Discrete Mathematics and Theoretical Computer Scieh@900, 045-060

Ordered Vertex Partitioning®

Ross M. McConnell and Jeremy P. Spinrad

1Dept. of Computer Science and Engineering, University of @olorat Denver, Denver, CO 80217-3364 USA
2Dept. of Computer Science, Vanderbilt University, Nashvili, 37235 USA

received October 25, 1998 vised August 2, 1998ccepted January 25, 2000

A transitive orientation of a graph is an orientation of tliges that produces a transitive digraph. The modular
decomposition of a graph is a canonical representationlafats modules. Finding a transitive orientation and
finding the modular decomposition are in some sense dualgamsb In this paper, we describe a simPig+mlogn)
algorithm that uses this duality to find both a transitiveentation and the modular decomposition. Though the
running time is not optimal, this algorithm is much simplean any previous algorithms that are @in?). The best
known time bounds for the problems @¢n-+ m), but they involve sophisticated techniques.

Keywords: Modular Decomposition, Substitution Decomposition, TrawsiOrientation

1 Motivation

Computing themodular decompositionf an undirected graph andteansitive orientation when one
exists, are problems that come up in a large number of cortdsinhproblems on perfect graphs and
other graph classes. In this paper, we show how both probleduze quite easily to a procedure called
vertex partitioning The resulting algorithm has @xn+ mlogn) time bound, whera is the number of
vertices, andnis the number of edges. Vertex partitioning is the only ofistto a linear time bound. If
no transitive orientation exists, the result still gives thodular decomposition. Neither of these results
is optimal, since these problems can be solved in linear [@hdut the linear-time algorithms are quite
involved and challenging to understand.

A reduction of modular decomposition and transitive oféioh to vertex partitioning was first given
in an unpublished work that was circulated in 1985 [13]. Timepdified reduction we give here is a
combination of ideas from that paper, and from [4]. It wasuliated as an unpublished result in 1994.
The linear time bound of transitive orientation of [9] was@urtgrowth of it. Other subsequent papers
have adopted its approach [7, 8]. In the final section, we disita somewhat weaker role of the approach
in the parallel and sequential algorithms of [2, 3]. Becatigenot the main focus of any of these papers,
the simplicity of the basic approach has not been explainddigly. As we explain below, we believe
that the underlying insights still hold promise for futum@gress in the area.

TThis work has been made possible NSF Grant 98-20840.
1365-8050%©) 2000 Maison de I'Informatique et des Mathématiques Diesr@MIMD), Paris, France

46 Ross M. McConnell and Jeremy P. Spinrad

Fig. 1: A graph and its modules. A module is a ¥ebf vertices such that for eaghe V(G) — X, eithery is adjacent
to every element oX, oryis nonadjacent to every elementXf

2 Introduction

We view an undirected graph as a special case of a directgth gndnere each undirected edgey) is
composed of two directed ar€s y) and(y,x). A digraph istransitiveif, removal of exactly one ofx, y)

or (y,x) for each undirected edde,y). A transitive orientationis one where the resulting digraph is
transitive.Comparability graphsre the class of graphs that have a transitive orientation.

A moduleof G is a setX of nodes such that for any nodeot in X, eitherx is adjacent to every node
of X, or x is nonadjacent to every node ¥f V(G) and its singleton subsets are thigial modules All
graphs have the trivial modules; a graplpisneif it has no nontrivial modules. Figure 1 depicts a graph
and its modules. The following is easily verified:

Theorem 2.1 If X and Y are disjoint modules of a graph, then either everynelat of X is adjacent to
every element of Y, or no element of X is adjacent to any elem¥nt of

Thus, any pair of disjoint modules can be classified as “a&tjior as “nonadjacent.” It follows that if
P is a partition of the nodes @ such that each member #fis a module, the adjacency relationships of
the members of to each other is itself described by a graph, as shown in F@guTdis graph is called
thequotient G2, and? is called acongruence partitionNote that ifX is a set obtained by selecting one
representative node from each membe®pthenG|X is isomorphic toG/?. Theorems about quotients
can be applied to induced subgraphs of this type, a fact thatilveccasionally use in our proofs.

The quotientG/? completely specifies those edges of the graph that are notyirsabgraphG|X
induced by anyX € . Thus, the quotient, together with the subgraphs inducedhéyrtembers of?,
gives a complete representation of the original graph.

The modular decompositiois a way to represent compactly all modules of a graph. TwoulasX
andY overlapif they intersect, but neither contains the othersthbong modulés a module that overlaps
no other. The decomposition is a rooted tree. The nodes®frie are the strong modules of the graph,
and the transitive reduction of the containment relatiothenstrong modules gives the edges of the tree.
By MD(G), we denote the modular decompositiorGof

An equivalent definition of the modular decomposition is thiéofving recursive one. Note that at least
one ofG and its complement is connected.

Ordered Vertex Partitioning 47

{A..l}; Members of congruence patrtition P

G/P:

Fig. 2. A quotient on the graph of Figure 1. For any pgX,Y} of disjoint modules, either every elementXfx Y
is an edge or none is. ThuX,andY may be viewed aadjacentor nonadjacent If 2 is a partition of the vertices a
graph into modules, the adjacencies of membetB o&n be described byquotient graph G2P. The quotient graph
and the subgraphs induced by member® @ompletely specifiG.

48 Ross M. McConnell and Jeremy P. Spinrad

1. (parallel case) If5 is disconnected, its connected components are a congrpamntton, every
union of components is a module, and no module overlaps a aoemp. Thus, the modules &f
can be divided into two sets: those that are a union of comqtsrasd those that are a subset of a
single component. Those that are a subset of a comp@neart be found by recursion @|C.

2. (series case) If the complement®fs disconnected, apply step 1 to the complement.

3. (prime case) Otherwise, let thegghest submoduldse those modules that are not contained in any
other module except(G). When bothG and its complement are connected, the highest submodules
are a congruence partition. The module&afreV (G) and those modules that are subsets of highest
modules. Those that are a subset of a highest submbdtimiay be found by recursion da|M.

At each step of the recursion, this algorithm finds a congregactition. The recursion tree, together
with the quotients induced by these congruence partitiariguely specifyG. Figure 3 gives an example.

If X is a node of the tree an¥ is its children, thechild quotientis (G|X)/9". The name of the prime
case of the modular decomposition is derived from the faadtiftX is a prime node then its child quotient
is prime.

The number of modules of a graph may be exponential, as inabe af a complete graph. However,
it is easy to see from Theorem 3.1, below, that a set of veric@ module ofs if and only if it is a
node of the decomposition tree or a union of children of aeseoir parallel node. Thus, the modular
decomposition gives an implicit representation of the nieslofG.

A directed graph isransitiveif, whenever(a,b) and(b, c) are arcs(a,c) is also an arc. Arientation
of an undirected graph is a directed graph obtained by asgigndirection to each undirected edge. A
graph is acomparability graphf there exists an orientation that is transitive. A trameibrientation can
be found inO(n+ m) time [11], but this algorithm is difficult to understand. Gaghs, and the com-
plements of interval graphs are examples of comparabitaplys. The fastest algorithm for recognizing
permutation graphs takes advantage of the fact that a gsaplpérmutation graph if and only if it both
the graph and its complement are comparability graphs. [11]

3 Strategy of the algorithm

It has long been recognized that there is a type of dualitwéen the modules of a comparability graph

and its transitive orientations [5]. In particular, theesriation of one edge in a transitive orientation

dictates the orientation of another if and only if no moduatains the endnodes of one of the two edges,

but not of the other. Most approaches to transitive oriémiatompute the modular decomposition first.

On the other hand, the modular decomposition can be constreetsily if it is known which edges force

orientations of each other. The approach of our algorithto golve these dual problems concurrently.
The following two theorems, which are widely known, are fundatadi2]:

Theorem 3.1 If X is a module of G, then the modules of G that are subsets of Xhammodules of (X.

Theorem 3.2 If 2 is a congruence partition on G, theti is a module of G2 if and only if J X is a
module of G.

Let G be an undirected graph and iebe a vertex. Anaximal module of G that does not contaiisv
a moduleX such thaX does not contain, but for every module’ such thaiX is a proper subset of, Y
containsv. Let P(G,v) be{v} and the maximal modules & that do not contaiw.

Ordered Vertex Partitioning 49

Fig. 3: The modular decomposition of the graph of Figure 1. The Ieare the vertices of the graph. The internal
nodes are the strong modules, and their members are theildeeendants. An internal node igarallel node
(labeled 0) if the set it denotes induces a disconnectedchgiaud its children are its connected components. It is
a series nodglabeled 1) if the complement of the graph it induces is aafigected graph, and its children are
the connected components of the complement. Itpsime nodeif it induces a graph that is connected and whose
complement is connected,; its children are the maximal nediticontains. A set of vertices is a module if and only
if it is a node of the tree or a union of children of a single flat@r degenerate node.

50 Ross M. McConnell and Jeremy P. Spinrad
Lemma 3.3 A setis a member &?(G,v) if and only if one of the following applies:

1. Itis{v};

2. Itis a child of a prime ancestor ¢i} in the decomposition tree that does not contain v;

3. Itis the union of those children of a series or parallel astor of v that do not contain v.

Proof: This is immediate from the fact that a set is a module if ang dfit is a child of a prime node,
or any union of one or more children of a degenerate node. |

Thus,P(G,v) is a partition of the vertices @, hence a congruence partition.

The nodes of the decomposition tree are the strong modulegeVw, the containment relation on the
nodes is still a tree if we add a weak module to the nodes. Thisiladagla union of a sex of children of
a series or parallel node; the containment relation distii@t it becomes a child of this node, and that the
members ofX become its children. I¥ is the new node and is the parentG|Y is disconnected if and
onlyif G|Z is, andG]|Y is disconnected if and only &|Z is. Thusy is a parallel (series) node if and only if
Zis. Inthis case, we say thitis superfluoussince it is not needed to represent the moduléa aidding
superfluous nodes incrementally yields a tree with multipleesfluous nodes; this tree gives a type of
modular decomposition, but it is not reduced form We will call such a tree annreduced modular
decompositioiif it is not necessarilyn reduced form. It has all the nodes of the modular decontiposi
in addition to a (possibly empty) set of superfluous nodesefsan unreduced decomposition, it is trivial
to derive the reduced modular decomposition, by deletingséparallel) nodes that are children of series
(parallel) nodes in postorder. Thus, in the remainder op#geer, we consider only the problem of how to
produce an unreduced decomposition.

Let P be a congruence partition. L&' be a modular decomposition &/ that is not necessarily
in reduced form, and leTx denote a modular decomposition®fX for X € 2 that is not necessarily in
reduced form. Eacl € P is a leaf of T’. 7' gives all modules o6 that are unions of members @,
while eachZx gives the modules db that are contained in a member®f We can obtain a single tree
that has all of this information by performing tkempositiorof this trees. This is obtained by visiting
each leaf X} of 7’ and attachin@x as a subtree. To be precise, the compositiof‘oéind{Zx : X € P}
is given by{UY :Y € 7'} U {7Zx : X € P}.

Lemma 3.4 Let? be a congruence partition on an arbitrary graph G, {&t be an unreduced modular
decomposition of &P, and letZx be an unreduced modular decomposition ¢KGor X € 2. Then the
composition off” and{Zx : X € P} is an unreduced modular decomposition of G.

Proof: If M is a strong module, then it overlaps no memberPotby definition. ThusM is either
contained in a member @ or is a union of members @. If it is contained in a membeX of 2, then
it is a strong module o65|X, by Theorem 3.1, so it appears as a nod&pf hence as a node of the
composition. I1fM is a union of a se C P, thenM is a strong module o&/ P, by Theorem 3.2, and
appears as a node @f’. It follows thatM appears as a node of the composition. Thus, every strong
module ofG is a node of the composition, from which the result follows. O

Our strategy, which is summarized by Algorithm 1, is to find aregliced decomposition &/ ?(G, V),
find an unreduced decomposition®fX for eachX € P(G,v), and return the composition of these trees.
The vertices may be numbered arbitrarily with distinct ireeqy

Ordered Vertex Partitioning 51

Algorithm 1: UMD(G) Strategy for computing modular decomposition.
Letv be the lowest-numbered vertex®f
if G has only one vertethen return {{v}};
else
\; Let 7’ be the modular decomposition 6f 2(G, v);

foreach memberY of(G,v) do ‘% :=UMD(GJY);
return the composition off’ and{% : Y € P(G,v)}.

The correctness is immediate from Lemma 3.4. This hightivategy was employed by the algorithm
of [4]. However that algorithm had aB(n?) bound, and for some time it was not clear how to improve
the bound.

4 Data structures

We represent a linear order on a $eby labeling the elements &f with unique integer keys, which
need not be consecutive. Sorti¥gin ascending order of these labels gives the represented. oftie
restrictionof rtto X C V, denotedtX, is just a sort o in ascending order of these labels.

Let amodule treebe any set of modules where the transitive reduction of théagoment relation is a
tree, and where the root¥sand the leaves are its singleton subsets. The canonicallaraicomposition
is one example among many. The module treerderedif there is a left-to-right order on the children
of each internal node. X C V(G), let therestriction of a module tred to X, denotedr |X, have as its
nodes the sefY N X :Y is a node ofT }. The transitive reduction of the containment relation gitee
parent relation. IfT is an ordered module tree, then the restrictioiXtas also ordered; this is done in
the unique way that its leavd$x} : x € X} have the same relative order that they d@ inThis is always
possible, since any node ®fis a set that is consecutive on the leaf ordef phence any node df| X is
also consecutive in its leaf order.

To implement a module tree, we let &{1)-size node stand for each node. This node carries a doubly-
linked list of pointers to its children. If the node is a leffcarries a pointer to the corresponding vertex
of G. The set corresponding to an internal node is then just diydts leaf descendants.

Using this representation, we obtain the following:

Lemma4.1 The composition step of Algorithm 1 take§®(G,V)|) time.

Proof: The composition is obtained by replacing each eéf of the decomposition a8/ P (G, v) with
the treeZy. This requires one pointer operation. The decompositio®/@(G, V) has one leaf for each
member ofP(G, V). O
Bucket sorting a list om items by integer keys in the range from 1rtéakesO(n+ m) time, even if
an initialized set of buckets is provided. However, if one omighes to group the items into groups that
have identical keys, the operation may be carried o@(m) time if the initialized buckets are already
available. While inserting the items to buckets, one musiphi maintain a list of nonempty buckets.
When all items are inserted, the list may be used to visit tmynonempty buckets, retrieving one group
at each of them. The operation takes o®iym) time. To distinguish this operation from bucket sorting,
we will call it bucket groupingSimilarly, if a list of mitems must be sorted by a pair of keys in the range
from 1 ton, this takesO(n+ m) time by a radix sort that makes one call to bucket sort for efdche

52 Ross M. McConnell and Jeremy P. Spinrad

keys [1]. If one wishes only to partition the items into grotipat share identical pairs of keys, the calls
to bucket sort may be replaced by bucket groupings, and thigigatakesO(m) time. We will call this
operatiorradix grouping

The data structure for the graph is an adjacency-list reptason, where the vertices are numbered
from 1 ton, and where the adjacency lists are doubly-linked lists. Tdjacency list associated with
vertexx has each arc of the foriix,y). Each such ar¢x,y), in turn, has a pointer to the occurrence of its
“twin” (y,X) in the adjacency list of. We also keep a partitiof® of the vertices. Each partition class of
P is implemented with a doubly-linked list, and each vertexdpsinter to its occurrence in one of these
lists, as well as a pointer to the beginning of this list.

5 The Gamma relation

An undirected graph may be viewed as a special case of a (syijrgraph, where each edde y)
is represented by two ards,y) and(y,X). An orientation of the graph is a choice of one arc from each
such pair.

Let " be a relation on the arcs of a digraph, whéaunew)I" (x,y) if and only if u = x andw andy are
nonadjacent, ow = y andu andx are nonadjacent [5, 6, 12]. LEt be the transitive reflexive closure of
I'. Itis easy to see thdu,w)I'(x,y) in a comparability graph, then in each transitive orientat{u, w)
and(x,y) are either both present or both absent. Transitively, foved that(u, w) ™ (x,y) implies this
also. Sincd * is an equivalence relation, this partitions the edges inbags such that for each group,
either every member of the group is included in a transitiveridntation or none is. These groups are
theimplication classes

If | is a set of arcs, ldt! denote the clas§y,X) : (x,y) € | }. By symmetry, wheneveris an implication
class in an arbitrary graph;?! is also an implication class.

It is easy to see that, in any undirected graph, eithér= | or | ~1 is disjoint froml. Let acolor class
bel Ul ~1 for an implication class. The color classes are a partition of the undirected edg8s Afgraph
is a comparability graph only if every implication class disjoint froml —1; otherwise no orientation of
the graph can contain the implication class. In fact, tharabterizes comparability graphs: an undirected
graph is a comparability graph if and only if for each imptioa class!, | is disjoint froml 1 [6]. We
also make use of the following well-known result, which can benfbin [12]:

Theorem 5.1 If all edges of G are in a single color class, then all nontaivinodules of G are independent
sets.

6 Computing G/P(G,v) and its modular decomposition

We now describe a procedure callegttex partitioningwhich we use to computg(G,v) in Algorithm 1.
The input to the procedure is a partition of the vertices,igfidds a refinement of the partition that gives
the maximal modules d& that are subsets of one of the original partition classes.

The most basic operation in vertex partitioning is ffivot An input is a partition? of the vertices of
the graph, a vertex, and the edges fromto some subseaf of members ofP. The operation produces
a refinementP’ such that every module that is a subset of a clagB is also a subset of a class #f,
and, in addition, any class @ that is a subset of a member @f consists only of neighbors or only of
non-neighbors ok.

Ordered Vertex Partitioning 53

To implement a pivot, leX be the class aP that containg. For each neighbgrof xin a member o,
identify the self € P that containy, and movey to a twin listY’ for Y. Start a new list fol’ if Y doesn't
already have a twin list. In the process, keep a list of the ne@mbf? in which this happens. When
this is finishedY contains only non-neighbors &f and its twinY’ contains only neighbors. Establih
andY’ as classes in the refinemepit If there arek edges fronx to members o, this operation takes
O(1+K) time.

We now describe what we will call theplit operation, which we will denot8plit(X,). Let P be a
partition of the vertices, and &t € P. Given the arc&’ that have one end X and the other iv — X, we
may use them to subdividéand the members @ — {X} to obtain a refinemer®’ of 2. This refinement
has the property that for anye X, each clas¥ of 7’ contained iV (G) — X consists only of neighbors
or only of non-neighbors oX, and for anyz € V(G) — X, each clasg of P’ contained inX consists only
of neighbors or only of non-neighbors nf

To implement the split operation, we bucket group all gs¢g) in E’ by starting vertex. Each group
gives the neighbors of somee X in V(G) — X. We perform a pivot orx to split up those members
of P that are subsets & (G) — X. This refines?. Pivots on the other groups give further successive
refinements ofP. After this has been done, each clas®ahat is a subset &f (G) — X has the required
properties. We then use the twin pointers of arc&'ino find the arcs iV (G) — X) x X, and perform
the foregoing steps on them to refiie When we are done, each class®that is a subset aX has
the desired properties. The procedure returns the refineitigrg listing those classes that are subsets
of X separtely from those that are not. If the aEfs= EN (X x (V(G) — X)) are given, the operation
takesO(1+ |E'|). If they are not given, it take®(|X| + degX)), wherededX) is the sum of degrees of
members oK, since the adjacency lists of members<ofmust be searched to find the membergbf

The vertex partitioning algorithm is given by Algorithm 2.

Algorithm 2: Partition(G,), Vertex partitioning.
if |P| = 1thenreturn 2;
else
Let X be a member of that is not larger than all others;
Let E be the edges db in X x (V(G) — X);
P = Split(X, P);
G:=G-E;
Let Q be the classes &' contained inX;
Let Q’ be the classes @ contained iV (G) — X;
return Partition(G|X, Q) U Partition(G— X, Q’);

To prove the correctness, we show that every member of thensgtipartition is a module. Since
refinements are caused by pivots and no pivot can split up allaaitifollows that the returned partition
consists of the maximal modules Gfthat are subsets of a class in the initial partition. As a base,df
|?| =1, its sole membel (G), is trivially a module inG. Otherwise, assume by induction that the first
recursive call returns a partition Bfwhose partition classes are module§iiX and subsets of classes in
Q. If Y is one of the returned partition classes, every nod¢ efY is either a neighbor of every element
of Y or a non-neighbor of every elementf If Z is the member of) that contain&’, then because of
the call toSplit, each element &f (G) — X is either a neighbor of every elementdér a non-neighbor of

54 Ross M. McConnell and Jeremy P. Spinrad

every element o, hence the same can be said abauthus,Y is a module inG. A symmetric argument
shows that each partition class returned by the second reeged! is a module.

For the time bound, note that the call$plit takesO(|X| + deg X)) time, since the edges frok to
V(G) — X are not supplied. We charge the cost of this by asse§3fayto each member oX and each
edge incident tX. Since|X| < |[V(G)|/2, a vertex and its edges are charged only if its partitioaschas
at most half of the vertices passed by the call to the proedince this is also true in the recursive calls,
the next timex € X and its incident edges are charged charged in a recursivétmapartition class that
contains it will have size at mo$sX|/2. We conclude that no element of the graph is charged more tha
log, n times, which gives a®((n+ m)logn) time bound. AnO((n+ m)logn) bound can be reduced to
anO(n+ mlogn) bound by spendin@®(n+ m) preprocessing time finding the connected components of
G, applying the algorithm on each component, and combiniegésults in a trivial way, using the fact
that any union of components is a module.

6.1 Ordered vertex partition

Recall that a graph is prime if it has only trivial modules. Way transitively orient prime comparability
graphs and recognize arbitrary prime graphs by revisinglfoe approach so that it keeps the partition
classes in an ordered list as they are refined. Algorithm Jgiveimportant subroutine, which appeared
in [10].

Algorithm 3: OVP(G, P)
Run Algorithm 2, with the following changes. A linear order oe thembers of’ is given initially.
Maintain a linear order orP as it is refined, using the following rule: When a pivot on a eert
peY e P splitsX € P into a setX, of adjacent vertices and a 9§t of nonadjacent vertices, make
Xa andX, consecutive at the former positionXfin the linear order, withX,, the nearer of the two to
Y in the linear order. Return the final partition and its lineeder.

The significance of this ordering will soon become clear. Titigal parameter? will always be
({v},V — {v}) for a vertexv, which we call theseed To facilitate the computation of the ordering,
we maintain labels on the partition classes so that a dasdabeled with(i, j), wherei is one plus the
sum of cardinalities of classes that prec¥dend | is one less than the sum of cardinalities of classes that
follow; these labels are trivial to update during a pivot, #mely allow one to find out quickly whether the
pivot's class precedes or follows This allows us to find the correct relative order ¥orandX, in O(1)
time, so the time bound f@®V Pis the same as that f®artition, O(n+ mlogn).

Algorithm 4: ComputeG/P(G, V).
Algorithm 2, hence Algorithm 3 explicitly removes those edties are not contained in a member of
P(G,v). Letm' be the number of removed edges. The data structures of Sdctin implementing
a partition allow us to find which partition class a vertex Ingle to inO(1) time. Radix group the
removed edges according to the two partition classes. akesO(nY) time. Discard all but one
representativeedge in each group; the representative edges give the efiGg<®0G, v). The entire
operation take®(n') time, in addition to the time required by the call@®y P.

Let the edgeexposedby a partition of vertices be those edges that are not caedaima single partition
class. Suppose thdtis ordered so that all arcs that go from earlier to later mambEP are in a single

Ordered Vertex Partitioning 55

implication class. In this case, we say that the ordering?as consistentvith a transitive orientation of
G. Using this as an inductive hypothesis, it is easy to verifjt ththen a class is split according to the
above ordering rules, the refinement®find its ordering is also consistent with a transitive oritoma
if a pivot p splits X into a setX, of adjacent vertices, and, of nonadjacent vertices, then all members
of {p} x Xy are in one implication class, and these force all membel§, of X, that are edges into this
implication class. The inductive hypothesis continuesdlul lafter the class splits. It follows that if the
initial ordering of P is consistent with a transitive orientation, then so is thalfordering. Thus, iG is
prime andv is a source vertex in a transitive orientation, then caltimg algorithm with initial ordered
partition({v},V(G) — {v}) gives a linear extension of the transitive orientation [10]

The problem of transitively orienting a prime comparabpiitaph thus reduces to identifying a source
vertex in a transitive orientation. SuppaBés ordered so that for each vertein the last clasX, all edges
of {x} x V(G) — X are in one implication class. Then if a an argument similaht®oone above shows
that if a pivotp splits X into X, andX,, all edges of x} x (V(G) — Xa) are in one implication class. By
induction, if the ordered partitioning algorithm is calledth initial ordered partition{v},V(G) — {v})
for arbitraryv, the last partition class in the final ordering is a sourcetiraasitive orientation.

Algorithm 5 summarizes the procedure for finding a transitivientation of a prime comparability
graph [10]:

Algorithm 5: TO(G) Transitive orientation of a prime comparability graph.
Letv be an arbitrary vertex ;
P:=OVIG, ({v},V(G) - {v}));
Let {w} be the rightmost class iff ;
return OVPR(G, ({w},V(G) — {w})).

We now show that the same algorithm recognizes whether ammasbgraph is prime [10]. Performing
these two vertex partitions without encountering a nordtimodule proves that all edges of the graph
are in a single color class. By Theorem 5.1, this implies éimgtnontrivial modules are independent sets.
The first vertex partition finds a nontrivial module if one isubset oW (G) — v. The second finds one if
one is a subset &f(G) — w. Thus, any nontrivial modules contain batlandw. Howeverw is adjacent
tov, since it was rightmost in the final partition, hence was agriitve neighbors of, which were moved
to the right when the pivot omsplitV — {v}. Thus, any nontrivial module is an independent set, and any
nontrivial module contains the edg@g v). There can be no nontrivial module.

6.2 Finding the modular decomposition of G/P(G, V)

We have shown how to comput&G, v) and to compute the composition of unreduced modular decom-
position trees. The only remaining problem in Algorithm 1 ésvputing the modular decomposition of
G/P(G,v).

Let a graphG be nestedf all nontrivial modules are ancestors of a particular @eftin MD(G). We
call vand its siblings thénnermostvertices.

Lemma6.1 For any undirected graph G and any vertex v, %G, V) is nested, andv} is an innermost
vertex in it.

Proof: If ¢ is a nontrivial module ofG/?(G, V) that does not contaifv}, then{J M is a nontrivial
module ofG that does not contain, by Theorem 3.2. No member 6f is a maximal module o6 not

56 Ross M. McConnell and Jeremy P. Spinrad

containingv, which contradicts the definition @. If -2 and B are overlapping modules @&/?(G,V),
then either4, B, or AAB is a nontrivial module oG/ (G, v) that does not contaifv}, which we have
just seen cannot happen. Thus, all module&pf are strong and contaifv}, from which the result
follows. m|

Thus, the remaining step of Algorithm 1 reduces to computirgrhodular decomposition of nested
graphs.

Algorithm 5 simultaneously recognizes prime graphs andsiti@ely orients them if they are compa-
rability graphs. Recognizing a prime graph can be viewed geeaial case of finding modular decom-
position, which works only if the graph is prime. We genemlizso that it simultaneously computes the
modular decomposition of nested graphs, and finds a tre@sitientation when they are comparability
graphs.

We use a variant o®V P, which is given by Algorithm 6. This procedure applies itsel€ursively
inside each of the modules found 6y P. The vertices ofs are assumed to be numbered,; this determines
selection of the seed vertices in callsQy P.

Algorithm 6: RORG), recursive application of OVP (Algorithm 3)
if G has an isolated vertethen let w be that vertex;
else letw be the highest numbered vertex;
if G has only one vertethen return{wy};
else
(X1, %2, -, X) 1= OVP(G, ({w},V(G) — {w})) ;
LetT be a module tree with one noW€G) ;
foreach set X do Let ROR(G|X;) be theit" child of V(G) ;
return T

Lemma 6.2 The ROP algorithm takes(@ -+ m)logn) time.

Proof: Using the data structure of Section 4, it tak&d) time to attach each child t%6(G). Since the
final tree has leaves and every internal node has at least two childrenstap takes had(n), all steps
except the calls t@®V P contributeO(n) to the running time oROP. The running time for the calls to
OV Pis bounded by the time spend on pivots in Algorithm 2 inside¢healls. In this procedure, no pivot
on a vertexx occurs unless it is in a class that is at most half as largeesl#ss that contained it the
last time a pivot was performed onin Algorithm 2 and in a class that is half as large as the class that
contained it at the beginning of the call to Algorithmom this last observation, we may conclude that
whenever a pivot is performed anit is in a class that is half as large as the class that coedairthe
previous time a pivot occurred on it in any call@y P generated byROP. Since the cost of the pivot is
O(1+d(v)) the total cost of all pivots in all calls toV Pis O((n+ m) logn). O

Coroallary 6.3 The total time spent in UMD (Algorithm 1) by calls it makes to Q¥ B((n+ m)logn).

Proof: These are the same as the call©WP generated by a call tROP. O
Algorithm 7 finds the modular decomposition in nested grajlas innermost vertex is given.
We now demonstrate the correctness. Since all modul@goftainv, the call toOV (G, ({v},V(G) —
{v}) simply assigns an ordering to the vertices®¥ia the ordering of the returned singleton sets. This

Ordered Vertex Partitioning 57

Algorithm 7: Chain(G,v), Modular decomposition in a nested graph.
P := OVA(G, ({v},V(G) — {v});
Number the vertices db in order of their appearance i,
return RORG).

ordering is not unique, since it depends on choices of paotig execution of the algorithm. However,
not all permutations are possible. Let us say that an ordesimvalid result for the call if there is a
sequence of pivot choices that causes it to produce thatingde

Lemma 6.4 If all nontrivial modules of G contain vertex v, X is a modulettbantains v, andtis the
ordering of vertices produced by a call to OV®, ({v},V(G) — {v})), thentiX is a valid result of a call
to OVR(GIX, ({v},X — {v})).

Proof: A vertexy € V(G) — X is adjacent to all members &f or nonadjacent to all of them. Thus,
during a call toOV P(G, ({v},V(G) — {v})), if two members o are in a single partition class before a
pivot ony, they remain in a single class after the pivot, so the pivoy tias no effect on their relative
order. The final ordering of is determined exclusively by pivots on memberxcaind their adjacencies
in G|X. The production of this ordering can thus be simulated byllae®V P(G|X, ({v},X = {v})). O

In the modular decomposition of a nested graph, each intante of the decomposition tree has at
most one non-singleton child, namely, the one that contairdso, a series or parallel node has exactly
two children; otherwise the union of two that do not contairesults in a nontrivial module that does
not containv. Letw be the seed vertex selected to fill the rolewofn the main call toROP that is
generated irfChain If the root of the tree is a parallel node, thé(G) has two children, one of which
is an isolated node, andl is selected to be this node. If the root is a series node, &) has two
children, one of which is an isolated node in the compleme@.of he ordering rule in the call tOV P
ensures that this node will receive the highest number of anlenandw’ is selected to be this node.
Otherwise, the rightmost class in the numbering produce@®W¥ is a singleton clas$w}. As in the
proof of Algorithm 5, all edges out dfw} are in the same implication class, amds adjacent tor. Thus,
all nontrivial modules that contaiw containv. It follows that{w} is again a child of the root, since all
nontrivial modules contain. The call toOV P(G, ({w'},V(G) — {w'})) generated in this highest-level
call to ROPthen finds the maximal modules that do not cont&inand since{w'} is a child of the root,
this call toOV Pjust returns the children of the root.

We now show that the recursive call generated inBi@éfinds the remainder of the tree. Algorithm 7
obviously works correctly whef® has only one vertex. Adopt as an inductive hypothesis &&t a
nested graph with vertices and the algorithm works on nested graphs graphdevitbr vertices. LeK
be the non-singleton child &f(G), the one that containgr/}. By Theorem 3.1G|X is nested withy as
an innermost vertex, so a call@hainon G|X could be used to compute the rest of the tree. Such a call
would first callOV Pto assign an ordering t&, and then calROPon G|X. By Lemma 6.4, the vertex
numbering ofX is already available in the numbering of vertices<gfso the call td(ROPon G|X returns
exactly what such call t€hainon G|X would. By the inductive hypothesis, this is the remaindethef
modular decomposition @b, namely, the subtree rooted>at

Lemma 6.5 Chain can be run in @n+ m)logn) time.

Proof: This is immediate from the fact th&@ PandROPboth have this time bound. O

58 Ross M. McConnell and Jeremy P. Spinrad

7 Efficient implementation of Algorithm 1

The following gives an efficient implementation of Algorithm 1

Algorithm 8: Final modular decomposition algorithm.
ImplementJ MD(G) as follows:
ComputeP(G,v) with a call to Algorithm 3;
ComputeG/P(G,v) with a call to Algorithm 4;
Compute the modular decomposition®f (G, V) with a call to Algorithm 7.

Lemma 7.1 Algorithm 8 takes @n+ mlogn).

Proof: The set of instances of Step 1 over all recursive calld MD is just the set of calls t®V P
generated by a single call ROP. Since that algorithm i©(n+ mlogn), Step 1 contribute®(n+ mlogn)
to the running time o) MD.

By Lemma 4, computing/?(G, V) in the main call take®(1) time for each edge db not contained
in a member ofP(G,v). We charge this cost to these edges. The edges charged isiveccalls are
disjoint from these, so the total contributed by step 2 tartinming time ofu MD is O(m).

A call to Algorithm 7 on a nested graph witli vertices andn’ edges take®((n' + m')logn’) time.
G/?P(G,v) has at most one edge for every edgeZohot contained in a member & (G,v). We may
charge the cost of this 1©(logn) set costsor each member of(G,v), andO(logn) edge costfor each
edge not contained in one of its members. The edges chargelisgoint from those charged in recursive
calls, so Step 3 contribut€(mlogn) edge charges. The containment relation on sets incurrirg@ost
in some recursive call aMD is a tree, so there af@(n) of them. The total contributed by Step 3 to the
running time ofU MD is O((n+ m) logn).

Computing the composition of the trees tak&4) for each member of(G,v), by Lemma 4.1. This
contributes an addition&(1) cost to each set incurring a set cost in Step 3. Computing ositigns of
trees thus contributed(n) to the running time of the algorithm.

The total running time i©((n+ m)logn). However, this bound for any modular decomposition algo-
rithm can be reduced to @(n+ mlogn) bound by spendin@(n+ m) preprocessing time to find the
connected components, and if there lare 1 of them applying the algorithm separately to each compo-
nent, and making the resultihgrees children o¥/ (G). O

8 Conclusions

Another closely-related variant of this algorithm is to penfi ordered vertex partitioning, and then to
perform it recursively inside each nontrivial module trefaund. The final result is an ordering of the
vertices. A linear extension of a transitive orientatiomidained by performing a second pass of this
recursive algorithm, except that in each recursive call satX of vertices, the initial pivot vertex must
be the rightmost member & in the ordering produced by the first pass. Every strong meodiG is
identified as a module in one of the two passes. Every modatdgtfound in one of the passes and is
not strong is found to overlap a module found in the other phss therefore a simple matter to obtain
the modular decomposition by discarding those modules fr@mwo passes that overlap. The proof of
correctness is quite similar to the one we give above.

Ordered Vertex Partitioning 59

Another promising idea is to try to obtain the result of theteepartitioning step without actually per-
forming vertex partitioning. This is the approach of theghiat and sequential algorithms of [2, 3]. This
elegant strategy, which is due to Dahlhaus, makes recursigeatasubgraph induced by the neighbors
of v and the subgraph induced by the non-neighborg, @ind then deletes portions of these two trees
to obtain the members af(G,v) and their modular decompositions. However, up until now,ihgn
this idea into arO(n+ ma(m,n)) algorithm requires conceptually difficult tricks, such atihg some
parent pointers in the tree get out of date, and maintainingian-find data structure to help simulate
them. It also requires careful charging arguments to prbgditne bound. The linear-time variant uses
sophisticated union-find data structures.

One of the important points illustrated by the algorithm iattfinding a simple linear-time vertex
partitioning algorithm would give simple linear-time stins to modular decomposition and transitive
orientation. There is reason to hope that one might existthénfirst place, the basis of the difficult
transitive orientation algorithm of [11] is a (difficultylear-time implementation of Algorithm 6. Thus,
there is no inherent barrier to a linear time bound. It is asath noting that the algorithm we give here
is actually linear on many classes of graphs. For instancgraphs with fixed degree boukgit is easy
to verify that, at any point during a call @V P(G,{v},V (G — {v}), only one partition class can have size
greater thar. The proof of this is by induction on the number of pivots penfed so far. In the proof of
ROP, we saw that each time a pivot occurs on a vertex, it is in a thedds half as large as the class that
contained it the previous time it was a pivot. This give<G{in+ m)logk) = O(n+ m) bound forROP.
SinceROPiIs the bottleneck for the time bound of Algorithm 8, this giedinear time bound in this case.

A similar argument shows that on graphs where the ratio of theman degreek to the minimum
degreek is at mostc, the time bound is linear. Suppokkeis the minimum degree. Let us say a vertex
is confinedif it is in a class of size at mo$t/2, and a pivot is confined if the pivot vertex is confined at
the time. Consider a confined pivot on a verfexrhe OV P algorithm removes all edges fropto other
classes during a pivot. Letbe the number edges still incidentpoand letj be the size of the class that
currently contains it. Ifl < j then the cost of the pivot ©(j). If d > j, we chargeD(d — j) of the O(d)
cost of the pivot to thel — j edges thrown out db during the pivot, aO(1) per deleted edge. The total of
charged costs over all confined pivots pis O(1) for each edge originally incident fo. The uncharged
cost of the pivot i€0(). Since the value of drops by a factor of two each time a pivot occursmithe
uncharged cost of pivots gmafter it is confined iO(k'/2+ K /4+K /8+ ...+ 2+ 1) = O(K'), which is
0O(1) for each edge originally incident tp. Thus, confined pivots contribut®(m) time to the running
time of ROP. Since the size of a class containipdrops by a factor of two each time it is used as a pivot,
and no pivot occurs on it when it is in a class larger thathere areD(logk/k’) unconfined pivots op.
Each pivot take®(1) time for each edge incident fn so the total contribution of unconfined pivots to the
running time ofROPis O(mlogk/k’) = O(m) for graphs where the ratig/k’ of maximum to minimum
degree is bounded by a constant.

References

[1] T.H. Cormen, C.E. Leiserson, and R.L. Rive&tgorithms MIT Press, Cambridge, Massachusetts,
1990.

[2] E. Dahlhaus. Efficient parallel modular decompositiori® 2nt’| Workshop on Graph Theoretic
Concepts in Comp. Sci. (WG 92)1, 1995.

60 Ross M. McConnell and Jeremy P. Spinrad

[3] E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient anacfical modular decomposition.
Proceedings of the eighth annual ACM-SIAM symposium onetsatgorithms8:26—-35, 1997.

[4] A. Ehrenfeucht, H.N. Gabow, R.M. McConnell, and S.J. SullivaAn O(n?) divide-and-conquer
algorithm for the prime tree decomposition of two-struetiand modular decomposition of graphs.
Journal of Algorithms16:283—-294, 1994.

[5] T. Gallai. Transitiv orientierbare grapheActa Math. Acad. Sci. Hungad 8:25-66, 1967.
[6] M.C. Golumbic.Algorithmic Graph Theory and Perfect GraphScademic Press, New York, 1980.

[7] M. Habib, R. McConnell, C. Paul, and L. Viennot. Trans#tierientation, interval graph recognition,
and consecutive ones testiritheoretical Computer Science (to appear)

[8] M. Habib, C. Paul, and L. Viennot. Partition refining te@unes. Manuscript

[9] R. M. McConnell and J. P. Spinrad. Modular decompositonl transitive orientationDiscrete
Mathematics201(1-3):189-241, 1999.

[10] R.M. McConnell and J.P. Spinrad. Linear-time modulkecamposition and efficient transitive orien-
tation of comparability graph®roceedings of the Fifth Annual ACM-SIAM Symposium on Discret
Algorithms 5:536-545, 1994.

[11] R.M. McConnell and J.P. Spinrad. Linear-time transitorientation. Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorith149-25, 1997.

[12] R.H. Mohring. Algorithmic aspects of comparability gies and interval graphs. In I. Rival, editor,
Graphs and Orderpages 41-101. D. Reidel, Boston, 1985.

[13] J.P. Spinrad. Graph partitioninlylanuscript 1985.

