Unital versions of the higher order peak algebras

Marcelo Aguiar ${ }^{1 /[j}$ Jean-Christophe Novelli ${ }^{2}$ and Jean-Yves Thibon ${ }^{2}{ }^{4}$
${ }^{1}$ Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA
${ }^{2}$ Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée, 77454 Marne-la-Vallée cedex 2, France

Abstract

We construct unital extensions of the higher order peak algebras defined by Krob and the third author in [Ann. Comb. 9 (2005), 411-430], and show that they can be obtained as homomorphic images of certain subalgebras of the Mantaci-Reutenauer algebras of type B. This generalizes a result of Bergeron, Nyman and the first author [Trans. AMS 356 (2004), 2781-2824]. Résumé. Nous construisons des extensions unitaires des algèbres de pics d'ordre supérieur définies par Krob et le troisième auteur dans [Ann. Comb. 9 (2005), 411-430], et nous montrons qu'elles peuvent être obtenues comme images homomorphes de certaines sous-algèbres des algèbres de Mantaci-Reutenauer de type B. Ceci généralise un résultat dû à Bergeron, Nyman et au premier auteur [Trans. AMS 356 (2004), 2781-2824].

Keywords: Descent algebras, Noncommutative symmetric functions, Peak algebras

1 Introduction

A descent of a permutation $\sigma \in \mathfrak{S}_{n}$ is an index i such that $\sigma(i)>\sigma(i+1)$. A descent is a peak if moreover $i>1$ and $\sigma(i)>\sigma(i-1)$. The sums of permutations with a given descent set span a subalgebra of the group algebra, the descent algebra Σ_{n}. The peak algebra \mathcal{P}_{n} of \mathfrak{S}_{n} is a subalgebra of its descent algebra, spanned by sums of permutations having the same peak set. This algebra has no unit. Descent algebras can be defined for all finite Coxeter groups [19]. In [2], it is shown that the peak algebra of \mathfrak{S}_{n} can be naturally extended to a unital algebra, which is obtained as a homomorphic image of the descent algebra of the hyperoctahedral group B_{n}.

The direct sum of the peak algebras turns out to be a Hopf subalgebra of the direct sum of all descent algebras, which can itself be identified with Sym, the Hopf algebra of noncommutative symmetric functions [9]. As explained in [5], it turns out that a fair amount of results on the peak algebras can be deduced from the case $q=-1$ of a q-identity of [11]. Specializing q to other roots of unity, Krob and the third author introduced and studied higher order peak algebras in [12]. Again, these are non-unital, and it is natural to ask whether the construction of [2] can be extended to this case.

[^0]We will show that this is indeed possible. We first construct the unital versions of the higher order peak algebras by a simple manipulation of generating series. We then show that they can be obtained as homomorphic images of the Mantaci-Reutenauer algebras of type B. Hence no Coxeter groups other than B_{n} and \mathfrak{S}_{n} are involved in the process; in fact, the construction is related to the notion of superization, as defined in [16], rather than to root systems or wreath products.

2 Notations and background

2.1 Noncommutative symmetric functions

We will assume familiarity with the notations of [9] and with the main results of [12]. We recall a few definitions for the convenience of the reader.

The Hopf algebra of noncommutative symmetric functions is denoted by Sym, or by $\operatorname{Sym}(A)$ if we consider the realization in terms of an auxiliary alphabet A. Linear bases of $\mathbf{S y m}_{n}$ are labelled by compositions $I=\left(i_{1}, \ldots, i_{r}\right)$ of n (we write $I \vDash n$). The noncommutative complete and elementary functions are denoted by S_{n} and Λ_{n}, and $S^{I}=S_{i_{1}} \cdots S_{i_{r}}$. The ribbon basis is denoted by R_{I}. The descent set of I is $\operatorname{Des}(I)=\left\{i_{1}, i_{1}+i_{2}, \ldots, i_{1}+\cdots+i_{r-1}\right\}$. The descent composition of a permutation $\sigma \in \mathfrak{S}_{n}$ is the composition $I=D(\sigma)$ of n whose descent set is the descent set of σ.

Recall from [8] that for an infinite totally ordered alphabet $A, \operatorname{FQSym}(A)$ is the subalgebra of $\mathbb{C}\langle A\rangle$ spanned by the polynomials

$$
\begin{equation*}
\mathbf{G}_{\sigma}(A)=\sum_{\operatorname{std}(w)=\sigma} w \tag{1}
\end{equation*}
$$

that is, the sum of all words in A^{n} whose standardization is the permutation $\sigma \in \mathfrak{S}_{n}$. The noncommutative ribbon Schur function $R_{I} \in \mathbf{S y m}$ is then

$$
\begin{equation*}
R_{I}=\sum_{\mathrm{D}(\sigma)=I} \mathbf{G}_{\sigma} \tag{2}
\end{equation*}
$$

This defines a Hopf embedding Sym \rightarrow FQSym. The Hopf algebra FQSym is self-dual under the pairing $\left(\mathbf{G}_{\sigma}, \mathbf{G}_{\tau}\right)=\delta_{\sigma, \tau^{-1}}$ (Kronecker symbol). Let $\mathbf{F}_{\sigma}:=\mathbf{G}_{\sigma^{-1}}$, so that $\left\{\mathbf{F}_{\sigma}\right\}$ is the dual basis of $\left\{\mathbf{G}_{\sigma}\right\}$. The internal product $*$ of $\mathbf{F Q S y m}$ is induced by composition \circ in \mathfrak{S}_{n} in the basis \mathbf{F}, that is,

$$
\begin{equation*}
\mathbf{F}_{\sigma} * \mathbf{F}_{\tau}=\mathbf{F}_{\sigma \circ \tau} \quad \text { and } \quad \mathbf{G}_{\sigma} * \mathbf{G}_{\tau}=\mathbf{G}_{\tau \circ \sigma} \tag{3}
\end{equation*}
$$

Each subspace $\mathbf{S y m}_{n}$ is stable under this operation, and anti-isomorphic to the descent algebra Σ_{n} of \mathfrak{S}_{n}. For $f_{i} \in \mathbf{F Q S y m}$ and $g \in \mathbf{S y m}$, we have the splitting formula

$$
\begin{equation*}
\left(f_{1} \ldots f_{r}\right) * g=\mu_{r} \cdot\left(f_{1} \otimes \cdots \otimes f_{r}\right) *_{r} \Delta^{r} g \tag{4}
\end{equation*}
$$

where μ_{r} is r-fold multiplication, and Δ^{r} the iterated coproduct with values in the r-th tensor power.

2.2 The Mantaci-Reutenauer algebra of level 2

We denote by MR the free product $\mathbf{S y m} \star$ Sym of two copies of the Hopf algebra of noncommutative symmetric functions [14]. That is, MR is the free associative algebra on two sequences $\left(S_{n}\right)$ and $\left(S_{\bar{n}}\right)$ ($n \geq 1$). We regard the two copies of $\mathbf{S y m}$ as noncommutative symmetric functions on two auxiliary
alphabets: $S_{n}=S_{n}(A)$ and $S_{\bar{n}}=S_{n}(\bar{A})$. We denote by $F \mapsto \bar{F}$ the involutive automorphism which exchanges S_{n} and $S_{\bar{n}}$. The bialgebra structure is defined by the requirement that the series

$$
\begin{equation*}
\sigma_{1}=\sum_{n \geq 0} S_{n} \text { and } \bar{\sigma}_{1}=\sum_{n \geq 0} S_{\bar{n}} \tag{5}
\end{equation*}
$$

are grouplike. The internal product of MR can be computed from the splitting formula and the conditions that σ_{1} is neutral, $\bar{\sigma}_{1}$ is central, and $\bar{\sigma}_{1} * \bar{\sigma}_{1}=\sigma_{1}$.

In [15], an embedding of MR in the Hopf algebra BFQSym of free quasi-symmetric functions of type B (spanned by colored permutations) is described. Under this embedding, left $*$-multiplication by $\Lambda_{n}=\mathbf{G}_{n n-1 \ldots 2,1}$ corresponds to right multiplication by $n n-1 \ldots 2,1$ in the group algebra of B_{n}. This implies that left $*$-multiplication by λ_{1} is an involutive anti-automorphism of BFQSym, hence of MR.

2.3 Noncommutative symmetric functions of type B

The hyperoctahedral analogue BSym of Sym, defined in [6], is the right Sym-module freely generated by another sequence $\left(\tilde{S}_{n}\right)\left(n \geq 0, \tilde{S}_{0}=1\right)$ of homogeneous elements, with $\tilde{\sigma}_{1}$ grouplike. This is a coalgebra, but not an algebra. It is endowed with an internal product, for which each homogeneous component $\mathbf{B S y m}{ }_{n}$ is anti-isomorphic to the descent algebra of B_{n}.

3 Solomon descent algebras of type B

3.1 Descents in B_{n}

The hyperoctahedral group B_{n} is the group of signed permutations. A signed permutation can be denoted by $w=(\sigma, \epsilon)$ where σ is an ordinary permutation and $\epsilon \in\{ \pm 1\}^{n}$, such that $w(i)=\epsilon_{i} \sigma(i)$. If we set $w(0)=0$, then, $i \in[0, n-1]$ is a descent of w if $w(i)>w(i+1)$. Hence, the descent set of w is a subset $D=\left\{i_{0}, i_{0}+i_{1}, \ldots, i_{0}+i_{1}+\cdots i_{r-1}\right\}$ of $[0, n-1]$. We then associate to D a so-called type- B composition (a composition whose first part can be zero) $\left(i_{0}-0, i_{1}, \ldots, i_{r-1}, n-i_{r-1}\right)$. The sum of all signed permutations whose descent set is contained in D is mapped to $\tilde{S^{I}}:=\tilde{S}_{i_{0}} S^{I^{\prime}}$ by Chow's anti-isomorphism [6], where $I^{\prime}=\left(i_{1}, \ldots, i_{r}\right)$.

3.2 Noncommutative supersymmetric functions

An embedding of BSym as a sub-coalgebra and sub-Sym-module of MR can be deduced from [14]. To describe it, let us define, for $F \in \operatorname{Sym}(A)$,

$$
\begin{equation*}
F^{\sharp}=F(A \mid \bar{A})=\left.F(A-q \bar{A})\right|_{q=-1} \tag{6}
\end{equation*}
$$

(the supersymmetric version of F). The superization of $F \in \mathbf{S y m}(A)$ can also be given by

$$
\begin{equation*}
F^{\sharp}=F * \sigma_{1}^{\sharp} . \tag{7}
\end{equation*}
$$

Indeed, σ_{1}^{\sharp} is grouplike, and for $F=S^{I}$, the splitting formula gives

$$
\begin{equation*}
\left(S_{i_{1}} \cdots S_{i_{r}}\right) * \sigma_{1}^{\sharp}=\mu_{r}\left[\left(S_{i_{1}} \otimes \cdots \otimes S_{i_{r}}\right) *\left(\sigma_{1}^{\sharp} \otimes \cdots \otimes \sigma_{1}^{\sharp}\right)\right]=S^{I \sharp} \tag{8}
\end{equation*}
$$

We have

$$
\begin{equation*}
\sigma_{1}^{\sharp}=\bar{\lambda}_{1} \sigma_{1}=\sum \Lambda_{\bar{i}} S_{j} \tag{9}
\end{equation*}
$$

The element $\bar{\sigma}_{1}$ is central for the internal product, and

$$
\begin{equation*}
\bar{\sigma}_{1} * F=\bar{F}=F * \bar{\sigma}_{1} \tag{10}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\bar{\sigma}_{1} * \sigma_{1}^{\sharp}=\lambda_{1} \bar{\sigma}_{1}=: \sigma_{1}^{b} \tag{11}
\end{equation*}
$$

The basis element \tilde{S}^{I} of $\mathbf{B S y m}$, where $I=\left(i_{0}, i_{1}, \ldots, i_{r}\right)$ is a type B-composition, can be embedded as

$$
\begin{equation*}
\tilde{S}^{I}=S_{i_{0}}(A) S^{i_{1} i_{2} \cdots i_{r}}(A \mid \bar{A}) \tag{12}
\end{equation*}
$$

We will identify BSym with its image under this embedding.

3.3 A proof that BSym is *-stable

We are now in a position to understand why BSym is a $*$-subalgebra of MR. The argument will be extended below to the case of unital peak algebras. Let $F, G \in \mathbf{S y m}$. We want to understand why $\sigma_{1} F^{\sharp} * \sigma_{1} G^{\sharp}$ is in $\mathbf{B S y m}$. Using the splitting formula, we rewrite this as

$$
\begin{equation*}
\mu\left[\left(\sigma_{1} \otimes F^{\sharp}\right) * \Delta \sigma_{1} \Delta G^{\sharp}\right]=\sum_{(G)}\left(\sigma_{1} G_{(1)}^{\sharp}\right)\left(F^{\sharp} * \sigma_{1} G_{(2)}^{\sharp}\right) . \tag{13}
\end{equation*}
$$

We now only have to show that each term $F^{\sharp} * \sigma_{1} G_{(2)}^{\sharp}$ is in $\mathbf{S y m}^{\sharp}$. We may assume that $F=S^{I}$, and for any $G \in \mathbf{S y m}$,

$$
\begin{equation*}
S^{I \sharp} * \sigma_{1} G^{\sharp}=\sum_{(G)} \mu_{r}\left[\left(S_{i_{1}}^{\sharp} \otimes \cdots \otimes S_{i_{r}}^{\sharp}\right) *\left(\sigma_{1} G_{(1)}^{\sharp} \otimes \cdots \otimes \sigma_{1} G_{(r)}^{\sharp}\right)\right] \tag{14}
\end{equation*}
$$

so that it is sufficient to prove the property for $F=S_{n}$. Now,

$$
\begin{align*}
\sigma_{1}^{\sharp} * \sigma_{1} G^{\sharp} & =\left(\bar{\lambda}_{1} \sigma_{1}\right) * \sigma_{1} G^{\sharp} \\
& =\sum_{(G)}\left(\bar{\lambda}_{1} * \sigma_{1} G_{(1)}^{\sharp}\right)\left(\sigma_{1} G_{(2)}^{\sharp}\right) \tag{15}\\
& =\sum_{(G)}\left(\bar{\sigma}_{1} * \lambda_{1} * \sigma_{1} G_{(1)}^{\sharp}\right) \cdot \sigma_{1} \cdot G_{(2)}^{\sharp}
\end{align*}
$$

Now,

$$
\begin{equation*}
\lambda_{1} * \sigma_{1} G_{(1)}^{\sharp}=\left(\lambda_{1} * G_{(1)}^{\sharp}\right)\left(\lambda_{1} * \sigma_{1}\right)=\left(\lambda_{1} * G_{(1)}^{\sharp}\right) \lambda_{1}, \tag{16}
\end{equation*}
$$

since λ_{1} is an anti-automorphism. We then get

$$
\begin{align*}
\sigma_{1}^{\sharp} * \sigma_{1} G^{\sharp} & =\sum_{(G)}\left(\bar{\sigma}_{1} *\left(\left(\lambda_{1} * G_{(1)}^{\sharp}\right) \lambda_{1}\right) \cdot \sigma_{1} \cdot G_{(2)}^{\sharp}\right. \\
& =\sum_{(G)}\left(\bar{\sigma}_{1} * \lambda_{1} * G_{(1)}^{\sharp}\right) \cdot\left(\bar{\sigma}_{1} * \lambda_{1}\right) \sigma_{1} \cdot G_{(2)}^{\sharp} \tag{17}\\
& =\sum_{(G)}\left(\bar{\lambda}_{1} * G_{(1)}^{\sharp}\right) \cdot \sigma_{1}^{\sharp} \cdot G_{(2)}^{\sharp}
\end{align*}
$$

Now, the result will follow if we can prove that $\bar{\lambda}_{1} * G^{\sharp}$ is in $\mathbf{S y m}^{\sharp}$ for any $G \in \mathbf{S y m}$.
For $G=S^{I}$,

$$
\begin{equation*}
\bar{\lambda}_{1} * S^{I \sharp}=\lambda_{1} * \bar{\sigma}_{1} * S^{I} * \sigma_{1}^{\sharp}=\lambda_{1} * S^{I} * \bar{\sigma}_{1} * \sigma_{1}^{\sharp}=\lambda_{1} * S^{I} * \sigma_{1}^{b} . \tag{18}
\end{equation*}
$$

Since left $*$-multiplication by λ_{1} in an anti-automorphism, we only need to prove that $\lambda_{1} * S_{n}^{b}$ is of the form G^{\sharp}. And indeed,

$$
\begin{align*}
\lambda_{1} * S_{n}^{b} & =\sum_{i+j=n} \lambda_{1} *\left(\Lambda_{i} S_{\bar{j}}\right) \\
& =\sum_{i+j=n}\left(\lambda_{1} * S_{\bar{j}}\right)\left(\lambda_{1} * \Lambda_{i}\right) \tag{19}\\
& =\sum_{i+j=n} \Lambda_{\bar{j}} S_{i}=S_{n}^{\sharp} .
\end{align*}
$$

This concludes the proof that BSym is a $*$-subalgebra of BFQSym.

4 Unital versions of the higher order peak algebras

As shown in [5], much of the theory of the peak algebra can be deduced from a formula of [11] for $R_{I}((1-q) A)$, in the special case $q=-1$. In [12], this formula was studied in the case where q is an arbitrary root of unity, and higher order analogs of the peak algebra were obtained. In [2], it was shown that the classical peak algebra can be extended to a unital algebra, which is obtained as a homomorphic image of the descent algebra of type B. In this section, we construct unital extensions of the higher order peak algebras.

Let q be a primitive r-th root of unity. All objects introduced below will depend on q (and r), although this dependence will not be made explicit in the notation. We denote by θ_{q} the endomorphism of Sym defined by

$$
\begin{equation*}
\tilde{f}=\theta_{q}(f)=f((1-q) A)=f(A) * \sigma_{1}((1-q) A) \tag{20}
\end{equation*}
$$

We denote by $\mathcal{\mathcal { P }}$ the image of θ_{q} and by \mathcal{P} the right $\stackrel{\circ}{\mathcal{P}}$-module generated by the S_{n} for $n \geq 0$. Note that $\stackrel{\mathcal{P}}{ }$ is by definition a left $*$-ideal of Sym.
Theorem 4.1 \mathcal{P} is a unital $*$-subalgebra of $\mathbf{S y m}$. Its Hilbert series is

$$
\begin{equation*}
\sum_{n \geq 0} \operatorname{dim} \mathcal{P}_{n} t^{n}=\frac{1}{1-t-t^{2}-\cdots-t^{r}} \tag{21}
\end{equation*}
$$

Proof - Since the internal product of homogeneous elements of different degrees is zero, it is enough to show that, for any $f, g \in \operatorname{Sym}, \sigma_{1} \tilde{f} * \sigma_{1} \tilde{g}$ is in \mathcal{P}. Thanks to the splitting formula,

$$
\begin{align*}
\sigma_{1} \tilde{f} * \sigma_{1} \tilde{g} & =\mu\left[\left(\sigma_{1} \otimes \tilde{f}\right) * \sum_{(g)} \sigma_{1} \tilde{g}_{(1)} \otimes \sigma_{1} \tilde{g}_{(2)}\right] \tag{22}\\
& =\sum_{(g)}\left(\sigma_{1} \tilde{g}_{(1)}\right)\left(\tilde{f} * \sigma_{1} \tilde{g}_{(2)}\right)
\end{align*}
$$

Thus, it is enough to check that $\tilde{f} * \sigma_{1} \tilde{h}$ is in $\mathscr{\mathcal { P }}$ for any $f, h \in \mathbf{S y m}$. Now,

$$
\begin{equation*}
\tilde{f} * \sigma_{1} \tilde{h}=f * \sigma_{1}((1-q) A) * \sigma_{1} \tilde{h} \tag{23}
\end{equation*}
$$

and since $\stackrel{\mathcal{P}}{ }$ is a Sym left $*$-ideal, we only have to show that $\sigma_{1}((1-q) A) * \sigma_{1} \tilde{h}$ is in $\mathcal{\mathcal { P }}$. One more splitting yields

$$
\begin{align*}
\sigma_{1}((1-q) A) * \sigma_{1} \tilde{h} & =\left(\lambda_{-q} \sigma_{1}\right) * \sigma_{1} \tilde{h} \\
& =\mu\left[\left(\lambda_{-q} \otimes \sigma_{1}\right) * \sum_{(h)} \sigma_{1} \tilde{h}_{(1)} \otimes \sigma_{1} \tilde{h}_{(2)}\right] \\
& =\sum_{(h)}\left(\lambda_{-q} * \sigma_{1} \tilde{h}_{(1)}\right)\left(\sigma_{1} \tilde{h}_{(2)}\right) \tag{24}\\
& =\sum_{(h)}\left(\lambda_{-q} * \tilde{h}_{(1)}\right) \lambda_{-q} \sigma_{1} \tilde{h}_{(2)}
\end{align*}
$$

(since left $*$-multiplication by λ_{-q} is an anti-automorphism, namely the composition of the antipode and $\left.q^{\text {degree }}\right)$. The first parentheses $\left(\lambda_{-q} * \tilde{h}_{(1)}\right)$ are in $\stackrel{\circ}{\mathcal{P}}$ since it is a left $*$-ideal. The middle term is $\sigma_{1}((1-q) A)$, and the last one is in $\mathcal{\mathcal { P }}$ by definition.
Recall from [12, Prop. 3.5] that the Hilbert series of \mathcal{P} is

$$
\begin{equation*}
\sum_{n \geq 0} \operatorname{dim} \stackrel{\circ}{\mathcal{P}}_{n} t^{n}=\frac{1-t^{r}}{1-t-t^{2}-\ldots-t^{r}} \tag{25}
\end{equation*}
$$

From [12, Lemma 3.13 and Eq. (3.9)], it follows that $S_{n} \notin \mathcal{P}$ if and only if $n \equiv 0 \bmod r$, so that the Hilbert series of \mathcal{P} is

$$
\begin{equation*}
\sum_{n \geq 0} \operatorname{dim} \mathcal{P}_{n} t^{n}=\frac{1}{1-t-t^{2}-\ldots-t^{r}} \tag{26}
\end{equation*}
$$

5 Back to the Mantaci-Reutenauer algebra

The above proofs are in fact special cases of a master calculation in the Mantaci-Reutenauer algebra, which we carry out in this section.

Let q be an arbitrary complex number or an indeterminate, and define, for any $F \in \mathbf{M R}$,

$$
\begin{equation*}
F^{\sharp}=F * \sigma_{1}(A-q \bar{A})=F * \sigma_{1}^{\sharp} . \tag{27}
\end{equation*}
$$

Since σ_{1}^{\sharp} is grouplike, it follows from the splitting formula that

$$
\begin{equation*}
F \mapsto F^{\sharp} \tag{28}
\end{equation*}
$$

is an automorphism of MR for the Hopf structure. In addition, it is clear from the definition that it is also a endomorphism of left $*$-modules. We refer to it as the \sharp transform.

We now define

$$
\begin{equation*}
\dot{\mathcal{Q}}=\mathbf{M} \mathbf{R}^{\sharp} \tag{29}
\end{equation*}
$$

the image of the \sharp transform. Since the latter is an endomorphism of Hopf algebras and of left $*$-modules, \mathcal{Q} is both a Hopf subalgebra of MR and a left $*$-ideal. When q is a root of unity, its image under the specialization $\bar{A}=A$ is the non-unital peak algebra \mathcal{P} of Section 4 (and for generic q, it is Sym).

Let \mathcal{Q} be the right \mathcal{Q}-module generated by the S_{n}, for all $n \geq 0$. Clearly, the identification $\bar{A}=A$ maps \mathcal{Q} onto \mathcal{P}, the unital peak algebra of Section 4
Theorem 5.1 \mathcal{Q} is $a *$-subalgebra of $\mathbf{M R}$, containing \mathcal{Q} as a left ideal.
Proof - Let $F, G \in$ MR. As above, we want to show that $\sigma_{1} F^{\sharp} * \sigma_{1} G^{\sharp}$ is in \mathcal{Q}. Using the splitting formula, we rewrite this as

$$
\begin{equation*}
\mu\left[\left(\sigma_{1} \otimes F^{\sharp}\right) * \Delta \sigma_{1} \Delta G^{\sharp}\right]=\sum_{(G)}\left(\sigma_{1} G_{(1)}^{\sharp}\right)\left(F^{\sharp} * \sigma_{1} G_{(2)}^{\sharp}\right) \tag{30}
\end{equation*}
$$

and we only have to show that each term $F^{\sharp} * \sigma_{1} G_{(2)}^{\sharp}$ is in \mathcal{Q}. We may assume that $F=S^{I}$, where I is now a bicolored composition, and for any $G \in \mathbf{M R}$,

$$
\begin{equation*}
S^{I \sharp} * \sigma_{1} G^{\sharp}=\sum_{(G)} \mu_{r}\left[\left(S_{i_{1}}^{\sharp} \otimes \cdots \otimes S_{i_{r}}^{\sharp}\right) *\left(\sigma_{1} G_{(1)}^{\sharp} \otimes \cdots \otimes \sigma_{1} G_{(r)}^{\sharp}\right)\right] \tag{31}
\end{equation*}
$$

so that it is sufficient to prove the property for $F=S_{n}$ or $S_{\bar{n}}$. Now,

$$
\begin{align*}
\sigma_{1}^{\sharp} * \sigma_{1} G^{\sharp} & =\left(\bar{\lambda}_{-q} \sigma_{1}\right) * \sigma_{1} G^{\sharp} \\
& =\sum_{(G)}\left(\bar{\lambda}_{-q} 1 * \sigma_{1} G_{(1)}^{\sharp}\right)\left(\sigma_{1} G_{(2)}^{\sharp}\right) \tag{32}\\
& =\sum_{(G)}\left(\bar{\lambda}_{-q} * G_{(1)}^{\sharp}\right) \cdot \sigma_{1}^{\sharp} \cdot G_{(2)}^{\sharp}
\end{align*}
$$

which is in $\dot{\mathcal{Q}}$, since it is a subalgebra and a left $*$-ideal, and similarly,

$$
\begin{align*}
\bar{\sigma}_{1}^{\sharp} * \sigma_{1} G^{\sharp} & =\left(\lambda_{-q} \bar{\sigma}_{1}\right) * \sigma_{1} G^{\sharp} \\
& =\sum_{(G)}\left(\lambda_{-q} * \sigma_{1} G_{(1)}^{\sharp}\right)\left(\bar{\sigma}_{1} \bar{G}_{(2)}^{\sharp}\right) \tag{33}\\
& =\sum_{(G)}\left(\lambda_{-q} * G_{(1)}^{\sharp}\right) \cdot \bar{\sigma}_{1}^{\sharp} \cdot \bar{G}_{(2)}^{\sharp}
\end{align*}
$$

is also in $\dot{\mathcal{Q}}$.
The various algebras introduced in this paper and their interrelationships are summarized in the following diagram.

Note that in the special case $q=-1$, by the results of Section 3.3, \mathcal{Q}_{n} is the (Solomon) descent algebra of B_{n}, \mathcal{Q} is isomorphic to $\mathbf{B S y m}$, and \mathcal{P} is the unital peak algebra of [2].

6 Further developments

6.1 Inversion of the generic $\#$ transform

For generic q, the endomorphism (27) of $\mathbf{M R}$ is invertible; therefore

$$
\begin{equation*}
\dot{\mathcal{Q}} \sim \mathrm{MR} \tag{35}
\end{equation*}
$$

The inverse endomorphism of MR arises from the transformation of alphabets

$$
\begin{equation*}
A \mapsto(q \bar{A}+A) /\left(1-q^{2}\right), \tag{36}
\end{equation*}
$$

which is to be understood in the following sense:

$$
\begin{equation*}
\sigma_{1}\left(\frac{q \bar{A}+A}{1-q^{2}}\right):=\prod_{k \geq 0} \sigma_{q^{2 k+1}}(\bar{A}) \sigma_{q^{2 k}}(A) \tag{37}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\sigma_{1}\left(\frac{q \bar{A}+A}{1-q^{2}}\right) * \sigma_{1}(A-q \bar{A}) & =\prod_{k \geq 0} \sigma_{q^{2 k+1}}(\bar{A}-q A) \sigma_{q^{2 k}}(A-q \bar{A}) \\
& =\prod_{k \geq 0} \lambda_{-q^{2 k+2}}(A) \sigma_{q^{2 k+1}}(\bar{A}) \lambda_{-q^{2 k+1}}(\bar{A}) \sigma_{q^{2 k}}(A) \tag{38}\\
& =\sigma_{1}(A)
\end{align*}
$$

By normalizing the term of degree n in (37), we obtain B_{n}-analogs of the q-Klyachko elements defined in [9]:

$$
\begin{equation*}
K_{n}(q ; A, \bar{A}):=\prod_{i=1}^{n}\left(1-q^{2 i}\right) S_{n}\left(\frac{q \bar{A}+A}{1-q^{2}}\right)=\sum_{I \models n} q^{2 \operatorname{maj}(I)} R_{I}(q \bar{A}+A) \tag{39}
\end{equation*}
$$

This expression can be completely expanded on signed ribbons. From the expression of R_{I} in FQSym, we have

$$
\begin{equation*}
R_{I}(\bar{A}+A)=\sum_{C(\sigma)=I} \mathbf{G}_{\sigma}(\bar{A}+A) \tag{40}
\end{equation*}
$$

where $\bar{A}+A$ is the ordinal sum. If we order \bar{A} by

$$
\begin{equation*}
\bar{a}_{1}<\bar{a}_{2}<\ldots<\bar{a}_{k}<\ldots \tag{41}
\end{equation*}
$$

then, arguing as in [16], we have

$$
\begin{equation*}
\mathbf{G}_{\sigma}(\bar{A}+A)=\sum_{\operatorname{std}(\tau, \epsilon)=\sigma} \mathbf{G}_{\tau, \epsilon} \tag{42}
\end{equation*}
$$

so that

$$
\begin{equation*}
R_{I}(\bar{A}+A)=\sum_{\rho(\mathrm{J})=I} R_{\mathrm{J}} \tag{43}
\end{equation*}
$$

where for a signed composition $\mathrm{J}=(J, \epsilon)$, the unsigned composition $\rho(\mathrm{J})$ is defined as the shape of $\operatorname{std}(\sigma, \epsilon)$, where σ is any permutation of shape J.

Replacing \bar{A} by $q \bar{A}$, one obtains the expansion of the q-Klyachko elements of type B :

$$
\begin{equation*}
K_{n}(q ; A, \bar{A})=\sum_{\mathrm{J}} q^{\mathrm{bmaj}(\mathrm{~J})} R_{\mathrm{J}} \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{bmaj}(\mathrm{J})=2 \operatorname{maj}(\rho(\mathrm{~J}))+|\epsilon| \tag{45}
\end{equation*}
$$

where $|\epsilon|$ is the number of minus signs in ϵ.
For example,

$$
\begin{equation*}
K_{2}(q)=R_{2}+q^{2} R_{\overline{2}}+q^{2} R_{11}+q^{3} R_{1 \overline{1}}+q R_{\overline{1} 1}+q^{4} R_{\overline{11}} . \tag{46}
\end{equation*}
$$

$$
\begin{align*}
K_{3}(q) & =R_{3}+q^{3} R_{\overline{3}}+q^{4} R_{21}+q^{5} R_{2 \overline{1}}+q^{2} R_{\overline{2} 1}+q^{7} R_{\overline{21}}+q^{2} R_{12}+q^{4} R_{1 \overline{2}} \\
& +q R_{\overline{\overline{1} 2} 2}+q^{5} R_{\overline{12}}+q^{6} R_{111}+q^{7} R_{1 \overline{1}}+q^{3} R_{1 \overline{1} 1}+q^{8} R_{1 \overline{11}} \tag{47}\\
& +q^{5} R_{\overline{1} 11}+q^{6} R_{\overline{1} 1 \overline{1}}+q^{4} R_{\overline{11} 1}+q^{9} R_{\overline{111}} .
\end{align*}
$$

This major index of type B is the flag major index defined in [1].
Following [1] and considering the signed composition (where ϵ is encoded as boolean vector for readability)

$$
\begin{equation*}
\mathrm{J}=(2,1,1, \overline{3}, \overline{1}, \overline{2}, 4, \overline{1}, 2,2)=(2113124122,00001111110000100000) \tag{48}
\end{equation*}
$$

we can take the smallest permutation of shape $(2,1,1,3,1,2,4,1,2,2)$, which is

$$
\begin{equation*}
\alpha=15432698711101213161514181719 \tag{49}
\end{equation*}
$$

sign it according to ϵ, which yields

$$
\begin{equation*}
1543 \overline{2} \overline{6} \overline{9} \overline{8} \overline{7} \overline{11} 10121316 \overline{15} 14181719 \tag{50}
\end{equation*}
$$

whose standardized is

$$
\begin{equation*}
81110912543612131416715181719 \tag{51}
\end{equation*}
$$

and has shape $\rho(\mathrm{J})=(2,1,1,3,1,6,3,2)$. The major index of $\rho(\mathrm{J})$ is 55 , the number of minus signs in ϵ is 7 , so bmaj $(\mathrm{J})=$ $2 \times 55+7=117$.

The major index of type B can be read directly on signed compositions without reference to signed permutations as follows: one can get $\rho(\mathrm{J})$ by first adding the absolute values of two consecutive parts if the left one is signed and the second one is not, then remove the signs and proceed as before.

A different solution consists in reading the composition from right to left, then associate weight 0 (resp. 1) to the rightmost part if it is positive (resp. negative) and then proceed left by adding 2 to the weight if the two parts are of the same sign and 1 if not. Finally, add up the product of the absolute values of the parts with their weight.

For example, with the same J as above we have the following weights:

$$
\begin{gather*}
\mathrm{J}=(2,1,1, \overline{3}, \overline{1}, \overline{2}, 4, \overline{1}, 2,2) \tag{52}\\
\text { weights }: 1412109754320
\end{gather*}
$$

so that we get $2 \cdot 14+1 \cdot 12+1 \cdot 10+3 \cdot 9+1 \cdot 7+2 \cdot 5+4 \cdot 4+1 \cdot 3+2 \cdot 2+2 \cdot 0=117$.
This technique generalizes immediately to colored compositions with a fixed number c of colors $0,1, \ldots, c-1$: the weight of the rightmost cell is its color and the weight of a part is equal to the sum of the weight of the next part and the unique representative of the difference of the colors of those parts modulo c belonging to the interval $[1, c]$.

6.2 Generators and Hilbert series

For $n \geq 0$, let

$$
\begin{equation*}
S_{n}^{ \pm}=S_{n}(A) \pm S_{n}(\bar{A}), \tag{53}
\end{equation*}
$$

and denote by \mathcal{H}_{n} the subalgebra of MR generated by the $S_{k}^{ \pm}$for $k \leq n$. For $n \geq 0$, we have

$$
\begin{equation*}
\left(S_{n}^{ \pm}\right)^{\sharp} \equiv\left(1 \mp q^{n}\right) S_{n}^{ \pm} \quad \bmod \mathcal{H}_{n-1} \tag{54}
\end{equation*}
$$

so that the $\left(S_{n}^{ \pm}\right)^{\sharp}$ such that $1 \mp q^{n} \neq 0$ form a set of free generators in $\mathbf{M R}^{\sharp}$.
Conjecture 6.1 If r is odd, a basis of $\mathbf{M R}^{\sharp}$ will be parametrized by colored compositions such that parts of color 0 are not $\equiv 0 \bmod r$ and parts of color 1 are arbitrary. The Hilbert series is then

$$
\begin{equation*}
H_{r}(t)=\frac{1-t^{r}}{1-2\left(t+t^{2}+\cdots+t^{r}\right)} \tag{55}
\end{equation*}
$$

If r is even, there is the extra condition that parts of color 1 are not $\equiv r / 2 \bmod r$. The Hilbert series is then

$$
\begin{equation*}
H_{r}(t)=\frac{1-t^{r}}{1-2\left(t+t^{2}+\cdots+t^{r}\right)+t^{r / 2}} \tag{56}
\end{equation*}
$$

For example,

$$
\begin{gather*}
H_{2}(t)=1+t+2 t^{2}+4 t^{3}+8 t^{4}+16 t^{5}+32 t^{6}+64 t^{7}+128 t^{8}+O\left(t^{9}\right) \tag{57}\\
H_{3}(t)=1+2 t+6 t^{2}+17 t^{3}+50 t^{4}+146 t^{5}+426 t^{6}+1244 t^{7}+3632 t^{8}+O\left(t^{9}\right) \tag{58}\\
H_{4}(t)=1+2 t+5 t^{2}+14 t^{3}+38 t^{4}+104 t^{5}+284 t^{6}+776 t^{7}+2120 t^{8}+O\left(t^{9}\right) \tag{59}
\end{gather*}
$$

If these conjectures are correct, the Hilbert series of the right $\mathbf{M R}^{\sharp}$-modules generated by the S_{n} are respectively

$$
\begin{equation*}
\frac{1}{1-2\left(t+t^{2}+\ldots+t^{r}\right)}, \tag{60}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{1-2\left(t+t^{2}+\ldots+t^{r}\right)+t^{r / 2}} \tag{61}
\end{equation*}
$$

according to whether r is odd or even.
The cases $r=1$ and $r=2$ are easily proved as follows. Assume first that $q=1$. Set

$$
\begin{align*}
f & =1+\left(\sigma_{1}^{+}\right)^{\sharp}=\left(\sigma_{1}+\lambda_{-1}\right)(A-\bar{A}), \tag{62}\\
g & =\left(\sigma_{1}^{-}\right)^{\sharp}-1=\left(\sigma_{1}-\lambda_{-1}\right)(A-\bar{A}) . \tag{63}
\end{align*}
$$

Then, $f^{2}=g^{2}+4$, so that

$$
\begin{equation*}
f=2\left(1+\frac{1}{4} g^{2}\right)^{\frac{1}{2}} \tag{64}
\end{equation*}
$$

which proves that the $\left(S_{n}^{+}\right)^{\#}$ can be expressed in terms of the $\left(S_{m}^{-}\right)^{\#}$.
Similarly, for $q=-1$, one can express

$$
\begin{equation*}
f=\sum_{n \geq 1}\left(S_{2 n}^{+}\right)^{\sharp}+\sum_{n \geq 0}\left(S_{2 n+1}^{-}\right)^{\sharp} \tag{65}
\end{equation*}
$$

in terms of

$$
\begin{equation*}
g=\sum_{n \geq 1}\left(S_{2 n}^{-}\right)^{\sharp}+\sum_{n \geq 0}\left(S_{2 n+1}^{+}\right)^{\sharp} \tag{66}
\end{equation*}
$$

since, as is easily verified,

$$
\begin{equation*}
(f+2)^{2}=g^{2}+4, \text { i.e., } f=-2+2\left(1+\frac{1}{4} g^{2}\right)^{\frac{1}{2}} \tag{67}
\end{equation*}
$$

Apparently, this approach does not work anymore for higher roots of unity.

7 Appendix: monomial expansion of the $(1-q)$-kernel

The results of [16, 7] allow us to write down a new expansion of $S_{n}((1-q) A)$, in terms of the monomial basis of [4]. The special case $q=1$ gives back a curious expression of Dynkin's idempotent, first obtained in [3].

Let σ be a permutation. We then define its left-right minima set $\operatorname{LR}(\sigma)$ as the values of σ that have no smaller value to their left. We will denote by $\operatorname{lr}(\sigma)$ the cardinality of $\operatorname{LR}(\sigma)$. For example, with $\sigma=46735182$, we have $\operatorname{LR}(\sigma)=\{4,3,1\}$, and $\operatorname{lr}(\sigma)=3$.

Let us now decompose $S_{n}((1-q) A)$ on the monomial basis \mathbf{M}_{σ} (see [4]) of FQSym. Thanks to the Cauchy formula of FQSym [7], we have

$$
\begin{equation*}
S_{n}((1-q) A)=\sum_{\sigma} \mathbf{S}^{\sigma}(1-q) \mathbf{M}_{\sigma}(A) \tag{68}
\end{equation*}
$$

where \mathbf{S} is the dual basis of \mathbf{M}. Given the transition matrix between \mathbf{M} and \mathbf{G}, we see that

$$
\begin{equation*}
\mathbf{S}^{\sigma}=\sum_{\tau \leq \sigma^{-1}} \mathbf{F}_{\tau} \tag{69}
\end{equation*}
$$

where \leq is the right weak order, e.g., $\mathbf{S}^{312}=\mathbf{F}_{123}+\mathbf{F}_{213}+\mathbf{F}_{231}$. Thanks to [16], we know that $\mathbf{F}_{\sigma}(1-q)$ is either $(-q)^{k}$ if $\operatorname{Des}(\sigma)=\{1, \ldots, k\}$ or 0 otherwise. Let us define hook permutations of hook k the permutations σ such that $\operatorname{Des}(\sigma)=\{1, \ldots, k\}$. Now, $\mathbf{S}^{\sigma}(1-q)$ amounts to compute the list of hook permutations smaller than σ. Note that hook permutations are completely characterized by their left-right minima. Moreover, if τ is smaller than σ in the right weak order, then $\operatorname{LR}(\tau) \subset \operatorname{LR}(\sigma)$.

Hence all hook permutations smaller than a given permutation σ belong to the set of hook permutations with left-right minima in $\operatorname{LR}(\sigma)$. Since by elementary transpositions decreasing the length, one can get from σ to the hook permutation with the same left-right minima and then from this permutation to all the others, we have:
Theorem 7.1 Let n be an integer. Then

$$
\begin{equation*}
S_{n}((1-q) A)=\sum_{\sigma \in \mathfrak{S}_{n}}(1-q)^{\operatorname{lr}(\sigma)} \mathbf{M}_{\sigma} \tag{70}
\end{equation*}
$$

In the particular case $q=1$, we recover a result of [3]:

$$
\begin{equation*}
\Psi_{n}=\sum_{\substack{\sigma \in \mathfrak{S}_{n} \\ \sigma(1)=1}} \mathbf{M}_{\sigma} \tag{71}
\end{equation*}
$$

where Ψ_{n} is the noncommutative power sum associated with Dynkin's idempotent [11, Prop. 5.2].

Acknowledgements

This work started during a stay of the first author at the University Paris-Est Marne-la-Vallée. The authors would also like to thank the contributors of the MuPAD project, and especially those of the combinat package, for providing the development environment for their research (see [10] for an introduction to MuPAD-Combinat).

References

[1] R. Adin and Y. Roichman, The flag major index and group actions on polynomial rings, Europ. J. Combin, 22 (2001), 431-446.
[2] M. Aguiar, N. Bergeron, and K. Nyman, The peak algebra and the descent algebra of type B and D, Trans. of the AMS. 356 (2004), 2781-2824.
[3] M. Aguiar and M. Livernet, The associative operad and the weak order on the symmetric group, J. Homotopy and Related Structures, 2 n. 1 (2007), 57-84.
[4] M. AgUiar and F. Sottile, Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. in Math. 191 (2005), 225-275.
[5] N. Bergeron, F. Hivert and J.-Y. Thibon, The peak algebra and the Hecke-Clifford algebras at $q=0$, J. Combinatorial Theory A 117 (2004), 1-19.
[6] C.-O. Chow, Noncommutative symmetric functions of type B, Thesis, MIT, 2001.
[7] G. Duchamp, F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Noncommutative Symmetric Functions VII: Free QuasiSymmetric Functions Revisited, preprint, math.CO/0809.4479.
[8] G. Duchamp, F. Hivert, and J.-Y. Thibon, Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Internat. J. Alg. Comput. 12 (2002), 671-717.
[9] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y. Thibon, Noncommutative symmetric functions, Adv. in Math. 112 (1995), 218-348.
[10] F. HIVERT and N. Thiéry, MuPAD-Combinat, an open-source package for research in algebraic combinatorics, Sém. Lothar. Combin. 51 (2004), 70p. (electronic).
[11] D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative symmetric functions II: Transformations of alphabets, Internal J. Alg. Comput. 7 (1997), 181-264.
[12] D. Krob and J.-Y. Thibon, Higher order peak algebras, Ann. Combin. 9 (2005), 411-430.
[13] I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995.
[14] R. Mantaci and C. Reutenauer, A generalization of Solomon's descent algebra for hyperoctahedral groups and wreath products, Comm. Algebra 23 (1995), 27-56.
[15] J.-C. Novelli and J.-Y. Thibon, Free quasi-symmetric functions of arbitrary level, preprint math.CO/0405597.
[16] J.-C. Novelli and J.-Y. Thibon, Superization and (q, t)-specialization in combinatorial Hopf algebras, math.CO/0803.1816.
[17] S. Poirier, Cycle type and descent set in wreath products, Disc. Math., 180 (1998), 315-343.
[18] C. Reutenauer, Free Lie algebras, Oxford University Press, 1993.
[19] L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra, 41, (1976), 255-268.
[20] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge University Press, 1999.

[^0]: ${ }^{\dagger}$ Partially supported by NSF grant DMS-0600973.
 \ddagger Partially supported by ANR grant 06-BLAN-0380.

