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A max-flow algorithm for positivity of
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Abstract. Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irre-
ducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in com-
binatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the
positivity of Littlewood-Richardson coefficients in polynomial time. This follows by combining the saturation prop-
erty of Littlewood-Richardson coefficients (shown by Knutson and Tao 1999) with the well-known fact that linear
optimization is solvable in polynomial time. We design an explicit combinatorial polynomial time algorithm for de-
ciding the positivity of Littlewood-Richardson coefficients. This algorithm is highly adapted to the problem and it is
based on ideas from the theory of optimizing flows in networks.

Résumé. Les coefficients de Littlewood-Richardson sont les multiplicités dans la décomposition du produit ten-
soriel de deux représentations irréductibles du groupe général linéaire GL(n,C). Ces coefficients ont plusieurs in-
terprétations en combinatoire, en théorie des représentations et en géométrie. Mulmuley et Sohoni ont observé qu’on
peut décider si un coefficient de Littlewood-Richardson est positif en temps polynomial. C’est une conséquence de la
propriété de saturation des coefficients de Littlewood-Richardson (démontrée par Knutson et Tao en 1999) et le fait
bien connu que la programmation linéaire est possible en temps polynomial. Nous décrivons un algorithme combina-
toire pour décider si un coefficient de Littlewood-Richardson est positif. Cet algorithme est bien adapté au problème
et il utilise des idées de la théorie des flots maximaux sur des réseaux.
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1 Introduction
The Schur polynomials form a Z-basis of the ring Λ ⊆ Z[X1, . . . , Xn] of symmetric polynomials in n
variables. They are indexed by partitions λ into at most n parts, which are vectors λ ∈ Nn of weakly
decreasing natural numbers. There are various characterizations of the Schur polynomials sλ. The short-
est one is algebraic and states that sλ = ∆−1 det[xλi+n−i

j ]1≤i,j≤n, where ∆ =
∏
i<j(Xi − Xj). A
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combinatorial characterization is sλ =
∑
T X

α1(T )
1 · · ·Xαn(T )

n , where the sum is over all semistandard
tableaux T of shape λ and αi(T ) counts the number of occurences of i in T . We note that sλ has degree
|λ| :=

∑
i λi. For more information see Stanley (Sta99).

The Littlewood-Richardson coefficients cνλµ are the coefficients in the expansion of the product of two
Schur functions in the basis of Schur functions: sλsµ =

∑
ν c

ν
λµsν , where the sum is over all partitions ν

such that |ν| = |λ| + |µ|. The Littlewood-Richardson coefficients play an important role in various
mathematical disciplines (combinatorics, representation theory, algebraic geometry). For instance, they
describe the multiplicities in the tensor product decomposition of irreducible representations of the general
linear group GL(n,C). Also, they determine the multiplication in the cohomology ring of the Grassmann
varieties.

The well-known Littlewood-Richardson rule provides a combinatorial description of the numbers cνλµ
and leads to several algorithms for computing them, e.g., see (CS84). However, all of these algo-
rithms take exponential time in the size of the input partitions (consisting of integers encoded in binary).
Narayanan (Nar06) proved that this is unavoidable: the computation of cνλµ is a #P-complete problem.
Hence there does not exist a polynomial time algorithm for computing cνλµ under the widely believed
hypothesis P 6= NP. Surprisingly, as pointed out by Mulmuley and Sohoni (MS05), the positivity of cνλµ
can be decided by a polynomial time algorithm. This can be seen as follows.

Knutson and Tao (KT99) proved the following saturation property: cNνNλNµ > 0 implies cνλµ > 0,
where N denotes a positive integer. This has implications for various, seemingly unrelated mathematical
problems, see Fulton (Ful00). It also has algorithmic consequences: the Littlewood-Richardson rule
implies that ∃N cNνNλNµ > 0 can be rephrased as the feasibility problem of a rational polyhedron. It is
well-known that the latter can be solved in polynomial time, cf. (GLS93). Hence by the above saturation
property, cνλµ > 0 can be decided in polynomial time.

In (MS05) it was asked whether there is a purely combinatorial algorithm for deciding cνλµ > 0 in
polynomial time that does not use linear programming, i.e., one similar to the max-flow or weighted
matching problems in combinatorial optimization. The polytopes arising in that setting are integral, i.e.
all of its vertices are integral. However, the polytopes occuring in the Littlewood-Richardson situation are
not integral, cf. (KTT04).

In this paper we answer the above question in the affirmative by exhibiting a combinatorial polynomial
time algorithm for deciding cνλµ > 0. Our algorithm also yields a proof of the saturation property. Knut-
son, Tao and Woodward (KTW04) proved a conjecture by Fulton stating that cνλµ = 1 iff cNνNλNµ = 1
for all N . As a by-product of our developments, we obtain a new proof of this conjecture as well as a
combinatorial polynomial time algorithm for deciding multiplicity freeness. (So far this works for strictly
descreasing partitions λ, µ, ν only.)

Here is a rough outline of the main ideas underlying our algorithm. By the description in (KT99;
Buc00), cνλµ counts the integral hives with border labels prescribed by λ, µ, ν on the big triangle graph ∆
(see §2 for the notation). We establish a bijection between the integral hives and certain integral flows on
the dual graph of ∆, which we call hive flows. Using this, we convert the problem of deciding the positivity
of cνλµ into the problem of optimizing a certain linear function (the throughput) on the set of integral
points of the polyhedron P b of b-bounded hive flows. We solve this combinatorial optimization problem
in analogy to the well-known Ford-Fulkerson algorithm (AMO93) for maximizing flows in networks. We
start with the zero flow and iteratively increase the flow f by a fixed integer amount along a cycle while
staying in P b. The set of feasible directions in which to increase can be interpreted as the convex cone of
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feasible flows of an auxiliary network RESb(f). It is essential and nontrival that one can increase at least
by one unit. This key property is expressed in Theorem 11. All of this only works when f is shattered,
but this nondegeneracy condition is easy to obtain.

In order to obtain a polynomial time algorithm we replace our algorithm by a scaled version that in-
creases flows by integral multiplies of 2k, but several technical difficulties have to be overcome.

Due to page restrictions in this extended abstract we can only provide sketchs for some of the proofs.
The symbol 2 at the end of a statement indicates the complete omission of proof. For detailed arguments
we refer to the diploma thesis of the second author (Ike08).

Acknowledgment We thank Fritz Eisenbrand for valuable discussions.

2 Preliminaries
2.1 Saturation Property and hive description
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Fig. 1: The big triangle graph ∆ with additional border
labels resulting from partitions λ, µ and ν, (n = 5).

Let λ, µ, ν ∈ Nn be partitions such that |ν| = |λ| +
|µ|. We start with a triangular array of vertices, n+1
on each side, as seen in Figure 1.

This graph is called the big triangle graph ∆ with
vertex set H . To avoid confusion with vertices in
other graphs that will be introduced later, vertices in
∆ are denoted by underlined capital letters (A, B,
etc.). The vertices on the border of the big triangle
graph form the set B. Denote with T the top ver-
tex of ∆ and set H ′ := H \ {T}. The graph ∆ is
subdivided into n2 small triangles whose corners are
graph vertices. We call a triangle in ∆ an upright
triangle if it is of the form ‘4’. Otherwise (‘5’) we
call the triangle an upside down triangle. By a rhom-
bus ♦(A,B,C,D) with A,B,C,D ∈ H we mean
the union of two small triangles next to each other,
where A is the acute vertex of the upright triangle
and B, C and D are the other vertices in counter-
clockwise direction (see Figure 2). Two rhombi are
called overlapping if they share exactly one triangle.
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Fig. 2: Rhombus labelings in all possible ways.

Let h ∈ RH be a labeling of the vertices of ∆ with
real numbers. We call h integral iff h ∈ ZH . The h-
slack σ

(
♦, h

)
of a rhombus ♦ := ♦(A,B,C,D) is de-

fined as

σ
(
♦, h

)
:=
(
h(B) + h(D)

)
−
(
h(A) + h(C)

)
(note thatA andC are the acute vertices of ♦). The rhom-
bus ♦ is called h-flat iff σ

(
♦, h

)
= 0.

A vertex labeling h ∈ RH is called a hive iff the hive
inequalities σ

(
♦, h

)
≥ 0 are satisfied for all rhombi ♦. We note that the set of hives is a convex cone.
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For partitions λ, µ and ν with |ν| = |λ| + |µ|, let b(λ, µ, ν) ∈ ZB denote the border with labels as
in Figure 1. This vertex labeling of B is called the target border of λ, µ, ν. A border b ∈ RB is called
regular if for all border vertices A,B,C ∈ B, that are consecutive vertices on the same side of the big
hive triangle, we have b(A) + b(C) < 2b(B). If λ, µ and ν are strictly decreasing partitions, then the
target border b(λ, µ, ν) is regular.

The following theorem is a consequence of the Littlewood-Richardson rule (KT99; Buc00; PV05).

Theorem 1 Let λ, µ, ν be three partitions such that |ν| = |λ| + |µ|. Then cνλµ is the number of integral
hives with border labels b(λ, µ, ν).

2.2 Flows in networks
In this section we introduce basic terminology and facts about flows and augmenting-path algorithms, cf.
(AMO93).

Graphs A graph G = (V,E) consists of a finite set V of vertices and a finite set E ⊆
(
V
2

)
of edges

whose elements are unordered pairs of distinct vertices. Vertices v and w are called adjacent if {v, w} ∈
E. We call a vertex v and an edge e incident if v ∈ e.

Flows on digraphs Given a graph G = (V,E) we can assign an edge direction to each edge in E by
endowing G with an orientation function o : E → V that maps each edge to one of its vertices. This turns
G into a directed graph (digraph). We call an edge {v, w} directed away from v (or directed towards w)
iff o({v, w}) = v. The set of edges incident to a vertex v ∈ V can then be divided into the set δin(v) of
edges that are directed towards v and the set δout(v) of edges that are directed away from v. For a mapping
f : E → R we define

δin(v, f) :=
∑

e∈δin(v)

f(e) and δout(v, f) :=
∑

e∈δout(v)

f(e).

Definition 2 (Flow and throughput) A flow f on a digraph G = (V,E, o) is a mapping f : E → R
which satisfies δin(v, f) = δout(v, f) for all v ∈ V . We call δ(v, f) := δin(v, f) the throughput of f in v.
The flow f is called integral iff it only takes integral values.

We note that negative flows on edges are allowed and that therefore the flows on a digraph G form a
real vector space F (G).

Capacities We can assign capacities to a digraph G = (V,E, o) by defining two functions u : E →
[0,∞], e 7→ ue and l : E → [−∞, 0], e 7→ le, which we call the upper bound and lower bound, respec-
tively. A digraph with capacities is sometimes called a network in the literature. We will tacitly assume
that ue =∞ and le = −∞ if no other requirement for the edge e is made.

Definition 3 (Feasible flow) LetG = (V,E, o) be a digraph with capacities u and l. A flow f onG is said
to be feasible with respect to u and l if le ≤ f(e) ≤ ue for each edge e ∈ E. The set Pfeas(G) ⊆ F (G)
of feasible flows on G is said to be the polyhedron of feasible flows on G.

Definition 4 (Cycle) (1) A cycle c = (v1, . . . , v`, v`+1 = v1) on a graph G = (V,E) is a finite sequence
of at least 3 vertices in V in which for all 1 ≤ i < j ≤ ` we have that vi 6= vj and for all 1 ≤ i ≤ ` we
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have {vi, vi+1} ∈ E. We call e = {vi, vi+1} the edges of c and write e ∈ c. The length `(c) := ` of c is
defined as the number of edges in c.

(2) Suppose an orientation function o is fixed. We call e = {vi, vi+1} a forward edge of c iff e is
directed away from vi, and a backwards edge of c otherwise. The cycle c is called well-directed iff all of
its forward edges e satisfy u(e) > 0 and all of its backward edges e satisfy l(e) < 0.

(3) We assign to c the cycle flow fc by setting fc(e) = 1 for its forward edges e and fc(e) = −1 for its
backward edges e. All other edges carry flow zero.

To simplify notation, we will identify a cycle c with its cycle flow fc. We remark that c is well-directed
iff there is an ε > 0 such that εc is a feasible flow.

It is well-known and easy to see that feasible flows can be decomposed into cycles as follows.

Lemma 5 (Flow decomposition) Given a digraph G = (V,E, o) and a flow f on G. Then there exist
cycles c1, . . . , cm on G, m ≤ |E|, and α1, . . . , αm ∈ R>0 such that f =

∑m
i=1 αici and for all i and all

e ∈ ci we have sgn(f(e)) = sgn(ci(e)). We call αi the multiplicity of the cycle ci in the decomposition.
Moreover, if f is feasible, then c1, . . . , cm are well-directed. 2

3 Hives and flows
We transfer the problem of finding an integral hive into the language of flows.
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Fig. 3: The digraph G and graph ∆.

The graph structure We now define a bipar-
tite planar digraph G = (V,E, o), which is es-
sentially the dual graph of ∆. The definition is
similar to one in (Buc00): G has one fat black
vertex in the middle of each small triangle of ∆.
In addition there is one circle vertex on every
triangle side (see Figure 3). We denote a circle
vertex between two vertices A and B of upright
triangles (read in counterclockwise direction) as
[A,B]. Each fat black vertex is adjacent to the
three circle vertices on the sides of its triangle.
There is an additional fat black vertex o with
edges from o to all circle vertices that lie on the
border of the big triangle. The graph G is em-
bedded in the plane in a way such that the top
vertex T lies in the outer face, where a face is
a region bounded by edges, including the outer,
infinitely-large region.

Next we assign a direction to each edge in G (see Figure 3). The edges incident to o are directed from
o towards the border of the big triangle graph. The edges in an upright triangle are directed towards the
incident fat black vertex, while the edges in an upside down triangle are directed towards the incident
circle vertex.

Let F = F (G) denote the vector space of flows on G. Note that a flow f on G is completely defined
by its throughput δ([A,B], f) on each circle vertex [A,B].
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Winding numbers Let A ∈ H . We define N W (A) to be the set of circle vertices in V that lie on the
northwest diagonal drawn from A. This diagonal hits a border vertex B ∈ B. Define N E (A) to be the
set of circle vertices in V that lie on the northeast diagonal drawn from that border vertex B. Now define
the winding number of a vertex A ∈ H with respect to a flow f ∈ F as

wind(A, f) =
∑

v∈N W (A)

δ(v, f)−
∑

v∈N E (A)

δ(v, f).

The winding number is linear in the flow f . We note that for a cycle flow fc, this coincides with the
familiar topological notion of the winding number of the cycle c with respect to the point A.

Lemma 6 There is an isomorphism η : RH′ → F between the real vector space RH′ of vertex labels
in ∆, in which the top vertex T has value 0, and the real vector space F of flows on G. For h ∈ RH′

the flow η(h) is defined by requiring δ([A,B], η(h)) = h(A) − h(B). The inverse of η is given by
η−1(f)(A) = wind(A, f) for f ∈ F . Both η and η−1 preserve integrality. 2

Hive inequalities on flows As η is an isomorphism, we can identify a flow f ∈ F with its vertex labeling
h = η−1(f) ∈ RH′ . We define the f -slack of a rhombus ♦ = ♦(A,B,C,D) as σ

(
♦, f

)
:= σ

(
♦, h

)
.

Note that σ
(
♦, f

)
= δ([D,C], f)−δ([A,B], f) = δ([D,A], f)−δ([C,B], f). Thus the hive inequalities

σ
(
♦, h

)
≥ 0 translate into the following simpler linear inequalities

δ([A,B], f) ≤ δ([D,C], f). (1)

We call f a hive flow if η−1(f) is a hive. Similarly, we speak of f -flat rhombi.

4 The algorithmic idea
We now introduce the optimization problem to be solved for deciding whether a Littlewood-Richardson
coefficient is positive.

Define the set S ⊂ V of source vertices as the set of all circle border vertices of G lying on the right
or bottom border of the big triangle. Define the set T ⊂ V of sink vertices as the set of all circle border
vertices of G lying on the left border of the big triangle. We call δ(f) :=

∑
s∈S δ(s, f) the (global)

throughput of f . Note that δ : F → R, f 7→ δ(f) is a linear map.
For a given border vertex labeling b ∈ RB we define now the network Gb on the digraph G by intro-

ducing the capacities u{o,s} := b(A) − b(B) for all s = [A,B] ∈ S and l{o,t} := b(A) − b(B) for
all t = [A,B] ∈ T . We call the feasible flows of Gb b-bounded. The set of b-bounded hive flows is a
polyhedron that will be denoted by P b.

We call an edge {o, s} used to capacity with respect to a flow f ∈ P b iff δ(s, f) = u{o,s}. Similarly,
we say that the edge {o, t} is used to capacity with respect to f iff δ(t, f) = l{o,t}.

The following lemma shows the significance of the polyhedron P b of b-bounded hive flows.

Lemma 7 Let b = b(λ, µ, ν) be the target border of partitions λ, µ and ν with |ν| = |λ|+ |µ|. Then
(1) For all f ∈ P b we have δ(f) ≤ |ν|.
(2) cνλµ equals the number of integral f ∈ P b such that δ(f) = |ν| .
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Fig. 4: The subgraph replacement for an f -flat rhombus ♦(A,B,C,D).

Proof: (1) We have δ(f) =
∑
s∈S δ(s, f) ≤ |λ|+ |µ| = |ν|.

(2) According to Theorem 1, cνλµ equals the number of integral hives with border labels b. Lemma 6
shows that this number equals the number of b-bounded integral hive flows with throughput |ν|. 2

Lemma 7 translates the problem of deciding positivity of Littlewood-Richardson coefficients to the
problem of optimizing the linear function δ on the integer points of the polyhedron P b. We will solve this
combinatorial optimization problem in analogy to the well-known Ford-Fulkerson algorithm (AMO93)
for maximizing flows in networks. We start with the zero flow and iteratively increase the flow f by
one unit along a cycle while staying in P b. The set of feasible directions in which to increase can be
interpreted as the convex cone of feasible flows of an auxiliary network, that we introduce in the next
section. We will thus be able to replace the hive inequalities (1) locally by capacity constraints.

5 The residual network
We start with a general definition. Given a polyhedron P in a real vector space V and a vector f ∈ P . We
define the cone of feasible directions Cf (P ) of P at f as

Cf (P ) := {d ∈ V | ∃ε > 0 : f + εd ∈ P}.

We note that P ∩ U = (f + Cf (P )) ∩ U for a small neighborhood U of f .
Recall that a rhombus ♦ is called f -flat with respect to a flow f iff σ

(
♦, f

)
= 0. The flow f is called

shattered iff there is no pair of overlapping f -flat rhombi.

Lemma 8 (Shattering) Let λ, µ, ν be strictly decreasing partitions and let f ∈ P b. Then one can algo-
rithmically find a shattered integral flow shatter(f) ∈ P b such that δ(shatter(f)) = δ(f).

Proof: This was basically shown by Buch in his proof of the Saturation Property (Buc00). 2

Fix a b-bounded shattered hive flow f . We now introduce the residual network RESb(f).
The residual digraph RES(f) w.r.t. f is constructed as follows. The vertex and edge set of RES(f)

are initially the vertex and edge set ofG. Then each f -flat rhombus ♦ = ♦(A,B,C,D) is replaced by the
digraph illustrated in Figure 4. We remove all inner vertices of ♦, keep [A,B], [C,B], [D,C] and [D,A],
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and add 14 vertices as in the figure. Then we add edges, some of which are fat black, some of which are
fat white and some of which are normal as in the figure.

Note that in RES(f), the circle vertex [B,D] is no longer present. The graph RES(f) is still bipartite,
but may not be planar.

We next define the residual network RESb(f). For each fat black edge e we set le := 0. This enforces
that a well-directed cycle can only pass such e in the direction of e (compare Definition 4). For each fat
white edge e we set ue := 0. This enforces that a well-directed cycle can only pass such e in the reverse
direction of e.

We now introduce additional capacities that are dependent on b. For the edges e = {o, s}, s ∈ S , that
are used to capacity with respect to the flow f in Gb we set ue := 0. Moreover, for the edges e = {o, t},
t ∈ T , that are used to capacity with respect to the flow f in Gb we set le := 0. We note that the feasible
flows on RESb(f) form a convex cone.

The following lemma shows that feasible flows on RESb(f) give the directions from f ∈ P b that do
not point out of P b.

Lemma 9 (Residual Correspondence) Let f be a b-bounded shattered hive flow. There is a natural
surjective linear map

γ : F (RES(f))→ F (G)

that preserves the throughput on all circle vertices that are both in RES(f) and G. We have

Pfeas(RESb(f)) = γ−1(Cf (P b)).

The map γ preserves integrality and the global throughput δ. 2

For example, the flow γ(f)(e) on the edge e directed away from [A,B] in G is just the sum of flows
f(e1) + f(e2) + f(e3) of the edges ei directed away from [A,B] in RES(f).

The following lemma gives an optimality criterion for optimizing the linear function δ on P b.

Lemma 10 (Optimality Test) Let f be a shattered b-bounded hive flow and let δ : F (G)→ R be a linear
function. Then f maximizes δ on P b iff RESb(f) has no well-directed cycle c with δ(γ(c)) > 0.

Proof: As δ is linear, f does not maximize δ on P b iff there exists d ∈ F such that d ∈ P b − f and
δ(d) > 0. Since P b − f equals Cf (P b) in a small neighborhood of 0, the latter condition is equivalent
to the existence of some d ∈ Cf (P b) with δ(d) > 0. According to Lemma 9, this is equivalent to the
existence of a some d′ ∈ Pfeas(RESb(f)) with δ(γ(d′)) > 0. We now show that this is equivalent to the
existence of a well-directed cycle c on RESb(f) with δ(γ(c)) > 0.

Let d′ ∈ Pfeas(RESb(f)) with δ(γ(d′)) > 0. Lemma 5 states that d′ can be decomposed as d′ =∑M
i=1 αici where ci are well-directed cycles on RESb(f) and αi > 0. Thus δ (γ(d′)) =

∑M
i=1 αiδ(γ(ci))

is positive and hence there is a well-directed cycle ci with δ(γ(ci)) > 0.
Conversely, if c is a well-directed cycle on RESb(f) with δ(γ(c)) > 0, then εc is a feasible flow on

RESb(f) for sufficiently small ε > 0. 2
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6 The main algorithm LRPA
The algorithm LRPA (Littlewood-Richardson Positivity Algorithm) is listed below.

Algorithm LRPA
Input: λ, µ, ν ∈ Nn strictly decreasing partitions with |ν| = |λ|+ |µ|.
Output: Decide whether cνλµ > 0.

1: Create the regular target border b and the digraph G.
2: Start with f ← 0, done ← false.
3: while not done do
4: f ← shatter(f).
5: Construct RESb(f).
6: if there is a well-directed cycle in RESb(f) with δ(γ(c)) > 0 then
7: Find a shortest well-directed cycle c in RESb(f) with δ(γ(c)) > 0.
8: Augment 1 unit over c: f ← f + γ(c).
9: // We have f ∈ P b, due to Theorem 11.

10: else
11: done ← true.
12: end if
13: end while
14: if δ(f) = |ν| then return true.
15: else return false.

The shattering in line 4 is done by the algorithm mentioned in Lemma 8. Searching for shortest well-
directed cycles in line 7 with positive δ-value can be done by a variant of the well-known Bellman-Ford
algorithm (CLRS01).

The most interesting property of LRPA is that shortest well-directed cycles on RESb(f) can be used
to increase δ(f) by one unit (see line 8) while still remaining in P b. The reason for this is the following
crucial Theorem 11.

Theorem 11 (Shortest Cycle) Let f be a b-bounded integral shattered hive flow. Assume that c is a
shortest cycle among all well-directed cycles c̃ on RESb(f) with δ(c̃) > 0. Then f + γ(c) ∈ P b.

Proof sketch: The proof is rather involved. Assume that c is a cycle on RESb(f) with δ(c) > 0 and
f + γ(c) /∈ P b. Let ε := max{ε′ ∈ R | f + ε′γ(c) ∈ P b} and put g := f + εγ(c). We can show that
ε ∈ { 1

3 ,
1
2 ,

2
3}. Rhombi which are not f -flat, but g-flat, are called critical rhombi. Since f + γ(c) /∈ P b,

there is at least one critical rhombus. A g-flatspace is a maximal connected union of small triangles such
that any rhombus contained in it is g-flat.

In the case where there exists a critical rhombus that is not overlapping with any other g-flat rhombi,
we can find well-directed cycles c1, c2 on RESb(f) that split c in the sense that γ(c1 + c2) = γ(c) and
`(c1) ≤ `(c2) < `(c). One of these cycles must satisfy δ(ci) > 0 and we are done, because we found a
cycle with positive throughput that is shorter than c.

In the other case we have overlapping g-flat rhombi and thus g is not shattered. So we can find a chain
of g-flatspaces as described in (Buc00). We get a flow Ψ on G corresponding to raising the inner vertices
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of the chain by one unit. Moreover g + εΨ ∈ P b and δ(Ψ) = 0. Our goal is to find well-directed cycles
c1, . . . , cm such that γ(

∑
i ci) = γ(c) + Ψ with `(ci) < `(c) for all i. Then we are done, because one of

these cycles must satisfy δ(ci) > 0.
We achieve this by a complete classification of the possible shapes of g-flatspaces and the possible ways

in which c passes through those shapes. Having understood this, we can do local changes to c such that it
decomposes into smaller cycles that have the desired property. 2

Theorem 11 allows us to prove the correctness of LRPA.

Theorem 12 If given as input three strictly decreasing partitions λ, µ, ν ∈ Nn with |ν| = |λ|+ |µ|, then
the LRPA returns true iff cνλµ > 0.

Proof: Note that during the algorithm f stays integral all the time and f ∈ P b, because shattering
preserves these properties according to Lemma 8 and we have f + γ(c) ∈ P b according to Theorem 11.
After the while loop, the flow f maximizes δ on P b according to Lemma 10. Lemma 7 tells us that
cνλµ > 0 iff δ(f) = |ν|. 2

7 Polynomial running time
We briefly sketch the ideas needed to transform LRPA into a combinatorial polynomial-time algorithm.

Theorem 13 There is a polynomial-time algorithm that decides for given partitions λ, µ, ν ∈ Nn with
|ν| = |λ|+ |µ| whether cνλµ > 0. The running time is polynomial in n and log |ν|.

Proof sketch: We first note that by a perturbation argument, the general case can be reduced to the case
where all the input partitions λ, µ, ν are strictly decreasing. This is done by exhibiting a special target
border b such that for any partitions λ, µ, ν ∈ Nn and N sufficiently large, but of bitsize polynomial in n,
we have cνλµ > 0 iff cν̃

λ̃µ̃
> 0, where λ̃ = Nλ+ λ, µ̃ = Nµ+ µ, and ν̃ = Nν + ν.

We use a scaling method similar to that described in (AMO93) in the scaling of the Ford-Fulkerson
algorithm. For z ∈ R a flow f is called z-integral iff it only takes values that are integral multiples of z.
The algorithm now works as follows:

Put k ← dlog |ν|e + 1. We efficiently construct an initial 2k-integral f ∈ P b that is shattered and has
regular border.

(*) We construct a modification RESb2k(f) of the residual network RESb(f) that excludes certain
circle border vertices. Then we search for a shortest well-directed cycle c in RESb2k(f) with δ(γ(c)) > 0.
If there is no such cycle, we set k ← k − 1 and go to (*). Otherwise we augment 2k units over c:
f ← f + 2kγ(c). A variation of Theorem 11 guarantees that f is still in P b. Moreover, by construction
of RESb2k(f), f has still regular border. By an auxiliary optimization procedure, we can turn f into a
shattered 2k-integral flow in P b. This is a refinement of Lemma 8 for which we need regularity on the
border, as long as k > 0. We decrease now k ← k − 1 and go to (*).

The algorithm terminates when k < 0. Its output is an integral flow f ∈ P b with optimal δ-value. We
have cνλµ > 0 iff δ(f) = |ν| by Lemma 7. The algorithm can be shown to work in polynomial time. 2
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8 Deciding multiplicity freeness
Let RES×(f) denote the network that results from deleting in RESb(f) the vertex o and all incident
edges. Note that RES×(f) is independent of b.

The proof of Theorem 11 also yields the following result.

Proposition 14 Given a b-bounded integral shattered hive flow f and a shortest well-directed cycle c on
RES×(f). Then f + γ(c) ∈ P b. 2

Corollary 15 Let f be a b-bounded integral shattered hive flow with δ(f) = |ν|. Then we have cνλµ > 1
if and only if there exists a well-directed cycle in RES×(f).

Proof: Suppose that c is a shortest well-directed cycle in RES×(f). Proposition 14 tells us that g :=
f + γ(c) lies in P b. It is easy to see that γ(c) 6= 0 and δ(γ(c)) = 0. Hence g is another integral flow on
P b with throughput |ν|. Lemma 7 implies cνλµ > 1.

To show the converse, suppose that cνλµ > 1. Lemma 7 implies that there exists an integral flow g ∈ P b,
g 6= f , with δ(g) = |ν|. The flow d := g − f satisfies δ(d) = 0 and hence uses no circle border vertex,
which means that its support lies inside ∆. By Lemma 9 there exists d′ ∈ Pfeas(RESb(f)) such that
d = γ(d′). It is obvious that in fact d′ ∈ Pfeas(RES×(f)). Decomposing d′ according to Lemma 5 shows
the existence of a well-directed cycle in RES×(f). 2

For strictly decreasing partitions we get a new proof of Fulton’s conjecture, first shown by Knutson,
Tao and Woodward (KTW04).

Corollary 16 Let λ, µ, ν be strictly decreasing partitions with |ν| = |λ| + |µ|. Then the following three
conditions are equivalent:

(1) cνλµ = 1, (2) ∃N cNνNλNµ = 1, (3) ∀N cNνNλNµ = 1.

Proof: It suffices to show the implication from (2) to (3). Suppose that cNνNλNµ = 1 for some N , hence
cνλµ > 0 by the saturation property. Since cνλµ > 1 implies cNνNλNµ > 1 we must have cνλµ = 1. Let f be a
b(λ, µ, ν)-bounded integral shattered hive flow f with δ(f) = |ν|. Corollary 15 says that RES×(f) has no
well-directed cycle. Since RES×(f) = RES×(N ′f) for all N ′, RES×(N ′f) contains no well-directed
cycle as well. Corollary 15 implies now that cN

′ν
N ′λN ′µ = 1. 2

Theorem 17 There is a polynomial-time algorithm that decides for given strictly decreasing partitions
λ, µ, ν ∈ Nn with |ν| = |λ|+ |µ| whether cνλµ = 1. The running time is polynomial in n and log |ν|.

Proof: Using the algorithm of Theorem 13 one can compute an integral shattered f ∈ P b with δ(f) = |ν|.
It is easy to check in polynomial time whether RES×(f) contains a well-directed cycle. Hence the
assertion follows with Corollary 15. 2
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