomorphism [6], where $I' = (i_1, \dots, i_r)$.

3.2 Noncommutative supersymmetric functions

An embedding of **BSym** as a sub-coalgebra and sub-**Sym**-module of **MR** can be deduced from [14]. To describe it, let us define, for $F \in$ **Sym**(A),

$$F^{\sharp} = F(A|\bar{A}) = F(A - q\bar{A})|_{q=-1}$$
(6)

(the supersymmetric version of F). The superization of $F \in \mathbf{Sym}(A)$ can also be given by

$$F^{\sharp} = F * \sigma_1^{\sharp} \,. \tag{7}$$

Indeed, σ_1^{\sharp} is grouplike, and for $F = S^I$, the splitting formula gives

$$(S_{i_1}\cdots S_{i_r})*\sigma_1^{\sharp} = \mu_r[(S_{i_1}\otimes\cdots\otimes S_{i_r})*(\sigma_1^{\sharp}\otimes\cdots\otimes \sigma_1^{\sharp})] = S^{I\sharp}.$$
(8)

We have

$$\sigma_1^{\sharp} = \bar{\lambda}_1 \sigma_1 = \sum \Lambda_{\bar{i}} S_j \,. \tag{9}$$

The element $\bar{\sigma}_1$ is central for the internal product, and

$$\bar{\sigma}_1 * F = \bar{F} = F * \bar{\sigma}_1. \tag{10}$$

Hence,

$$\bar{\sigma}_1 * \sigma_1^{\sharp} = \lambda_1 \bar{\sigma}_1 =: \sigma_1^{\flat} . \tag{11}$$

The basis element \tilde{S}^I of **BSym**, where $I = (i_0, i_1, \dots, i_r)$ is a type *B*-composition, can be embedded as

$$\tilde{S}^{I} = S_{i_0}(A)S^{i_1i_2\cdots i_r}(A|\bar{A}).$$
(12)

We will identify BSym with its image under this embedding.

3.3 A proof that BSym is *-stable

We are now in a position to understand why **BSym** is a *-subalgebra of **MR**. The argument will be extended below to the case of unital peak algebras. Let $F, G \in$ **Sym**. We want to understand why $\sigma_1 F^{\sharp} * \sigma_1 G^{\sharp}$ is in **BSym**. Using the splitting formula, we rewrite this as

$$\mu[(\sigma_1 \otimes F^{\sharp}) * \Delta \sigma_1 \Delta G^{\sharp}] = \sum_{(G)} (\sigma_1 G^{\sharp}_{(1)}) (F^{\sharp} * \sigma_1 G^{\sharp}_{(2)}).$$
(13)

We now only have to show that each term $F^{\sharp} * \sigma_1 G_{(2)}^{\sharp}$ is in \mathbf{Sym}^{\sharp} . We may assume that $F = S^I$, and for any $G \in \mathbf{Sym}$,

$$S^{I\sharp} * \sigma_1 G^{\sharp} = \sum_{(G)} \mu_r [(S_{i_1}^{\sharp} \otimes \dots \otimes S_{i_r}^{\sharp}) * (\sigma_1 G_{(1)}^{\sharp} \otimes \dots \otimes \sigma_1 G_{(r)}^{\sharp})]$$
(14)

so that it is sufficient to prove the property for $F = S_n$. Now,

$$\sigma_{1}^{\sharp} * \sigma_{1} G^{\sharp} = (\bar{\lambda}_{1} \sigma_{1}) * \sigma_{1} G^{\sharp}$$

$$= \sum_{(G)} (\bar{\lambda}_{1} * \sigma_{1} G^{\sharp}_{(1)}) (\sigma_{1} G^{\sharp}_{(2)})$$

$$= \sum_{(G)} (\bar{\sigma}_{1} * \lambda_{1} * \sigma_{1} G^{\sharp}_{(1)}) \cdot \sigma_{1} \cdot G^{\sharp}_{(2)}$$
(15)

Now,

$$\lambda_{1} * \sigma_{1} G_{(1)}^{\sharp} = (\lambda_{1} * G_{(1)}^{\sharp})(\lambda_{1} * \sigma_{1}) = (\lambda_{1} * G_{(1)}^{\sharp})\lambda_{1},$$
(16)

since λ_1 is an anti-automorphism. We then get

$$\sigma_{1}^{\sharp} * \sigma_{1} G^{\sharp} = \sum_{(G)} (\bar{\sigma}_{1} * ((\lambda_{1} * G_{(1)}^{\sharp})\lambda_{1}) \cdot \sigma_{1} \cdot G_{(2)}^{\sharp})$$

$$= \sum_{(G)} (\bar{\sigma}_{1} * \lambda_{1} * G_{(1)}^{\sharp}) \cdot (\bar{\sigma}_{1} * \lambda_{1})\sigma_{1} \cdot G_{(2)}^{\sharp}$$

$$= \sum_{(G)} (\bar{\lambda}_{1} * G_{(1)}^{\sharp}) \cdot \sigma_{1}^{\sharp} \cdot G_{(2)}^{\sharp}$$
(17)

Now, the result will follow if we can prove that $\overline{\lambda}_1 * G^{\sharp}$ is in \mathbf{Sym}^{\sharp} for any $G \in \mathbf{Sym}$. For $G = S^I$,

$$\bar{\lambda}_1 * S^{I\sharp} = \lambda_1 * \bar{\sigma}_1 * S^I * \sigma_1^{\sharp} = \lambda_1 * S^I * \bar{\sigma}_1 * \sigma_1^{\sharp} = \lambda_1 * S^I * \sigma_1^{\flat}.$$
⁽¹⁸⁾

Since left *-multiplication by λ_1 in an anti-automorphism, we only need to prove that $\lambda_1 * S_n^{\flat}$ is of the form G^{\sharp} . And indeed,

$$\lambda_1 * S_n^{\flat} = \sum_{i+j=n} \lambda_1 * (\Lambda_i S_{\bar{j}})$$

=
$$\sum_{i+j=n} (\lambda_1 * S_{\bar{j}}) (\lambda_1 * \Lambda_i)$$

=
$$\sum_{i+j=n} \Lambda_{\bar{j}} S_i = S_n^{\sharp}.$$
 (19)

This concludes the proof that **BSym** is a *-subalgebra of **BFQSym**.

4 Unital versions of the higher order peak algebras

As shown in [5], much of the theory of the peak algebra can be deduced from a formula of [11] for $R_I((1-q)A)$, in the special case q = -1. In [12], this formula was studied in the case where q is an arbitrary root of unity, and higher order analogs of the peak algebra were obtained. In [2], it was shown that the classical peak algebra can be extended to a unital algebra, which is obtained as a homomorphic image of the descent algebra of type B. In this section, we construct unital extensions of the higher order peak algebras.

Let q be a primitive r-th root of unity. All objects introduced below will depend on q (and r), although this dependence will not be made explicit in the notation. We denote by θ_q the endomorphism of **Sym** defined by

$$\tilde{f} = \theta_q(f) = f((1-q)A) = f(A) * \sigma_1((1-q)A).$$
(20)

We denote by $\mathring{\mathcal{P}}$ the image of θ_q and by \mathcal{P} the right $\mathring{\mathcal{P}}$ -module generated by the S_n for $n \ge 0$. Note that $\mathring{\mathcal{P}}$ is by definition a left *-ideal of **Sym**.

Theorem 4.1 \mathcal{P} is a unital *-subalgebra of Sym. Its Hilbert series is

$$\sum_{n \ge 0} \dim \mathcal{P}_n t^n = \frac{1}{1 - t - t^2 - \dots - t^r} \,. \tag{21}$$

Proof – Since the internal product of homogeneous elements of different degrees is zero, it is enough to show that, for any $f, g \in \mathbf{Sym}, \sigma_1 \tilde{f} * \sigma_1 \tilde{g}$ is in \mathcal{P} . Thanks to the splitting formula,

$$\sigma_1 \tilde{f} * \sigma_1 \tilde{g} = \mu[(\sigma_1 \otimes \tilde{f}) * \sum_{(g)} \sigma_1 \tilde{g}_{(1)} \otimes \sigma_1 \tilde{g}_{(2)}]$$

$$= \sum_{(g)} (\sigma_1 \tilde{g}_{(1)}) (\tilde{f} * \sigma_1 \tilde{g}_{(2)}).$$
(22)

Thus, it is enough to check that $\tilde{f} * \sigma_1 \tilde{h}$ is in $\mathring{\mathcal{P}}$ for any $f, h \in \mathbf{Sym}$. Now,

$$\tilde{f} * \sigma_1 \tilde{h} = f * \sigma_1 ((1-q)A) * \sigma_1 \tilde{h}, \qquad (23)$$

and since $\mathring{\mathcal{P}}$ is a **Sym** left *-ideal, we only have to show that $\sigma_1((1-q)A) * \sigma_1 \tilde{h}$ is in $\mathring{\mathcal{P}}$. One more splitting yields

$$\sigma_{1}((1-q)A) * \sigma_{1}\tilde{h} = (\lambda_{-q}\sigma_{1}) * \sigma_{1}\tilde{h}$$

$$= \mu[(\lambda_{-q} \otimes \sigma_{1}) * \sum_{(h)} \sigma_{1}\tilde{h}_{(1)} \otimes \sigma_{1}\tilde{h}_{(2)}]$$

$$= \sum_{(h)} (\lambda_{-q} * \sigma_{1}\tilde{h}_{(1)})(\sigma_{1}\tilde{h}_{(2)})$$

$$= \sum_{(h)} (\lambda_{-q} * \tilde{h}_{(1)})\lambda_{-q}\sigma_{1}\tilde{h}_{(2)}$$
(24)

(since left *-multiplication by λ_{-q} is an anti-automorphism, namely the composition of the antipode and q^{degree}). The first parentheses $(\lambda_{-q} * \tilde{h}_{(1)})$ are in $\mathring{\mathcal{P}}$ since it is a left *-ideal. The middle term is $\sigma_1((1-q)A)$, and the last one is in $\mathring{\mathcal{P}}$ by definition.

Recall from [12, Prop. 3.5] that the Hilbert series of $\tilde{\mathcal{P}}$ is

$$\sum_{n \ge 0} \dim \mathring{\mathcal{P}}_n t^n = \frac{1 - t^r}{1 - t - t^2 - \dots - t^r} \,. \tag{25}$$

From [12, Lemma 3.13 and Eq. (3.9)], it follows that $S_n \notin \mathring{\mathcal{P}}$ if and only if $n \equiv 0 \mod r$, so that the Hilbert series of \mathscr{P} is

$$\sum_{n \ge 0} \dim \mathcal{P}_n t^n = \frac{1}{1 - t - t^2 - \dots - t^r} \,. \tag{26}$$

5 Back to the Mantaci-Reutenauer algebra

The above proofs are in fact special cases of a master calculation in the Mantaci-Reutenauer algebra, which we carry out in this section.

Let q be an arbitrary complex number or an indeterminate, and define, for any $F \in \mathbf{MR}$,

$$F^{\sharp} = F * \sigma_1 (A - q\bar{A}) = F * \sigma_1^{\sharp}.$$
⁽²⁷⁾

Since σ_1^{\sharp} is grouplike, it follows from the splitting formula that

$$F \mapsto F^{\sharp} \tag{28}$$

is an automorphism of **MR** for the Hopf structure. In addition, it is clear from the definition that it is also a endomorphism of left *-modules. We refer to it as the \sharp *transform*.

We now define

$$\hat{\mathcal{Q}} = \mathbf{M}\mathbf{R}^{\sharp},\tag{29}$$

the image of the \sharp transform. Since the latter is an endomorphism of Hopf algebras and of left *-modules, \mathring{Q} is both a Hopf subalgebra of **MR** and a left *-ideal. When q is a root of unity, its image under the specialization $\overline{A} = A$ is the non-unital peak algebra $\mathring{\mathcal{P}}$ of Section 4 (and for generic q, it is **Sym**).

Let \mathcal{Q} be the right $\mathring{\mathcal{Q}}$ -module generated by the S_n , for all $n \ge 0$. Clearly, the identification $\overline{A} = A$ maps \mathcal{Q} onto \mathcal{P} , the unital peak algebra of Section 4.

Theorem 5.1 Q is a *-subalgebra of MR, containing \mathring{Q} as a left ideal.

Proof – Let $F, G \in \mathbf{MR}$. As above, we want to show that $\sigma_1 F^{\sharp} * \sigma_1 G^{\sharp}$ is in \mathcal{Q} . Using the splitting formula, we rewrite this as

$$\mu[(\sigma_1 \otimes F^{\sharp}) * \Delta \sigma_1 \Delta G^{\sharp}] = \sum_{(G)} (\sigma_1 G^{\sharp}_{(1)}) (F^{\sharp} * \sigma_1 G^{\sharp}_{(2)})$$
(30)

and we only have to show that each term $F^{\sharp} * \sigma_1 G^{\sharp}_{(2)}$ is in \mathcal{Q} . We may assume that $F = S^I$, where I is now a bicolored composition, and for any $G \in \mathbf{MR}$,

$$S^{I\sharp} * \sigma_1 G^{\sharp} = \sum_{(G)} \mu_r [(S_{i_1}^{\sharp} \otimes \dots \otimes S_{i_r}^{\sharp}) * (\sigma_1 G_{(1)}^{\sharp} \otimes \dots \otimes \sigma_1 G_{(r)}^{\sharp})]$$
(31)

so that it is sufficient to prove the property for $F = S_n$ or $S_{\bar{n}}$. Now,

$$\sigma_1^{\sharp} * \sigma_1 G^{\sharp} = (\bar{\lambda}_{-q} \sigma_1) * \sigma_1 G^{\sharp}$$

$$= \sum_{(G)} (\bar{\lambda}_{-q} 1 * \sigma_1 G^{\sharp}_{(1)}) (\sigma_1 G^{\sharp}_{(2)})$$

$$= \sum_{(G)} (\bar{\lambda}_{-q} * G^{\sharp}_{(1)}) \cdot \sigma_1^{\sharp} \cdot G^{\sharp}_{(2)}$$
(32)

which is in $\hat{\mathcal{Q}}$, since it is a subalgebra and a left *-ideal, and similarly,

$$\bar{\sigma}_{1}^{\sharp} * \sigma_{1} G^{\sharp} = (\lambda_{-q} \bar{\sigma}_{1}) * \sigma_{1} G^{\sharp}
= \sum_{(G)} (\lambda_{-q} * \sigma_{1} G^{\sharp}_{(1)}) (\bar{\sigma}_{1} \bar{G}^{\sharp}_{(2)})
= \sum_{(G)} (\lambda_{-q} * G^{\sharp}_{(1)}) \cdot \bar{\sigma}_{1}^{\sharp} \cdot \bar{G}^{\sharp}_{(2)}$$
(33)

is also in \mathcal{Q} .

The various algebras introduced in this paper and their interrelationships are summarized in the following diagram.

Note that in the special case q = -1, by the results of Section 3.3, Q_n is the (Solomon) descent algebra of B_n , Q is isomorphic to **BSym**, and \mathcal{P} is the unital peak algebra of [2].

6 Further developments

6.1 Inversion of the generic # transform

For generic q, the endomorphism (27) of **MR** is invertible; therefore

$$\hat{\mathcal{Q}} \sim \mathbf{MR}.$$
 (35)

The inverse endomorphism of MR arises from the transformation of alphabets

$$A \mapsto (q\bar{A} + A)/(1 - q^2),$$
 (36)

which is to be understood in the following sense:

$$\sigma_1\left(\frac{q\bar{A}+A}{1-q^2}\right) := \prod_{k\geq 0} \sigma_{q^{2k+1}}(\bar{A})\sigma_{q^{2k}}(A).$$
(37)

Indeed,

$$\sigma_{1}\left(\frac{q\bar{A}+A}{1-q^{2}}\right)*\sigma_{1}(A-q\bar{A}) = \prod_{k\geq 0} \sigma_{q^{2k+1}}(\bar{A}-qA)\sigma_{q^{2k}}(A-q\bar{A})$$
$$= \prod_{k\geq 0} \lambda_{-q^{2k+2}}(A)\sigma_{q^{2k+1}}(\bar{A})\lambda_{-q^{2k+1}}(\bar{A})\sigma_{q^{2k}}(A)$$
$$= \sigma_{1}(A).$$
(38)

By normalizing the term of degree n in (37), we obtain B_n -analogs of the q-Klyachko elements defined in [9]:

$$K_n(q; A, \bar{A}) := \prod_{i=1}^n (1 - q^{2i}) S_n\left(\frac{q\bar{A} + A}{1 - q^2}\right) = \sum_{I \models n} q^{2 \operatorname{maj}(I)} R_I(q\bar{A} + A).$$
(39)

This expression can be completely expanded on signed ribbons. From the expression of R_I in FQSym, we have

$$R_I(\bar{A} + A) = \sum_{C(\sigma)=I} \mathbf{G}_{\sigma}(\bar{A} + A)$$
(40)

where $\bar{A} + A$ is the ordinal sum. If we order \bar{A} by

$$\bar{a}_1 < \bar{a}_2 < \ldots < \bar{a}_k < \ldots \tag{41}$$

then, arguing as in [16], we have

$$\mathbf{G}_{\sigma}(\bar{A}+A) = \sum_{\mathrm{std}(\tau,\epsilon)=\sigma} \mathbf{G}_{\tau,\epsilon}$$
(42)

so that

$$R_I(\bar{A}+A) = \sum_{\rho(\mathbf{J})=I} R_\mathbf{J} \tag{43}$$

where for a signed composition $J = (J, \epsilon)$, the unsigned composition $\rho(J)$ is defined as the shape of $std(\sigma, \epsilon)$, where σ is any permutation of shape J.

Replacing \overline{A} by $q\overline{A}$, one obtains the expansion of the q-Klyachko elements of type B:

$$K_n(q; A, \bar{A}) = \sum_{\mathbf{J}} q^{\mathrm{bmaj}(\mathbf{J})} R_{\mathbf{J}}$$
(44)

where

$$\operatorname{bmaj}(J) = 2\operatorname{maj}(\rho(J)) + |\epsilon|, \qquad (45)$$

where $|\epsilon|$ is the number of minus signs in ϵ .

For example,

$$K_2(q) = R_2 + q^2 R_{\overline{2}} + q^2 R_{11} + q^3 R_{1\overline{1}} + q R_{\overline{1}1} + q^4 R_{\overline{1}1}.$$
(46)

$$K_{3}(q) = R_{3} + q^{3} R_{\overline{3}} + q^{4} R_{21} + q^{5} R_{2\overline{1}} + q^{2} R_{\overline{21}} + q^{7} R_{\overline{21}} + q^{2} R_{12} + q^{4} R_{1\overline{2}} + q R_{\overline{12}} + q^{5} R_{\overline{12}} + q^{6} R_{111} + q^{7} R_{11\overline{1}} + q^{3} R_{1\overline{11}} + q^{8} R_{1\overline{11}} + q^{5} R_{111} + q^{6} R_{111} + q^{7} R_{11\overline{1}} + q^{9} R_{1\overline{11}}$$

$$(47)$$

$$+ q \quad \kappa_{\overline{1}11} + q \quad \kappa_{\overline{1}1\overline{1}} + q \quad \kappa_{\overline{1}\overline{1}1} + q \quad \kappa_{\overline{1}\overline{1}1}$$

This major index of type B is the flag major index defined in [1].

Following [1] and considering the signed composition (where ϵ is encoded as boolean vector for readability)

$$\mathbf{J} = (2, 1, 1, 3, 1, 2, 4, 1, 2, 2) = (2113124122, 00001111110000100000)$$
(48)

we can take the smallest permutation of shape
$$(2, 1, 1, 3, 1, 2, 4, 1, 2, 2)$$
, which is

$$\alpha = 15432698711101213161514181719$$
⁽⁴⁹⁾

sign it according to ϵ , which yields

$$1543\overline{2}\overline{6}\overline{9}\overline{8}\overline{7}\overline{11}10121316\overline{15}14181719$$
(50)

whose standardized is

and has shape $\rho(J) = (2, 1, 1, 3, 1, 6, 3, 2)$. The major index of $\rho(J)$ is 55, the number of minus signs in ϵ is 7, so $bmaj(J) = 2 \times 55 + 7 = 117$.

 $8\,11\,10\,9\,1\,2\,5\,4\,3\,6\,12\,13\,14\,16\,7\,15\,18\,17\,19$

The major index of type B can be read directly on signed compositions without reference to signed permutations as follows: one can get $\rho(J)$ by first adding the absolute values of two consecutive parts if the left one is signed and the second one is not, then remove the signs and proceed as before.

A different solution consists in reading the composition from right to left, then associate weight 0 (resp. 1) to the rightmost part if it is positive (resp. negative) and then proceed left by adding 2 to the weight if the two parts are of the same sign and 1 if not. Finally, add up the product of the absolute values of the parts with their weight.

For example, with the same J as above we have the following weights:

$$J = (2, 1, 1, \overline{3}, \overline{1}, \overline{2}, 4, \overline{1}, 2, 2)$$

weights :14 12 10 9 7 5 4 3 2 0 (52)

so that we get $2 \cdot 14 + 1 \cdot 12 + 1 \cdot 10 + 3 \cdot 9 + 1 \cdot 7 + 2 \cdot 5 + 4 \cdot 4 + 1 \cdot 3 + 2 \cdot 2 + 2 \cdot 0 = 117$.

This technique generalizes immediately to colored compositions with a fixed number c of colors $0, 1, \ldots, c-1$: the weight of the rightmost cell is its color and the weight of a part is equal to the sum of the weight of the next part and the unique representative of the difference of the colors of those parts modulo c belonging to the interval [1, c].

(51)

6.2 Generators and Hilbert series

For $n \ge 0$, let

$$S_n^{\pm} = S_n(A) \pm S_n(\bar{A}), \qquad (53)$$

and denote by \mathcal{H}_n the subalgebra of **MR** generated by the S_k^{\pm} for $k \leq n$. For $n \geq 0$, we have

$$(S_n^{\pm})^{\sharp} \equiv (1 \mp q^n) S_n^{\pm} \mod \mathcal{H}_{n-1},$$
(54)

so that the $(S_n^{\pm})^{\sharp}$ such that $1 \mp q^n \neq 0$ form a set of free generators in \mathbf{MR}^{\sharp} .

Conjecture 6.1 If r is odd, a basis of \mathbf{MR}^{\sharp} will be parametrized by colored compositions such that parts of color 0 are not $\equiv 0 \mod r$ and parts of color 1 are arbitrary. The Hilbert series is then

$$H_r(t) = \frac{1 - t^r}{1 - 2(t + t^2 + \dots + t^r)}.$$
(55)

If r is even, there is the extra condition that parts of color 1 are not $\equiv r/2 \mod r$. The Hilbert series is then

$$H_r(t) = \frac{1 - t'}{1 - 2(t + t^2 + \dots + t^r) + t^{r/2}}.$$
(56)

For example,

$$H_2(t) = 1 + t + 2t^2 + 4t^3 + 8t^4 + 16t^5 + 32t^6 + 64t^7 + 128t^8 + O(t^9)$$
(57)

$$H_3(t) = 1 + 2t + 6t^2 + 17t^3 + 50t^4 + 146t^5 + 426t^6 + 1244t^7 + 3632t^8 + O(t^9)$$
(58)

$$H_4(t) = 1 + 2t + 5t^2 + 14t^3 + 38t^4 + 104t^5 + 284t^6 + 776t^7 + 2120t^8 + O(t^9)$$
(59)

If these conjectures are correct, the Hilbert series of the right \mathbf{MR}^{\sharp} -modules generated by the S_n are respectively

$$\frac{1}{1 - 2(t + t^2 + \ldots + t^r)},$$
(60)

or

$$\frac{1}{1 - 2(t + t^2 + \ldots + t^r) + t^{r/2}}.$$
(61)

according to whether r is odd or even.

The cases
$$r = 1$$
 and $r = 2$ are easily proved as follows. Assume first that $q = 1$. Set

$$f = 1 + (\sigma_1^+)^{\sharp} = (\sigma_1 + \lambda_{-1})(A - \bar{A}), \qquad (62)$$

$$g = (\sigma_1^{-})^{\sharp} - 1 = (\sigma_1 - \lambda_{-1})(A - \bar{A}).$$
(63)

Then, $f^2 = g^2 + 4$, so that

$$f = 2\left(1 + \frac{1}{4}g^2\right)^{\frac{1}{2}}$$
(64)

which proves that the $(S_n^+)^{\sharp}$ can be expressed in terms of the $(S_m^-)^{\sharp}$.

Similarly, for q = -1, one can express

$$f = \sum_{n \ge 1} (S_{2n}^+)^{\sharp} + \sum_{n \ge 0} (S_{2n+1}^-)^{\sharp}$$
(65)

in terms of

$$g = \sum_{n \ge 1} (S_{2n}^{-})^{\sharp} + \sum_{n \ge 0} (S_{2n+1}^{+})^{\sharp}$$
(66)

since, as is easily verified,

$$(f+2)^2 = g^2 + 4, \ i.e., \ f = -2 + 2\left(1 + \frac{1}{4}g^2\right)^{\frac{1}{2}}.$$
(67)

Apparently, this approach does not work anymore for higher roots of unity.

7 Appendix: monomial expansion of the (1 - q)-kernel

The results of [16, 7] allow us to write down a new expansion of $S_n((1-q)A)$, in terms of the monomial basis of [4]. The special case q = 1 gives back a curious expression of Dynkin's idempotent, first obtained in [3].

Let σ be a permutation. We then define its *left-right minima* set LR(σ) as the values of σ that have no smaller value to their left. We will denote by $lr(\sigma)$ the cardinality of LR(σ). For example, with $\sigma = 46735182$, we have LR(σ) = {4,3,1}, and $lr(\sigma) = 3$.

Let us now decompose $S_n((1-q)A)$ on the monomial basis \mathbf{M}_{σ} (see [4]) of **FQSym**. Thanks to the Cauchy formula of **FQSym** [7], we have

$$S_n((1-q)A) = \sum_{\sigma} \mathbf{S}^{\sigma}(1-q)\mathbf{M}_{\sigma}(A),$$
(68)

where S is the dual basis of M. Given the transition matrix between M and G, we see that

$$\mathbf{S}^{\sigma} = \sum_{\tau \le \sigma^{-1}} \mathbf{F}_{\tau},\tag{69}$$

where \leq is the right weak order, e.g., $\mathbf{S}^{312} = \mathbf{F}_{123} + \mathbf{F}_{213} + \mathbf{F}_{231}$. Thanks to [16], we know that $\mathbf{F}_{\sigma}(1-q)$ is either $(-q)^k$ if $\text{Des}(\sigma) = \{1, \ldots, k\}$ or 0 otherwise. Let us define *hook permutations* of hook k the permutations σ such that $\text{Des}(\sigma) = \{1, \ldots, k\}$. Now, $\mathbf{S}^{\sigma}(1-q)$ amounts to compute the list of *hook permutations* smaller than σ . Note that hook permutations are completely characterized by their left-right minima. Moreover, if τ is smaller than σ in the right weak order, then $\text{LR}(\tau) \subset \text{LR}(\sigma)$.

Hence all hook permutations smaller than a given permutation σ belong to the set of hook permutations with left-right minima in LR(σ). Since by elementary transpositions decreasing the length, one can get from σ to the hook permutation with the same left-right minima and then from this permutation to all the others, we have:

Theorem 7.1 Let n be an integer. Then

$$S_n((1-q)A) = \sum_{\sigma \in \mathfrak{S}_n} (1-q)^{\operatorname{lr}(\sigma)} \mathbf{M}_{\sigma}.$$
(70)

In the particular case q = 1, we recover a result of [3]:

$$\Psi_n = \sum_{\substack{\sigma \in \mathfrak{S}_n \\ \sigma(1)=1}} \mathbf{M}_{\sigma},\tag{71}$$

where Ψ_n is the noncommutative power sum associated with Dynkin's idempotent [11, Prop. 5.2].

Acknowledgements

This work started during a stay of the first author at the University Paris-Est Marne-la-Vallée. The authors would also like to thank the contributors of the MuPAD project, and especially those of the combinat package, for providing the development environment for their research (see [10] for an introduction to MuPAD-Combinat).

References

- [1] R. ADIN and Y. ROICHMAN, *The flag major index and group actions on polynomial rings*, Europ. J. Combin, **22** (2001), 431–446.
- [2] M. AGUIAR, N. BERGERON, and K. NYMAN, *The peak algebra and the descent algebra of type B and D*, Trans. of the AMS. 356 (2004), 2781–2824.
- [3] M. AGUIAR and M. LIVERNET, The associative operad and the weak order on the symmetric group, J. Homotopy and Related Structures, 2 n.1 (2007), 57–84.
- [4] M. AGUIAR and F. SOTTILE, *Structure of the Malvenuto-Reutenauer Hopf algebra of permutations*, Adv. in Math. **191** (2005), 225–275.
- [5] N. BERGERON, F. HIVERT and J.-Y. THIBON, *The peak algebra and the Hecke-Clifford algebras at* q = 0, J. Combinatorial Theory A **117** (2004), 1–19.
- [6] C.-O. CHOW, Noncommutative symmetric functions of type B, Thesis, MIT, 2001.
- [7] G. DUCHAMP, F. HIVERT, J.-C. NOVELLI, and J.-Y. THIBON, Noncommutative Symmetric Functions VII: Free Quasi-Symmetric Functions Revisited, preprint, math.CO/0809.4479.
- [8] G. DUCHAMP, F. HIVERT, and J.-Y. THIBON, Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Internat. J. Alg. Comput. 12 (2002), 671–717.
- [9] I.M. GELFAND, D. KROB, A. LASCOUX, B. LECLERC, V. S. RETAKH, and J.-Y. THIBON, Noncommutative symmetric functions, Adv. in Math. 112 (1995), 218–348.
- [10] F. HIVERT and N. THIÉRY, MuPAD-Combinat, an open-source package for research in algebraic combinatorics, Sém. Lothar. Combin. 51 (2004), 70p. (electronic).
- [11] D. KROB, B. LECLERC, and J.-Y. THIBON, Noncommutative symmetric functions II: Transformations of alphabets, Internal J. Alg. Comput. 7 (1997), 181–264.
- [12] D. KROB and J.-Y. THIBON, Higher order peak algebras, Ann. Combin. 9 (2005), 411-430.
- [13] I.G. MACDONALD, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995.
- [14] R. MANTACI and C. REUTENAUER, A generalization of Solomon's descent algebra for hyperoctahedral groups and wreath products, Comm. Algebra 23 (1995), 27–56.
- [15] J.-C. NOVELLI and J.-Y. THIBON, Free quasi-symmetric functions of arbitrary level, preprint math.CO/0405597.
- [16] J.-C. NOVELLI and J.-Y. THIBON, Superization and (q, t)-specialization in combinatorial Hopf algebras, math.CO/0803.1816.
- [17] S. POIRIER, Cycle type and descent set in wreath products, Disc. Math., 180 (1998), 315–343.
- [18] C. REUTENAUER, Free Lie algebras, Oxford University Press, 1993.
- [19] L. SOLOMON, A Mackey formula in the group ring of a Coxeter group, J. Algebra, 41, (1976), 255-268.
- [20] R. P. STANLEY, Enumerative combinatorics, vol. 2, Cambridge University Press, 1999.