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A transitive orientation of a graph is an orientation of the edges that produces a transitive digraph. The modular
decomposition of a graph is a canonical representation of all of its modules. Finding a transitive orientation and
finding the modular decomposition are in some sense dual problems. In this paper, we describe a simpleO

�
n ✁ mlogn✂

algorithm that uses this duality to find both a transitive orientation and the modular decomposition. Though the
running time is not optimal, this algorithm is much simpler than any previous algorithms that are notΩ

�
n2 ✂ . The best

known time bounds for the problems areO
�
n ✁ m✂ , but they involve sophisticated techniques.
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1 Motivation
Computing themodular decompositionof an undirected graph and atransitive orientation, when one
exists, are problems that come up in a large number of combinatorial problems on perfect graphs and
other graph classes. In this paper, we show how both problems reduce quite easily to a procedure called
vertex partitioning. The resulting algorithm has anO ✄ n ☎ mlogn✆ time bound, wheren is the number of
vertices, andm is the number of edges. Vertex partitioning is the only obstacle to a linear time bound. If
no transitive orientation exists, the result still gives the modular decomposition. Neither of these results
is optimal, since these problems can be solved in linear time[9], but the linear-time algorithms are quite
involved and challenging to understand.

A reduction of modular decomposition and transitive orientation to vertex partitioning was first given
in an unpublished work that was circulated in 1985 [13]. The simplified reduction we give here is a
combination of ideas from that paper, and from [4]. It was circulated as an unpublished result in 1994.
The linear time bound of transitive orientation of [9] was anoutgrowth of it. Other subsequent papers
have adopted its approach [7, 8]. In the final section, we discuss its somewhat weaker role of the approach
in the parallel and sequential algorithms of [2, 3]. Becauseit is not the main focus of any of these papers,
the simplicity of the basic approach has not been explained publicly. As we explain below, we believe
that the underlying insights still hold promise for future progress in the area.
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Fig. 1: A graph and its modules. A module is a setX of vertices such that for eachy � V
�
G✂✂✁ X, eithery is adjacent

to every element ofX, or y is nonadjacent to every element ofX.

2 Introduction
We view an undirected graph as a special case of a directed graph, where each undirected edge✄ x ✄ y✆ is
composed of two directed arcs✄ x ✄ y✆ and ✄ y✄ x✆ . A digraph istransitiveif, removal of exactly one of✄ x ✄ y✆
or ✄ y✄ x✆ for each undirected edge✄ x ✄ y✆ . A transitive orientationis one where the resulting digraph is
transitive.Comparability graphsare the class of graphs that have a transitive orientation.

A moduleof G is a setX of nodes such that for any nodex not in X, eitherx is adjacent to every node
of X, or x is nonadjacent to every node ofX. V ✄ G✆ and its singleton subsets are thetrivial modules. All
graphs have the trivial modules; a graph isprime if it has no nontrivial modules. Figure 1 depicts a graph
and its modules. The following is easily verified:

Theorem 2.1 If X and Y are disjoint modules of a graph, then either every element of X is adjacent to
every element of Y, or no element of X is adjacent to any element ofY.

Thus, any pair of disjoint modules can be classified as “adjacent” or as “nonadjacent.” It follows that if
P is a partition of the nodes ofG such that each member ofP is a module, the adjacency relationships of
the members ofP to each other is itself described by a graph, as shown in Figure2. This graph is called
thequotient G

☎
P , andP is called acongruence partition. Note that ifX is a set obtained by selecting one

representative node from each member ofP , thenG ✆X is isomorphic toG
☎
P . Theorems about quotients

can be applied to induced subgraphs of this type, a fact that wewill occasionally use in our proofs.
The quotientG

☎
P completely specifies those edges of the graph that are not in any subgraphG ✆X

induced by anyX ✝ P . Thus, the quotient, together with the subgraphs induced by the members ofP ,
gives a complete representation of the original graph.

Themodular decompositionis a way to represent compactly all modules of a graph. Two modulesX
andY overlapif they intersect, but neither contains the other. Astrong moduleis a module that overlaps
no other. The decomposition is a rooted tree. The nodes of this tree are the strong modules of the graph,
and the transitive reduction of the containment relation onthe strong modules gives the edges of the tree.
By MD ✄ G✆ , we denote the modular decomposition ofG.

An equivalent definition of the modular decomposition is the following recursive one. Note that at least
one ofG and its complement is connected.
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Fig. 2: A quotient on the graph of Figure 1. For any pair
�
X ✁ Y ✂ of disjoint modules, either every element ofX ✄ Y

is an edge or none is. Thus,X andY may be viewed asadjacentor nonadjacent. If P is a partition of the vertices a
graph into modules, the adjacencies of members ofP can be described by aquotient graph G☎ P . The quotient graph
and the subgraphs induced by members ofP completely specifyG.
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1. (parallel case) IfG is disconnected, its connected components are a congruencepartition, every
union of components is a module, and no module overlaps a component. Thus, the modules ofG
can be divided into two sets: those that are a union of components and those that are a subset of a
single component. Those that are a subset of a componentC can be found by recursion onG ✆ C.

2. (series case) If the complement ofG is disconnected, apply step 1 to the complement.

3. (prime case) Otherwise, let thehighest submodulesbe those modules that are not contained in any
other module exceptV ✄ G✆ . When bothGand its complement are connected, the highest submodules
are a congruence partition. The modules ofGareV ✄ G✆ and those modules that are subsets of highest
modules. Those that are a subset of a highest submoduleM may be found by recursion onG ✆ M.

At each step of the recursion, this algorithm finds a congruence partition. The recursion tree, together
with the quotients induced by these congruence partitions, uniquely specifyG. Figure 3 gives an example.

If X is a node of the tree andY is its children, thechild quotientis ✄ G ✆ X ✆ ☎
Y . The name of the prime

case of the modular decomposition is derived from the fact that if X is a prime node then its child quotient
is prime.

The number of modules of a graph may be exponential, as in the case of a complete graph. However,
it is easy to see from Theorem 3.1, below, that a set of vertices is a module ofG if and only if it is a
node of the decomposition tree or a union of children of a series or parallel node. Thus, the modular
decomposition gives an implicit representation of the modules ofG.

A directed graph istransitiveif, whenever✄ a ✄ b✆ and ✄ b ✄ c✆ are arcs,✄ a ✄ c✆ is also an arc. Anorientation
of an undirected graph is a directed graph obtained by assigning a direction to each undirected edge. A
graph is acomparability graphif there exists an orientation that is transitive. A transitive orientation can
be found inO ✄ n ☎ m✆ time [11], but this algorithm is difficult to understand. Cographs, and the com-
plements of interval graphs are examples of comparability graphs. The fastest algorithm for recognizing
permutation graphs takes advantage of the fact that a graph is a permutation graph if and only if it both
the graph and its complement are comparability graphs. [11].

3 Strategy of the algorithm
It has long been recognized that there is a type of duality between the modules of a comparability graph
and its transitive orientations [5]. In particular, the orientation of one edge in a transitive orientation
dictates the orientation of another if and only if no module contains the endnodes of one of the two edges,
but not of the other. Most approaches to transitive orientation compute the modular decomposition first.
On the other hand, the modular decomposition can be constructed easily if it is known which edges force
orientations of each other. The approach of our algorithm isto solve these dual problems concurrently.

The following two theorems, which are widely known, are fundamental [12]:

Theorem 3.1 If X is a module of G, then the modules of G that are subsets of X are the modules of G✆ X.

Theorem 3.2 If P is a congruence partition on G, thenX is a module of G
☎
P if and only if

�
X is a

module of G.

Let G be an undirected graph and letv be a vertex. Amaximal module of G that does not contain vis
a moduleX such thatX does not containv, but for every moduleY such thatX is a proper subset ofY, Y
containsv. Let P ✄ G ✄ v✆ be ✁ v ✂ and the maximal modules ofG that do not containv.
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Fig. 3: The modular decomposition of the graph of Figure 1. The leaves are the vertices of the graph. The internal
nodes are the strong modules, and their members are their leaf descendants. An internal node is aparallel node
(labeled 0) if the set it denotes induces a disconnected graph, and its children are its connected components. It is
a series node(labeled 1) if the complement of the graph it induces is a disconnected graph, and its children are
the connected components of the complement. It is aprime nodeif it induces a graph that is connected and whose
complement is connected; its children are the maximal modules it contains. A set of vertices is a module if and only
if it is a node of the tree or a union of children of a single parallel or degenerate node.
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Lemma 3.3 A set is a member ofP ✄ G ✄ v✆ if and only if one of the following applies:

1. It is ✁ v ✂ ;

2. It is a child of a prime ancestor of✁ v ✂ in the decomposition tree that does not contain v;

3. It is the union of those children of a series or parallel ancestor of v that do not contain v.

Proof: This is immediate from the fact that a set is a module if and only if it is a child of a prime node,
or any union of one or more children of a degenerate node.

�

Thus,P ✄ G ✄ v✆ is a partition of the vertices ofG, hence a congruence partition.
The nodes of the decomposition tree are the strong modules. However, the containment relation on the

nodes is still a tree if we add a weak module to the nodes. This module is a union of a setX of children of
a series or parallel node; the containment relation dictates that it becomes a child of this node, and that the
members ofX become its children. IfY is the new node andZ is the parent,G ✆ Y is disconnected if and
only if G ✆ Z is, andG ✆ Y is disconnected if and only ifG ✆ Z is. Thus,Y is a parallel (series) node if and only if
Z is. In this case, we say thatY is superfluous, since it is not needed to represent the modules ofG. Adding
superfluous nodes incrementally yields a tree with multiple superfluous nodes; this tree gives a type of
modular decomposition, but it is not inreduced form. We will call such a tree anunreduced modular
decompositionif it is not necessarilyin reduced form. It has all the nodes of the modular decomposition,
in addition to a (possibly empty) set of superfluous nodes. Given an unreduced decomposition, it is trivial
to derive the reduced modular decomposition, by deleting series (parallel) nodes that are children of series
(parallel) nodes in postorder. Thus, in the remainder of thepaper, we consider only the problem of how to
produce an unreduced decomposition.

Let P be a congruence partition. LetT
✁
be a modular decomposition ofG

☎
P that is not necessarily

in reduced form, and letTX denote a modular decomposition ofG ✆ X for X ✝ P that is not necessarily in
reduced form. EachX ✝ P is a leaf ofT

✁
. T

✁
gives all modules ofG that are unions of members ofP ,

while eachTX gives the modules ofG that are contained in a member ofP . We can obtain a single tree
that has all of this information by performing thecompositionof this trees. This is obtained by visiting
each leaf✁ X ✂ of T

✁
and attachingTX as a subtree. To be precise, the composition ofT

✁
and ✁ TX : X ✝ P ✂

is given by ✁ �
Y : Y ✝ T

✁ ✂✄✂ ✁ TX : X ✝ P ✂ .

Lemma 3.4 Let P be a congruence partition on an arbitrary graph G, letT
✁
be an unreduced modular

decomposition of G
☎
P , and letTX be an unreduced modular decomposition of G✆ X for X ✝ P . Then the

composition ofT
✁
and ✁ TX : X ✝ P ✂ is an unreduced modular decomposition of G.

Proof: If M is a strong module, then it overlaps no member ofP , by definition. Thus,M is either
contained in a member ofP or is a union of members ofP . If it is contained in a memberX of P , then
it is a strong module ofG ✆ X, by Theorem 3.1, so it appears as a node ofTX, hence as a node of the
composition. IfM is a union of a setM ☎ P , thenM is a strong module ofG

☎
P , by Theorem 3.2, and

appears as a node ofT
✁
. It follows that M appears as a node of the composition. Thus, every strong

module ofG is a node of the composition, from which the result follows.
�

Our strategy, which is summarized by Algorithm 1, is to find an unreduced decomposition ofG
☎
P ✄ G ✄ v✆ ,

find an unreduced decomposition ofG ✆ X for eachX ✝ P ✄ G ✄ v✆ , and return the composition of these trees.
The vertices may be numbered arbitrarily with distinct integers.
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Algorithm 1: UMD(G) Strategy for computing modular decomposition.
Let v be the lowest-numbered vertex ofG;
if G has only one vertexthen return ✁ ✁ v ✂ ✂ ;
else

Let T
✁
be the modular decomposition ofG

☎
P ✄ G ✄ v✆ ;

foreach member Y ofP ✄ G ✄ v✆ do TY : � UMD ✄ G ✆ Y ✆ ;
return the composition ofT

✁
and ✁ TY : Y ✝ P ✄ G ✄ v✆ ✂ .

The correctness is immediate from Lemma 3.4. This high-level strategy was employed by the algorithm
of [4]. However that algorithm had anO ✄ n2 ✆ bound, and for some time it was not clear how to improve
the bound.

4 Data structures
We represent a linear order on a setV by labeling the elements ofV with unique integer keys, which
need not be consecutive. SortingV in ascending order of these labels gives the represented order. The
restrictionof π to X ☎ V, denotedπ ✆ X, is just a sort ofX in ascending order of these labels.

Let amodule treebe any set of modules where the transitive reduction of the containment relation is a
tree, and where the root isV and the leaves are its singleton subsets. The canonical modular decomposition
is one example among many. The module tree isorderedif there is a left-to-right order on the children
of each internal node. IfX ☎ V ✄ G✆ , let therestrictionof a module treeT to X, denotedT ✆ X, have as its
nodes the set✁ Y

✁
X : Y is a node ofT ✂ . The transitive reduction of the containment relation gives the

parent relation. IfT is an ordered module tree, then the restriction toX, is also ordered; this is done in
the unique way that its leaves✁ ✁ x ✂ : x ✝ X ✂ have the same relative order that they do inT. This is always
possible, since any node ofT is a set that is consecutive on the leaf order ofT, hence any node ofT ✆ X is
also consecutive in its leaf order.

To implement a module tree, we let anO ✄ 1✆ -size node stand for each node. This node carries a doubly-
linked list of pointers to its children. If the node is a leaf,it carries a pointer to the corresponding vertex
of G. The set corresponding to an internal node is then just givenby its leaf descendants.

Using this representation, we obtain the following:

Lemma 4.1 The composition step of Algorithm 1 takes O✄ ✆ P ✄ G ✄ v✆ ✆ ✆ time.

Proof: The composition is obtained by replacing each leaf✁ Y ✂ of the decomposition ofG
☎
P ✄ G ✄ v✆ with

the treeTY. This requires one pointer operation. The decomposition ofG
☎
P ✄ G ✄ v✆ has one leaf for each

member ofP ✄ G ✄ v✆ . �

Bucket sorting a list ofm items by integer keys in the range from 1 ton takesO ✄ n ☎ m✆ time, even if
an initialized set of buckets is provided. However, if one onlywishes to group the items into groups that
have identical keys, the operation may be carried out inO ✄ m✆ time if the initialized buckets are already
available. While inserting the items to buckets, one must simply maintain a list of nonempty buckets.
When all items are inserted, the list may be used to visit onlythe nonempty buckets, retrieving one group
at each of them. The operation takes onlyO ✄ m✆ time. To distinguish this operation from bucket sorting,
we will call it bucket grouping. Similarly, if a list ofm items must be sorted by a pair of keys in the range
from 1 to n, this takesO ✄ n ☎ m✆ time by a radix sort that makes one call to bucket sort for eachof the
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keys [1]. If one wishes only to partition the items into groupsthat share identical pairs of keys, the calls
to bucket sort may be replaced by bucket groupings, and the partition takesO ✄ m✆ time. We will call this
operationradix grouping.

The data structure for the graph is an adjacency-list representation, where the vertices are numbered
from 1 to n, and where the adjacency lists are doubly-linked lists. The adjacency list associated with
vertexx has each arc of the form✄ x ✄ y✆ . Each such arc✄ x ✄ y✆ , in turn, has a pointer to the occurrence of its
“twin” ✄ y✄ x✆ in the adjacency list ofy. We also keep a partitionP of the vertices. Each partition class of
P is implemented with a doubly-linked list, and each vertex hasa pointer to its occurrence in one of these
lists, as well as a pointer to the beginning of this list.

5 The Gamma relation
An undirected graph may be viewed as a special case of a (symmetric) digraph, where each edge✄ x ✄ y✆
is represented by two arcs,✄ x ✄ y✆ and ✄ y✄ x✆ . An orientation of the graph is a choice of one arc from each
such pair.

Let Γ be a relation on the arcs of a digraph, where✄ u ✄ w✆ Γ ✄ x ✄ y✆ if and only if u � x andw andy are
nonadjacent, orw � y andu andx are nonadjacent [5, 6, 12]. LetΓ

�
be the transitive reflexive closure of

Γ. It is easy to see that✄ u ✄ w✆ Γ ✄ x ✄ y✆ in a comparability graph, then in each transitive orientation, ✄ u ✄ w✆
and ✄ x ✄ y✆ are either both present or both absent. Transitively, it follows that ✄ u ✄ w✆ Γ

� ✄ x ✄ y✆ implies this
also. SinceΓ

�
is an equivalence relation, this partitions the edges into groups such that for each group,

either every member of the group is included in a transitive Morientation or none is. These groups are
the implication classes.

If I is a set of arcs, letI
✁ 1 denote the class✁ ✄ y✄ x✆ : ✄ x ✄ y✆ ✝ I ✂✄✂ By symmetry, wheneverI is an implication

class in an arbitrary graph,I
✁ 1 is also an implication class.

It is easy to see that, in any undirected graph, eitherI
✁ 1 � I or I

✁ 1 is disjoint fromI . Let acolor class
beI ✂ I

✁ 1 for an implication classI . The color classes are a partition of the undirected edges ofG. A graph
is a comparability graph only if every implication classI is disjoint fromI

✁ 1; otherwise no orientation of
the graph can contain the implication class. In fact, this characterizes comparability graphs: an undirected
graph is a comparability graph if and only if for each implication classI , I is disjoint fromI

✁ 1 [6]. We
also make use of the following well-known result, which can be found in [12]:

Theorem 5.1 If all edges of G are in a single color class, then all nontrivial modules of G are independent
sets.

6 Computing G
☎
P ✆ G ✝ v✞ and its modular decomposition

We now describe a procedure calledvertex partitioning, which we use to computeP ✄ G ✄ v✆ in Algorithm 1.
The input to the procedure is a partition of the vertices, andit finds a refinement of the partition that gives
the maximal modules ofG that are subsets of one of the original partition classes.

The most basic operation in vertex partitioning is thepivot. An input is a partitionP of the vertices of
the graph, a vertexx, and the edges fromx to some subsetQ of members ofP . The operation produces
a refinementP

✁
such that every module that is a subset of a class inP is also a subset of a class ofP

✁
,

and, in addition, any class ofP
✁
that is a subset of a member ofQ consists only of neighbors or only of

non-neighbors ofx.
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To implement a pivot, letX be the class ofP that containsx. For each neighbory of x in a member ofQ ,
identify the setY ✝ P that containsy, and movey to a twin listY

✁
for Y. Start a new list forY

✁
if Y doesn’t

already have a twin list. In the process, keep a list of the members ofP in which this happens. When
this is finished,Y contains only non-neighbors ofx, and its twinY

✁
contains only neighbors. EstablishY

andY
✁
as classes in the refinementP

✁
. If there arek edges fromx to members ofQ , this operation takes

O ✄ 1 ☎ k ✆ time.
We now describe what we will call thesplit operation, which we will denoteSplit ✄ X ✄ P ✆ . Let P be a

partition of the vertices, and letX ✝ P . Given the arcsE
✁
that have one end inX and the other inV � X, we

may use them to subdivideX and the members ofP � ✁ X ✂ to obtain a refinementP
✁
of P . This refinement

has the property that for anyx ✝ X, each classY of P
✁
contained inV ✄ G✆ � X consists only of neighbors

or only of non-neighbors ofX, and for anyz ✝ V ✄ G✆ � X, each classZ of P
✁
contained inX consists only

of neighbors or only of non-neighbors ofz.
To implement the split operation, we bucket group all arcs✄ x ✄ y✆ in E

✁
by starting vertexx. Each group

gives the neighbors of somex ✝ X in V ✄ G✆ � X. We perform a pivot onx to split up those members
of P that are subsets ofV ✄ G✆ � X. This refinesP . Pivots on the other groups give further successive
refinements ofP . After this has been done, each class ofP that is a subset ofV ✄ G✆ � X has the required
properties. We then use the twin pointers of arcs inE

✁
to find the arcs in✄ V ✄ G✆ � X ✆ ✁ X, and perform

the foregoing steps on them to refineX. When we are done, each class ofP that is a subset ofX has
the desired properties. The procedure returns the refined partition, listing those classes that are subsets
of X separtely from those that are not. If the arcsE

✁
� E

✁ ✄ X ✁ ✄ V ✄ G✆ � X ✆ ✆ are given, the operation
takesO ✄ 1 ☎ ✆ E ✁ ✆ ✆ . If they are not given, it takesO ✄ ✆ X ✆ ☎ deg✄ X ✆ ✆ , wheredeg✄ X ✆ is the sum of degrees of
members ofX, since the adjacency lists of members ofX must be searched to find the members ofE

✁
.

The vertex partitioning algorithm is given by Algorithm 2.

Algorithm 2: Partition ✄ G ✄ P ✆ , Vertex partitioning.

if ✆ P ✆ � 1 then return P ;
else

Let X be a member ofP that is not larger than all others;
Let E be the edges ofG in X ✁ ✄ V ✄ G✆ � X ✆ ;
P

✁
� Split ✄ X ✄ P ✆ ;

G : � G � E;
Let Q be the classes ofP

✁
contained inX;

Let Q
✁
be the classes ofP

✁
contained inV ✄ G✆ � X;

return Partition ✄ G ✆ X ✄ Q ✆ ✂ Partition ✄ G � X ✄ Q ✁ ✆ ;

To prove the correctness, we show that every member of the returned partition is a module. Since
refinements are caused by pivots and no pivot can split up a module, it follows that the returned partition
consists of the maximal modules ofG that are subsets of a class in the initial partition. As a base case, if

✆ P ✆ � 1, its sole member,V ✄ G✆ , is trivially a module inG. Otherwise, assume by induction that the first
recursive call returns a partition ofX whose partition classes are modules inG ✆ X and subsets of classes in
Q . If Y is one of the returned partition classes, every node ofX � Y is either a neighbor of every element
of Y or a non-neighbor of every element ofY. If Z is the member ofQ that containsY, then because of
the call toSplit, each element ofV ✄ G✆ � X is either a neighbor of every element ofZ or a non-neighbor of
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every element ofZ, hence the same can be said aboutY. Thus,Y is a module inG. A symmetric argument
shows that each partition class returned by the second recursive call is a module.

For the time bound, note that the call toSplit takesO ✄ ✆ X ✆ ☎ deg✄ X ✆ ✆ time, since the edges fromX to
V ✄ G✆ � X are not supplied. We charge the cost of this by assessingO ✄ 1✆ to each member ofX and each
edge incident toX. Since ✆ X ✆ � ✆ V ✄ G✆ ✆ ☎

2, a vertex and its edges are charged only if its partition class has
at most half of the vertices passed by the call to the procedure. Since this is also true in the recursive calls,
the next timex ✝ X and its incident edges are charged charged in a recursive call, the partition class that
contains it will have size at most✆ X ✆ ☎

2. We conclude that no element of the graph is charged more than
log2n times, which gives anO ✄ ✄ n ☎ m✆ logn✆ time bound. AnO ✄ ✄ n ☎ m✆ logn✆ bound can be reduced to
anO ✄ n ☎ mlogn✆ bound by spendingO ✄ n ☎ m✆ preprocessing time finding the connected components of
G, applying the algorithm on each component, and combining the results in a trivial way, using the fact
that any union of components is a module.

6.1 Ordered vertex partition
Recall that a graph is prime if it has only trivial modules. Wemay transitively orient prime comparability
graphs and recognize arbitrary prime graphs by revising theabove approach so that it keeps the partition
classes in an ordered list as they are refined. Algorithm 3 gives an important subroutine, which appeared
in [10].

Algorithm 3: OVP✄ G ✄ P ✆
Run Algorithm 2, with the following changes. A linear order on the members ofP is given initially.
Maintain a linear order onP as it is refined, using the following rule: When a pivot on a vertex
p ✝ Y ✝ P splitsX ✝ P into a setXa of adjacent vertices and a setXn of nonadjacent vertices, make
Xa andXn consecutive at the former position ofX in the linear order, withXn the nearer of the two to
Y in the linear order. Return the final partition and its linearorder.

The significance of this ordering will soon become clear. The initial parameterP will always be
✄ ✁ v ✂ ✄ V � ✁ v ✂ ✆ for a vertexv, which we call theseed. To facilitate the computation of the ordering,
we maintain labels on the partition classes so that a classY is labeled with✄ i ✄ j ✆ , wherei is one plus the
sum of cardinalities of classes that precedeY and j is one less than the sum of cardinalities of classes that
follow; these labels are trivial to update during a pivot, andthey allow one to find out quickly whether the
pivot’s class precedes or followsY. This allows us to find the correct relative order forXa andXn in O ✄ 1✆
time, so the time bound forOVP is the same as that forPartition, O ✄ n ☎ mlogn✆ .

Algorithm 4: ComputeG
☎
P ✄ G ✄ v✆ .

Algorithm 2, hence Algorithm 3 explicitly removes those edgesthat are not contained in a member of
P ✄ G ✄ v✆ . Let m

✁
be the number of removed edges. The data structures of Section 4 for implementing

a partition allow us to find which partition class a vertex belongs to inO ✄ 1✆ time. Radix group the
removed edges according to the two partition classes. This takesO ✄ m✁ ✆ time. Discard all but one
representativeedge in each group; the representative edges give the edges of G

☎
P ✄ G ✄ v✆ . The entire

operation takesO ✄ m✁ ✆ time, in addition to the time required by the call toOVP.

Let the edgesexposedby a partition of vertices be those edges that are not contained in a single partition
class. Suppose thatP is ordered so that all arcs that go from earlier to later members of P are in a single
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implication class. In this case, we say that the ordering onP is consistentwith a transitive orientation of
G. Using this as an inductive hypothesis, it is easy to verify that when a class is split according to the
above ordering rules, the refinement ofP and its ordering is also consistent with a transitive orientation:
if a pivot p splitsX into a setXa of adjacent vertices, andXn of nonadjacent vertices, then all members
of ✁ p ✂ ✁ Xa are in one implication class, and these force all members ofXn

✁ Xa that are edges into this
implication class. The inductive hypothesis continues to hold after the class splits. It follows that if the
initial ordering ofP is consistent with a transitive orientation, then so is the final ordering. Thus, ifG is
prime andv is a source vertex in a transitive orientation, then callingthe algorithm with initial ordered
partition ✄ ✁ v ✂ ✄ V ✄ G✆ � ✁ v ✂ ✆ gives a linear extension of the transitive orientation [10].

The problem of transitively orienting a prime comparability graph thus reduces to identifying a source
vertex in a transitive orientation. SupposeP is ordered so that for each vertexx in the last classX, all edges
of ✁ x ✂ ✁ V ✄ G✆ � X are in one implication class. Then if a an argument similar tothe one above shows
that if a pivotp splitsX into Xa andXn, all edges of✁ x ✂ ✁ ✄ V ✄ G✆ � Xa ✆ are in one implication class. By
induction, if the ordered partitioning algorithm is calledwith initial ordered partition✄ ✁ v ✂ ✄ V ✄ G✆ � ✁ v ✂ ✆
for arbitraryv, the last partition class in the final ordering is a source in atransitive orientation.

Algorithm 5 summarizes the procedure for finding a transitiveorientation of a prime comparability
graph [10]:

Algorithm 5: TO(G) Transitive orientation of a prime comparability graph.
Let v be an arbitrary vertex ;
P : � OVP✄ G ✄ ✄ ✁ v ✂ ✄ V ✄ G✆ � ✁ v ✂ ✆ ✆ ;
Let ✁ w ✂ be the rightmost class inP ;
return OVP✄ G ✄ ✄ ✁ w ✂ ✄ V ✄ G✆ � ✁ w ✂ ✆ ✆ .

We now show that the same algorithm recognizes whether an arbitrary graph is prime [10]. Performing
these two vertex partitions without encountering a nontrivial module proves that all edges of the graph
are in a single color class. By Theorem 5.1, this implies thatany nontrivial modules are independent sets.
The first vertex partition finds a nontrivial module if one is asubset ofV ✄ G✆ � v. The second finds one if
one is a subset ofV ✄ G✆ � w. Thus, any nontrivial modules contain bothv andw. However,w is adjacent
to v, since it was rightmost in the final partition, hence was among the neighbors ofv, which were moved
to the right when the pivot onv split V � ✁ v ✂ . Thus, any nontrivial module is an independent set, and any
nontrivial module contains the edges✄ w✄ v✆ . There can be no nontrivial module.

6.2 Finding the modular decomposition of G
�
P ✁ G ✂ v✄

We have shown how to computeP ✄ G ✄ v✆ and to compute the composition of unreduced modular decom-
position trees. The only remaining problem in Algorithm 1 is computing the modular decomposition of
G

☎
P ✄ G ✄ v✆ .
Let a graphG benestedif all nontrivial modules are ancestors of a particular vertex v in MD ✄ G✆ . We

call v and its siblings theinnermostvertices.

Lemma 6.1 For any undirected graph G and any vertex v, G
☎
P ✄ G ✄ v✆ is nested, and✁ v ✂ is an innermost

vertex in it.

Proof: If M is a nontrivial module ofG
☎
P ✄ G ✄ v✆ that does not contain✁ v ✂ , then

�
M is a nontrivial

module ofG that does not containv, by Theorem 3.2. No member ofM is a maximal module ofG not
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containingv, which contradicts the definition ofP . If A andB are overlapping modules ofG
☎
P ✄ G ✄ v✆ ,

then eitherA , B , or A∆B is a nontrivial module ofG
☎
P ✄ G ✄ v✆ that does not contain✁ v ✂ , which we have

just seen cannot happen. Thus, all modules ofG
☎
P are strong and contain✁ v ✂ , from which the result

follows.
�

Thus, the remaining step of Algorithm 1 reduces to computing the modular decomposition of nested
graphs.

Algorithm 5 simultaneously recognizes prime graphs and transitively orients them if they are compa-
rability graphs. Recognizing a prime graph can be viewed as a special case of finding modular decom-
position, which works only if the graph is prime. We generalize it so that it simultaneously computes the
modular decomposition of nested graphs, and finds a transitive orientation when they are comparability
graphs.

We use a variant ofOVP, which is given by Algorithm 6. This procedure applies itself recursively
inside each of the modules found byOVP. The vertices ofG are assumed to be numbered; this determines
selection of the seed vertices in calls toOVP.

Algorithm 6: ROP✄ G✆ , recursive application of OVP (Algorithm 3)
if G has an isolated vertexthen let w be that vertex;
else let w be the highest numbered vertex;
if G has only one vertexthen return ✁ w ✂ ;
else

✄ X1 ✄ X2 ✄ ✂ ✂ ✂ ✄ Xk ✆ : � OVP✄ G ✄ ✄ ✁ w ✂ ✄ V ✄ G✆ � ✁ w ✂ ✆ ✆ ;
Let T be a module tree with one nodeV ✄ G✆ ;
foreach set Xi do Let ROP✄ G ✆ Xi ✆ be theith child of V ✄ G✆ ;
return T

Lemma 6.2 The ROP algorithm takes O✄ ✄ n ☎ m✆ logn✆ time.

Proof: Using the data structure of Section 4, it takesO ✄ 1✆ time to attach each child toV ✄ G✆ . Since the
final tree hasn leaves and every internal node has at least two children, this step takes hasO ✄ n✆ , all steps
except the calls toOVP contributeO ✄ n✆ to the running time ofROP. The running time for the calls to
OVP is bounded by the time spend on pivots in Algorithm 2 inside these calls. In this procedure, no pivot
on a vertexx occurs unless it is in a class that is at most half as large as the class that contained it the
last time a pivot was performed onx in Algorithm 2 and in a class that is half as large as the class that
contained it at the beginning of the call to Algorithm 2. From this last observation, we may conclude that
whenever a pivot is performed onv, it is in a class that is half as large as the class that contained it the
previous time a pivot occurred on it in any call toOVPgenerated byROP. Since the cost of the pivot is
O ✄ 1 ☎ d ✄ v✆ ✆ the total cost of all pivots in all calls toOVP is O ✄ ✄ n ☎ m✆ logn✆ . �

Corollary 6.3 The total time spent in UMD (Algorithm 1) by calls it makes to OVPis O✄ ✄ n ☎ m✆ logn✆ .
Proof: These are the same as the calls toOVPgenerated by a call toROP.

�

Algorithm 7 finds the modular decomposition in nested graphs,if an innermost vertexv is given.
We now demonstrate the correctness. Since all modules ofG containv, the call toOVP✄ G ✄ ✄ ✁ v ✂ ✄ V ✄ G✆ �

✁ v ✂ ✆ simply assigns an ordering to the vertices ofG via the ordering of the returned singleton sets. This
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Algorithm 7: Chain✄ G ✄ v✆ , Modular decomposition in a nested graph.

P : � OVP✄ G ✄ ✄ ✁ v ✂ ✄ V ✄ G✆ � ✁ v ✂ ✆ ;
Number the vertices ofG in order of their appearance inP ;
return ROP✄ G✆ .

ordering is not unique, since it depends on choices of pivotsduring execution of the algorithm. However,
not all permutations are possible. Let us say that an ordering is avalid result for the call if there is a
sequence of pivot choices that causes it to produce that ordering.

Lemma 6.4 If all nontrivial modules of G contain vertex v, X is a module that contains v, andπ is the
ordering of vertices produced by a call to OVP✄ G ✄ ✄ ✁ v ✂ ✄ V ✄ G✆ � ✁ v ✂ ✆ ✆ , thenπ ✆ X is a valid result of a call
to OVP✄ G ✆ X ✄ ✄ ✁ v ✂ ✄ X � ✁ v ✂ ✆ ✆ .
Proof: A vertexy ✝ V ✄ G✆ � X is adjacent to all members ofX or nonadjacent to all of them. Thus,
during a call toOVP✄ G ✄ ✄ ✁ v ✂ ✄ V ✄ G✆ � ✁ v ✂ ✆ ✆ , if two members ofX are in a single partition class before a
pivot on y, they remain in a single class after the pivot, so the pivot ony has no effect on their relative
order. The final ordering ofX is determined exclusively by pivots on members ofX and their adjacencies
in G ✆ X. The production of this ordering can thus be simulated by a call to OVP✄ G ✆ X ✄ ✄ ✁ v ✂ ✄ X � ✁ v ✂ ✆ ✆ . �

In the modular decomposition of a nested graph, each internal node of the decomposition tree has at
most one non-singleton child, namely, the one that containsv. Also, a series or parallel node has exactly
two children; otherwise the union of two that do not containv results in a nontrivial module that does
not containv. Let w

✁
be the seed vertex selected to fill the role ofw in the main call toROP that is

generated inChain. If the root of the tree is a parallel node, thenV ✄ G✆ has two children, one of which
is an isolated node, andw

✁
is selected to be this node. If the root is a series node, thenV ✄ G✆ has two

children, one of which is an isolated node in the complement ofG. The ordering rule in the call toOVP
ensures that this node will receive the highest number of any node, andw

✁
is selected to be this node.

Otherwise, the rightmost class in the numbering produced byOVP is a singleton class✁ w ✂ . As in the
proof of Algorithm 5, all edges out of✁ w ✂ are in the same implication class, andw is adjacent tov. Thus,
all nontrivial modules that containw containv. It follows that ✁ w ✂ is again a child of the root, since all
nontrivial modules containv. The call toOVP✄ G ✄ ✄ ✁ w

✁ ✂ ✄ V ✄ G✆ � ✁ w
✁ ✂ ✆ ✆ generated in this highest-level

call to ROPthen finds the maximal modules that do not containw
✁
, and since✁ w

✁ ✂ is a child of the root,
this call toOVP just returns the children of the root.

We now show that the recursive call generated insideROPfinds the remainder of the tree. Algorithm 7
obviously works correctly whenG has only one vertex. Adopt as an inductive hypothesis thatG is a
nested graph withn vertices and the algorithm works on nested graphs graphs withfewer vertices. LetX
be the non-singleton child ofV ✄ G✆ , the one that contains✁ v ✂ . By Theorem 3.1,G ✆ X is nested withv as
an innermost vertex, so a call toChainon G ✆ X could be used to compute the rest of the tree. Such a call
would first callOVP to assign an ordering toX, and then callROPon G ✆ X. By Lemma 6.4, the vertex
numbering ofX is already available in the numbering of vertices ofX, so the call toROPonG ✆ X returns
exactly what such call toChainon G ✆ X would. By the inductive hypothesis, this is the remainder ofthe
modular decomposition ofG, namely, the subtree rooted atX.

Lemma 6.5 Chain can be run in O✄ ✄ n ☎ m✆ logn✆ time.

Proof: This is immediate from the fact thatOVPandROPboth have this time bound.
�
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7 Efficient implementation of Algorithm 1
The following gives an efficient implementation of Algorithm 1.

Algorithm 8: Final modular decomposition algorithm.

ImplementUMD ✄ G✆ as follows:
ComputeP ✄ G ✄ v✆ with a call to Algorithm 3;
ComputeG

☎
P ✄ G ✄ v✆ with a call to Algorithm 4;

Compute the modular decomposition ofG
☎
P ✄ G ✄ v✆ with a call to Algorithm 7.

Lemma 7.1 Algorithm 8 takes O✄ n ☎ mlogn✆ .
Proof: The set of instances of Step 1 over all recursive calls toUMD is just the set of calls toOVP
generated by a single call toROP. Since that algorithm isO ✄ n ☎ mlogn✆ , Step 1 contributesO ✄ n ☎ mlogn✆
to the running time ofUMD.

By Lemma 4, computingG
☎
P ✄ G ✄ v✆ in the main call takesO ✄ 1✆ time for each edge ofG not contained

in a member ofP ✄ G ✄ v✆ . We charge this cost to these edges. The edges charged in recursive calls are
disjoint from these, so the total contributed by step 2 to therunning time ofUMD is O ✄ m✆ .

A call to Algorithm 7 on a nested graph withn
✁
vertices andm

✁
edges takesO ✄ ✄ n✁ ☎ m

✁ ✆ logn
✁ ✆ time.

G
☎
P ✄ G ✄ v✆ has at most one edge for every edge ofG not contained in a member ofP ✄ G ✄ v✆ . We may

charge the cost of this toO ✄ logn✆ set costsfor each member ofP ✄ G ✄ v✆ , andO ✄ logn✆ edge costsfor each
edge not contained in one of its members. The edges charged are disjoint from those charged in recursive
calls, so Step 3 contributesO ✄ mlogn✆ edge charges. The containment relation on sets incurring a set cost
in some recursive call ofUMD is a tree, so there areO ✄ n✆ of them. The total contributed by Step 3 to the
running time ofUMD is O ✄ ✄ n ☎ m✆ logn✆ .

Computing the composition of the trees takesO ✄ 1✆ for each member ofP ✄ G ✄ v✆ , by Lemma 4.1. This
contributes an additionalO ✄ 1✆ cost to each set incurring a set cost in Step 3. Computing compositions of
trees thus contributesO ✄ n✆ to the running time of the algorithm.

The total running time isO ✄ ✄ n ☎ m✆ logn✆ . However, this bound for any modular decomposition algo-
rithm can be reduced to anO ✄ n ☎ mlogn✆ bound by spendingO ✄ n ☎ m✆ preprocessing time to find the
connected components, and if there arek

� 1 of them applying the algorithm separately to each compo-
nent, and making the resultingk trees children ofV ✄ G✆ .

�

8 Conclusions
Another closely-related variant of this algorithm is to perform ordered vertex partitioning, and then to
perform it recursively inside each nontrivial module that is found. The final result is an ordering of the
vertices. A linear extension of a transitive orientation isobtained by performing a second pass of this
recursive algorithm, except that in each recursive call on asetX of vertices, the initial pivot vertex must
be the rightmost member ofX in the ordering produced by the first pass. Every strong module of G is
identified as a module in one of the two passes. Every module that is found in one of the passes and is
not strong is found to overlap a module found in the other pass. It is therefore a simple matter to obtain
the modular decomposition by discarding those modules fromthe two passes that overlap. The proof of
correctness is quite similar to the one we give above.
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Another promising idea is to try to obtain the result of the vertex partitioning step without actually per-
forming vertex partitioning. This is the approach of the parallel and sequential algorithms of [2, 3]. This
elegant strategy, which is due to Dahlhaus, makes recursive calls on subgraph induced by the neighbors
of v and the subgraph induced by the non-neighbors ofv, and then deletes portions of these two trees
to obtain the members ofP ✄ G ✄ v✆ and their modular decompositions. However, up until now, turning
this idea into anO ✄ n ☎ mα ✄ m✄ n✆ ✆ algorithm requires conceptually difficult tricks, such as letting some
parent pointers in the tree get out of date, and maintaining aunion-find data structure to help simulate
them. It also requires careful charging arguments to prove the time bound. The linear-time variant uses
sophisticated union-find data structures.

One of the important points illustrated by the algorithm is that finding a simple linear-time vertex
partitioning algorithm would give simple linear-time solutions to modular decomposition and transitive
orientation. There is reason to hope that one might exist. Inthe first place, the basis of the difficult
transitive orientation algorithm of [11] is a (difficult) linear-time implementation of Algorithm 6. Thus,
there is no inherent barrier to a linear time bound. It is alsoworth noting that the algorithm we give here
is actually linear on many classes of graphs. For instance, on graphs with fixed degree boundk, it is easy
to verify that, at any point during a call toOVP✄ G ✄ ✁ v ✂ ✄ V ✄ G � ✁ v ✂ ✆ , only one partition class can have size
greater thanc. The proof of this is by induction on the number of pivots performed so far. In the proof of
ROP, we saw that each time a pivot occurs on a vertex, it is in a classthat is half as large as the class that
contained it the previous time it was a pivot. This gives anO ✄ ✄ n ☎ m✆ logk ✆ � O ✄ n ☎ m✆ bound forROP.
SinceROPis the bottleneck for the time bound of Algorithm 8, this givesa linear time bound in this case.

A similar argument shows that on graphs where the ratio of the maximum degreek to the minimum
degreek

✁
is at mostc, the time bound is linear. Supposek

✁
is the minimum degree. Let us say a vertex

is confinedif it is in a class of size at mostk
☎
2, and a pivot is confined if the pivot vertex is confined at

the time. Consider a confined pivot on a vertexp. TheOVPalgorithm removes all edges fromp to other
classes during a pivot. Letd be the number edges still incident top, and let j be the size of the class that
currently contains it. Ifd �

j then the cost of the pivot isO ✄ j ✆ . If d
�

j, we chargeO ✄ d � j ✆ of theO ✄ d ✆
cost of the pivot to thed � j edges thrown out ofG during the pivot, atO ✄ 1✆ per deleted edge. The total of
charged costs over all confined pivots onp is O ✄ 1✆ for each edge originally incident top. The uncharged
cost of the pivot isO ✄ j ✆ . Since the value ofj drops by a factor of two each time a pivot occurs onp, the
uncharged cost of pivots onp after it is confined isO ✄ k ✁ ☎

2 ☎ k
✁ ☎

4 ☎ k
✁ ☎

8 ☎ ✂ ✂ ✂ ☎ 2 ☎ 1✆ � O ✄ k✁ ✆ , which is
O ✄ 1✆ for each edge originally incident top. Thus, confined pivots contributeO ✄ m✆ time to the running
time ofROP. Since the size of a class containingp drops by a factor of two each time it is used as a pivot,
and no pivot occurs on it when it is in a class larger thank, there areO ✄ logk

☎
k

✁ ✆ unconfined pivots onp.
Each pivot takesO ✄ 1✆ time for each edge incident top, so the total contribution of unconfined pivots to the
running time ofROPis O ✄ mlogk

☎
k

✁ ✆ � O ✄ m✆ for graphs where the ratiok
☎
k

✁
of maximum to minimum

degree is bounded by a constant.
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