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Abstract.

We refine the classical Littlewood-Richardson rule in several different settings. We begin with a combinatorial rule for the product of a
Demazure atom and a Schur function. Building on this, we also describe the product of a quasisymmetric Schur function and a Schur
function as a positive sum of quasisymmetric Schur functions. Finally, we provide a combinatorial formula for the product of a Demazure
character and a Schur function as a positive sum of Demazure characters. This last rule implies the classical Littlewood-Richardson rule
for the multiplication of two Schur functions.

Résumé.

Nous décrivons trois nouvelles règles de Littlewood-Richardson, et chaque nouvelle règle partage la vielle règle de Littlewood-Richardson.
La première règle multiplie un atome de Demazure et un fonction de Schur. Le deuxième multiplie un fonction de quasisymmetric-Schur
et un fonction de Schur. Le troisième multiplie un caractère de Demazure et un fonction de Schur. Cette dernière règle est une description
de la vielle règle de Littlewood-Richardson.
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1 Introduction
In (5), Haglund, Haiman, and Loehr obtained a new combinatorial formula for the type A nonsymmetric Macdonald poly-
nomial Eα(x1, . . . , xn; q, t) first introduced by Macdonald (8), where α is a (weak) composition into n nonnegative parts.
This formula involves inversion triples, a combinatorial construct introduced in the study of symmetric Macdonald poly-
nomials (3), (4). By letting q = t = 0, we obtain a new combinatorial formula for the Eα(X; 0; 0), which are known
(13) to be certain B-module characters studied by Demazure, now commonly referred to as Demazure characters. Mar-
shall (9) has shown that many of the nice analytic properties of type A symmetric Macdonald polynomials, such as their
occurrence in a generalization of Selberg’s Integral, are shared by type A nonsymmetric Macdonald polynomials as well.
In his work he used a modified version obtained from the Eα by replacing q, t by 1/q, 1/t, reversing the order of the xi-
variables, and reversing the order of the parts of α. The combinatorics of the case q = t = 0 of these polynomials, i.e.
Eαn,...,α1(xn, . . . , x1;∞,∞), was investigated in (10), (11), including a direct combinatorial proof that they are in fact the
same as polynomials introduced by Lascoux and Schützenberger (7) in connection with the study of Schubert polynomials,
which they called standard bases, and which equal the characters of quotients of Demazure modules. The Demazure charac-
ters are sometimes called key polynomials (12) and in prior work as well as in this article the standard bases of Lascoux and
Schützenberger are referred to as Demazure atoms. It is known that the Demazure character is a positive sum of Demazure
atoms, and that the Schubert polynomial is a positive sum of Demazure characters.

Schur functions are special cases of both Demazure characters and Schubert polynomials, and the decomposition of a
Schur function as a positive sum of Demazure atoms was proved directly in (10) using an extension of the RSK algorithm.
It is well-known (2) that the Schur function sλ(x1, . . . , xn) is a sum of Gessel’s fundamental quasisymmetric functions,
one for each standard Young tableau of shape λ. It is natural to investigate how this decomposition correlates with the
expansion of sλ into Demazure atoms. In the predecessor to this article (6), the authors introduced a new basis for the
ring of quasisymmetric functions called “quasisymmetric Schur functions” denoted Sβ(x1, . . . , xn), where β is a (strong)
composition. They defined Sβ as a sum of certain Demazure atoms, and it follows immediately from the results in (10) and
the decomposition of Schur functions into atoms that sλ =

∑
β Sβ , where the sum is over all multiset permutations β of

the parts of λ. Note that if the Ferrers shape of λ is a rectangle, then the sum has only one term and sλ = Sλ. The authors
showed that if you multiply a quasisymmetrc Schur function by an elementary symmetric function ek(= s1k ) or a complete
homogeneous symmetric function hk(= sk) then this result can be expressed in a simple combinatorial way as a positive
sum of quasisymmetric Schur functions. From this rule the classical Pieri rule for multiplying a Schur function by an ek or
hk can be easily derived.

In this article we generalize the result by showing that the product of a Schur function with a quasisymmetric Schur
function (respectively Demazure character, Demazure atom) expands positively into quasisymmetric Schur functions (re-
spectively Demazure characters, atoms), and we give a simple combinatorial rule for the coefficients in this expansion.
The description of the rule contains many elements in common with the classical Littlewood-Richardson (LR) rule for the
multiplication of two Schur functions, and the authors’ proof is essentially a refinement of the proof of the LR-rule in Ful-
ton’s book on Young Tableaux (1) involving the combinatorial constructs (such as inversion triples) occurring in the new
combinatorial formulas for quasisymmetric Schur functions, Demazure characters, and Demazure atoms. One can obtain
the classical LR-rule from the rule for Demazure atoms by careful bookkeeping combined with the decomposition of Schur
functions into atoms.

1.1 Sequences and words
A strong (resp. weak) composition is a finite sequence of positive (resp. nonnegative) integers. A partition is a multiset of
nonnegative integers, which we usually present as a weakly decreasing sequence. By γ̃ we denote the underlying partition
of γ, and by γ+ the strong composition underlying γ i.e. γ with its zero parts removed. When necessary, any of these may
be considered to be an infinite sequence of integers in which all but a finite number of entries is zero. By γ∗ we denote the
sequence that contains the parts of γ in reverse order.

For any finite sequence α = (α1, . . . , αr) we denote `(α) := r and |α| :=
∑
i αi. Given two (possibly weak) compo-

sitions α = (α1, . . . , αr) and β = (β1, . . . , βr) of the same length, we say that α is contained in β, denoted α ⊆ β, if
αi ≤ βi for all 1 ≤ i ≤ r.

A finite sequence w of positive integers is called a lattice word if for every positive integer i, every prefix of w contains
at least as many i’s as (i + 1)’s. A finite sequence w of positive integers is called a reverse lattice word (or Yamanouchi
word) if for every positive integer i, every suffix of w contains at least as many i’s as (i + 1)’s. The weight of a word w is
the sequence λ = (λ1, . . . , λr) such that for every 1 ≤ i ≤ r, w contains exactly λi elements of value i. Note that if w is a
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lattice or reverse lattice word, then its weight will be a partition. Define the function φn : Z → Z by φn(k) = n + 1 − k.
Let w = (w1, . . . , wt) be a sequence of integers with largest element r. Define Φ(w) = (φr(w1), . . . , φr(wt)). Then we
will say that a word w is a contre-lattice word if Φ(w) is a lattice word and the weight of Φ(w) is a partition of length r, i.e.
the weight of w is λ∗ for some partition λ. Similarly, we will say that w is a reverse contre-lattice (or contre-Yamanouchi)
word if w∗ is a contre-lattice word.

1.2 Diagrams and tableaux
Given any partition λ = (λ1, . . . , λr), we have a partition diagram, denoted dg(λ), consisting of the usual left-justified
arrangement of rows of cells (sometimes called squares or boxes), one row for each part of λ, the part λi giving the number
of cells in row i. We use the English convention for our diagrams, so that the longest row (of length λ1) at the top of the
diagram. We index the cells of a diagram by (row, column) pairs of positive integers.

A semistandard Young tableau (SSYT) is a partition diagram filled in such a way that the entries within each row increase
weakly left-to-right and the entries within each column increase strictly top-to-bottom. A standard Young tableau (SYT)
is a SSYT in which the set of entries is exactly [n] = {1, . . . , n}, where the diagram has n cells altogether. We use the
word tableau without modifiers to refer to an SSYT unless otherwise indicated. Given partitions µ ⊆ λ, the diagram of
skew shape λ/µ consists of those cells of dg(λ) that are not in dg(µ). Skew tableaux, both standard and semistandard, are
defined analogously in the obvious way.

1 1 3 6
2 4 4 7
4 6
7

6
4 7

4 6
7

diagram tableau skew tableau on
(4, 4, 2, 1)/(3, 2)

Fig. 1: Diagram and tableau examples

The content of a tableau T is the weak composition γ for which γi is the number of entries of T with value i, for all positive
i. For example, in Figure 1, the first tableau has content (2, 1, 1, 3, 0, 2, 2). Given a set of variables X = {x1, x2, x3, . . .}
indexed by positive integers, the (monomial) weight of T , denoted xT , is the monomial for which the exponent of xi is γi,
the number of entries of T with value i. For the aforementioned example, the monomial weight is x2

1x2x3x
3
4x

2
6x

2
7.

The row reading order is a total ordering of the cells of a (possibly skew) diagram where (i, j) <row (i′, j′) if either
i > i′ or (i = i′ and j < j′). That is, the row reading order reads the cells from left-to-right in each row, starting with
the bottommost row and proceeding upwards to the top row. The row reading word of a tableau T , denoted wrow(T ) is
the sequence of integers formed by the entries of T taken in row reading order. A Littlewood-Richardson skew tableau is a
skew tableau whose row reading word is a reverse lattice word.

We will also make use of a slightly different reading order on diagrams, which we will refer to as the column reading
order. In the column reading order, we have (i, j) <col (i′, j′) if either j > j′ or (j = j′ and i < i′). That is, the column
reading order reads the cells from top-to-bottom within each column, starting with the rightmost column and working
leftwards. The column reading word of a tableau T , denoted wcol(T ), is the sequence of integers formed by the entries of
T taken in column reading order.

1.3 The Littlewood-Richardson rule
The graded algebra of symmetric functions

Λ = Λ0 ⊕ Λ1 ⊕ · · · ⊆ Z[[x1, x2, x3, . . .]]

has each graded piece given by
Λn = span {sλ|λ is a partition of n}
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where Λ0 = {1}. The Schur function sλ can in turn be defined as

sλ =
∑

T∈SSY T
shape(T )=λ

xT .

The product of two Schur functions expands as a sum of Schur functions whose coefficients are nonnegative. The
coefficients are called Littlewood-Richardson coefficients and also arise in representation theory and algebraic geometry.
The rule for the computing the coefficients is called the Littlewood-Richardson rule, and can be described as follows.

Theorem 1 (Littlewood-Richardson rule) Let λ, µ, ν be partitions. In the expansion

sλ · sµ =
∑
ν

cνλµsν ,

the Littlewood-Richardson coefficient cνλµ is the number of Littlewood-Richardson skew tableaux of shape ν/λ with content
µ.

1.4 Skyline and composition diagrams
Earlier papers (5; 10; 11) introduce column diagrams, or skyline diagrams, similar to partition diagrams, whose shapes are
indexed by weak compositions. The parts of the composition specify the number of cells in the respective columns of the
diagram. These diagrams are usually augmented by a basement, an extra row on the bottom (row 0) whose entries contain
positive integers. For example, for the augmented diagram indexed by the weak composition (2, 0, 3, 1, 2) with increasing
basement (left-to-right) is shown in the leftmost diagram of Figure 2.

1 2 3 4 5

1
2
3
4
5

5
4
3
2
1

skyline diagram, skyline diagram, skyline diagram, composition
w/increasing w/increasing w/decreasing diagram
basement basement basement
(old style) (new style)

Fig. 2: Skyline and composition diagram examples

However, for consistency with other diagrams, including tableaux, in this paper we will draw our skyline diagrams in
sideways fashion, the columns then becoming rows. As with partition diagrams, we number the rows in the English style
with row 1 at the top. We will also introduce the related notion of composition diagrams, which are indexed by strong
compositions, and for which we typically do not indicate a basement. In Figure 2, the skyline diagrams are indexed by the
weak composition (2, 0, 3, 1, 2), while the composition diagram is indexed by the composition (2, 3, 1, 2).

Just as we fill partition diagrams according to certain restrictions to obtain tableaux, we define fillings for composition
diagrams subject to certain rules. To state the rules, we first define the notion of a triple of cells, of which there are two
types.

c a
...

b

, b
...

c a

Type A Type B
γi ≥ γj γi < γj
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A type A triple of a diagram of shape γ is a set of three cells a, b, c of the form (i, k), (j, k), (i, k− 1) for some pair of rows
i < j of the diagram and some column k > 0, where row i is at least as long as row j, i.e. γi ≥ γj . A type B triple is a set
of three cells a, b, c of the form (j, k + 1), (i, k), (j, k) for some pair of rows i < j of the diagram and some column k ≥ 0,
where row i is strictly shorter than row j, i.e. γi < γj . Note that basement cells can be elements of triples. We say that a
triple of either type is an inversion triple if the relative order of the entries is either b < a ≤ c or a ≤ c < b.

We say that a skyline diagram filling is semistandard if

(i) each row is weakly decreasing left-to-right (including the basement), and

(ii) all triples (including triples with cells in the basement) are inversion triples.

We refer to such a filled skyline diagram as a semistandard augmented filling (SSAF), or simply as a skyline.

We say that a composition diagram filling is semistandard if

(i) the first column is strictly increasing, top-to-bottom,

(ii) each row is weakly decreasing left-to-right, and

(iii) all triples are inversion triples.

We refer to such a filled composition diagram as a semistandard composition tableau (SSCT), or simply as a composition
tableau.

1.5 Combinatorial formulas for formal power series

We have already mentioned the well-known combinatorial formula for Schur functions, which restricts to Schur polynomials
over the variables X = {x1, . . . , xn}:

sλ(X) =
∑

T∈SSY T (n),
shape(T )=λ

xT , (1.1)

where SSY T (n) is the set of all semistandard tableaux with entries in [n]. The formula for the Schur function over the
infinite variable set X = {x1, x2, x3, . . .} is the same except that the tableau entries are taken over Z>0 instead of [n].
Earlier works (10; 11) have similarly provided combinatorial formulas for Demazure atoms and Demazure characters,
respectively, in terms of skylines:

Aγ(X) =
∑

Y∈SSAFI(n),
shape(Y )=γ

xY , (1.2)

κγ(X) =
∑

Y∈SSAFD(n),
shape(Y )=γ∗

xY , (1.3)

where SSAFI(n) is the set of all semistandard augmented fillings with increasing basement with entries in [n], and
SSAFD(n) is the set of all semistandard augmented fillings with decreasing basement with entries in [n]. The analo-
gous formula for quasisymmetric Schur functions over the variable set X = {x1, x2, x3, . . .} is given by

Sα =
∑

T∈SSCT,
shape(T )=α

xT , (1.4)

where SSCT is the set of all semistandard composition tableaux. We are now ready to provide Littlewood-Richardson
rules for these latter three formal power series.
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2 Littlewood-Richardson rule for Demazure atoms
Given a weak composition γ with `(γ) = n, we say that an extended basement of shape γ is a skyline in which the basement
entries (in the 0-th column) are distinct integers, each of which is strictly greater than n, and the entries in each row of the
diagram are equal to the column 0 entry for the respective row. The standard decreasing (respectively increasing) extended
basement of shape γ is the extended basement of shape γ skyline in which the basement entries (in the 0-th column) are
decreasing (respectively increasing) , beginning with 2n in the first row and ending with n+ 1 in the last row (respectively
n+ 1 to 2n).

Given weak compositions γ ⊂ δ, where we assume `(γ) = `(δ), the skew skyline diagram (or simply skew diagram) of
shape δ/γ is the set of those cells of the skyline diagram of shape δ that are not in the skyline diagram of shape γ. For this
section, we consider the skew diagram to be “resting on” a standard decreasing extended basement of shape γ. Finally, a
Littlewood-Richardson skew skyline (LRS) of shape δ/γ will be a filling σ : S → [n] of the empty cells of a skew diagram S
resting on a standard decreasing extended basement of shape γ, where n = `(δ), that satisfies the rules for skyline diagram
fillings and for which the column reading word (excluding extended basement entries) is a contre-lattice word. Figure 3
shows an example of a standard decreasing extended basement of shape γ = (2, 0, 3, 1, 2), a skew diagram of shape δ/γ
where δ = (3, 1, 4, 2, 5), and an LRS of the same skew shape with column reading word 3231321, which is contre-lattice
of weight (3, 2, 2)∗. We can now state our Littlewood-Richardson rule for the product of Schur polynomials and Demazure
atoms.

10 10 10
9
8 8 8 8
7 7
6 6 6

10 10 10
9
8 8 8 8
7 7
6 6 6

10 10 10 1
9 1
8 8 8 8 2
7 7 2
6 6 6 3 3 3

decreasing skew skew LRS,
extended skyline diagram wcol(S) =
basement diagram w/decreasing 3231321

basement

Fig. 3: Skyline extended basement and LRS

Theorem 2 Let λ be a partition and γ, δ be weak compositions. In the expansion

Aγ · sλ =
∑
δ

aδγλAδ, (2.1)

the coefficient aδγλ is the number of LRS of shape δ/γ with content λ∗.

3 Littlewood-Richardson rule for quasisymmetric Schur functions
The method of proof for Theorem 2 leads easily to a corresponding Littlewood-Richardson rule for the product of a Schur
function and a quasisymmetric Schur function. To state it we define the analogue of an LRS for composition diagrams.

Given a strong composition β and a weak composition γ such that `(γ) = `(β) and γ ⊂ β, we say that the skew
composition diagram of shape β/γ is the set of cells of the composition diagram of β that are not in the diagram of γ. We
naturally associate to this skew composition diagram a skew skyline diagram with decreasing extended basement, where
all of the of the entries in the basement are larger than the number of empty cells in the skew shape β/γ. Now to every
LRS filling of this skew skyline diagram we associate the corresponding Littlewood-Richardson skew composition tableau
(LRC), which is simply the filling of the cells of the skew composition diagram with the corresponding (nonbasement)
entries from the LRS. An example is given in Figure 4. We can now state our Littlewood-Richardson rule for the product of
Schur functions and quasisymmetric Schur functions.
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* *

* * *
*
* *

12 12 12
11
10 10 10 10
9 9
8 8 8

12 12 12 1
11 1
10 10 10 10 2
9 9 2
8 8 8 3 3 3

* * 1
1
* * * 2
* 2
* * 3 3 3

skew composition associated skew an LRS, associated
diagram, shape = skyline diagram wcol(S) = LRC

(3, 1, 4, 2, 5)/(2, 0, 3, 1, 2) w/decreasing 3231321
basement

Fig. 4: Composition skew diagram and LRC

Theorem 3 Let λ be a partition and α, β be strong compositions. In the expansion

Sα · sλ =
∑
β

CβαλSβ , (3.1)

the coefficient Cβαλ is the number of LRC of shape β/γ with content λ∗ and γ+ = α.

4 Littlewood-Richardson rule for Demazure characters
Given a standard increasing extended basement of shape α, with `(α) = n, any weak composition β such that `(β) = n and
α ⊂ β, we define a Littlewood-Richardson key skyline (LRK) of shape β/α to be a filling σ : S → [n] of the empty cells of
a skew diagram S that satisfies the skyline diagram filling rules and for which the column reading word (excluding extended
basement entries) is a contre-lattice word. Figure 5 provides an example of a standard increasing extended basement of shape
α = (2, 0, 1, 2, 3), a skew diagram of shape β/α where β = (5, 1, 3, 2, 4), and an LRK of the same shape with column
reading word 3323121, which is contre-lattice of weight (3, 2, 2)∗. We are now ready to state our Littlewood-Richardson
rule for the product of Schur polynomials and Demazure characters.

6 6 6
7
8 8
9 9 9
10 10 10 10

6 6 6
7
8 8
9 9 9
10 10 10 10

6 6 6 3 3 3
7 1
8 8 2 1
9 9 9
10 10 10 10 2

increasing skew skew LRK,
extended skyline diagram wcol(S) =
basement diagram w/increasing 3323121

basement

Fig. 5: Skyline extended basement and LRK

Theorem 4 Let λ be a partition and γ, δ be weak compositions. In the expansion

κγ · sλ =
∑
δ

bδγλκδ, (4.1)

the coefficient bδγλ is the number of LRK of shape δ∗/γ∗ with content λ∗.



442 J. Haglund, K. Luoto, S. Mason and S. van Willigenburg

References
[1] Fulton W., Young Tableaux, Cambridge University Press, Cambridge, UK, 1997.

[2] Gessel, I., Multipartite P -partitions and inner products of skew Schur functions, combinatorics and algebra, Contemp.
Math., 34 (1983), pp. 289-317.

[3] Haglund, J., A combinatorial model for the Macdonald polynomials, Proc. Nat. Acad. Sci., 101 (2004), pp. 16127-
16131.

[4] Haglund, J., Haiman, M., and Loehr, N., A combinatorial formula for Macdonald polynomials, Jour. Amer. Math. Soc.,
18 (2005), pp. 735-761.

[5] Haglund, J., Haiman, M., and Loehr, N., A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J.
of Math., 103 (2008), pp. 359-383.

[6] Haglund, J., Luoto, K., Mason, S., van Willigenburg, S., Quasisymmetric Schur functions, preprint on the arXiv num-
bered arXiv:0810.2489.

[7] Lascoux, A., Schützenberger, M.-P., Keys and standard bases, Invariant Theory and Tableaux, IMA Volumes in Math
and its Applications (D. Stanton, Ed.), Southend on Sea, UK, 19 (1990), pp. 125-144.

[8] Macdonald, I., Affine Hecke algebras and orthogonal polynomials, Astérisque, 237 (1996), 189-207, Séminaire Bour-
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