
Automata 2010 — 16th Intl. Workshop on CA and DCS DMTCS proc. AL, 2010, 125–144

On the complexity of enumerating possible
dynamics of sparsely connected Boolean
network automata with simple update rules

Predrag T. Tošić
Department of Computer Science, University of Houston, Houston, USA. Email: ptosic@uh.edu

We study how hard is to determine some fundamental properties of dynamics of certain types of network automata.
We address the computational complexity of determining how many different possible dynamic evolutions can arise
from some structurally very simple, deterministic and sparsely connected network automata. In this as well as our
prior, related work, we try to push the limits on the underlying simplicity of two structural aspects of such network
automata: (i) the uniform sparseness of their topologies, and (ii) severely restricted local behaviors of the individual
agents (that is, the local update rules of the network nodes).

In this endeavor, we prove that counting the Fixed Point (FP) configurations and the predecessor and ancestor con-
figurations in two classes of network automata, called Sequential and Synchronous Dynamical Systems (SDSs and
SyDSs, respectively), are computationally intractable problems. Moreover, this intractability is shown to hold when
each node in such a network is required to update according to (i) a monotone Boolean function, (ii) a symmetric
Boolean function, or even (iii) a simple threshold function that is both monotone and symmetric. Furthermore, the
hardness of the exact enumeration of FPs and other types of configurations of interest remains to hold even in some
severely restricted cases with respect to both the network topology and the diversity (or lack thereof) of individual
node’s local update rules. Namely, we show that the counting problems of interest remain hard even when the nodes
of an SDS or SyDS use at most two different update rules from a given restricted class, and, additionally, when the
network topologies are constrained so that each node has only c = O(1) neighbors for small values of constant c.

Our results also have considerable implications for other discrete dynamical system models studied in applied math-
ematics, physics, biology and computer science, such as Hopfield networks and spin glasses. In particular, one
corollary of our results is that determining the memory capacity of sparse discrete Hopfield networks (viewed as
associative memories) remains computationally intractable even when the interconnection and dependence structure
among the nodes of a Hopfield network is severely restricted.

Keywords: network and graph automata, cellular automata, Hopfield networks, discrete dynamical systems, compu-
tational complexity, enumeration problems, #P-completeness

1 Introduction
We study certain classes of network automata that can be used as an abstraction of the large-scale multi-
agent systems made of simple reactive agents, of ad hoc communication networks, and, more generally,

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmALind.html

126 Predrag T. Tošić

of dynamical systems whose complex dynamics stems from coupling of and interaction among their rela-
tively simple individual components. These network or graph automata can also be viewed as a theoretical
model for the computer simulation of a broad variety of computational, physical, biological and socio-
technical distributed infrastructures. We are interested in the computational complexity of determining
several fundamental configuration space properties of such network automata. The complexity of an-
swering questions about, for instance, the existence [9], the number [67, 69] or the reachability [8] of
fixed points (that is, the stable configurations) of an appropriate class of network automata can be argued
to provide important insights into the collective dynamics of multi-agent systems found in distributed ar-
tificial intelligence [69], as well as other complex physical, biological, and socio-technical networks that
are abstracted via those formal network automata.

In this paper, as well as in related prior work (see, e.g., [6, 7, 10, 11, 9, 66, 61, 62, 69]), the general
approach has been to investigate mathematical and computational configuration space properties of such
network automata, as a formal way of addressing the fundamental question: what are the possible global
behaviors of the entire system, given the simple local behaviors of its components, and the interaction
pattern among those components?

Our own focus in the context of dynamic behaviors of complex network and graph automata has been on
determining how many possible dynamics, and in particular how many of certain types of configurations,
can such discrete dynamical systems have – and how hard are the computational problems of determining
the exact or approximate number of those various types of configurations [60, 61, 62, 63, 64, 69, 67].
We have been particularly interested in addressing the problem of counting how many fixed point (FP)
configurations such network automata have, and how hard is the computational problem of counting those
FP configurations. In this paper, we show computational intractability of determining the exact number
of the fixed point configurations of sparse Sequential and Synchronous Dynamical Systems, as well as
discrete Hopfield networks, whose node update rules are rather severely restricted. Moreover, we show
that intractability of the exact enumeration of fixed points holds even when the maximum node degree in
the underlying graph is bounded by a small constant. We also show similar intractability results for the
problems of exact enumeration of all predecessors and all ancestors of a given SDS, SyDS or Hopfield
network configuration. It follows from those results that, for the networked dynamical systems that can
be abstracted via a class of formal network automata, a complex and generally unpredictable global dy-
namics can be obtained even via uniformly sparse couplings of simple, monotonic local interactions. The
implication for Hopfield networks is that determining their memory capacity (when viewed as a model
of associative memory) is computationally intractable, even when the structure of the underlying weight
matrices of discrete, binary-valued Hopfield network is of a very particular and restricted kind.

2 Preliminaries
In this section, we define the discrete dynamical system models studied in this paper, as well as their
configuration space properties. Sequential Dynamical Systems (SDSs) are proposed in [10, 11, 12] as an
abstract model for computer simulations. These models have been successfully applied in the development
of large-scale socio-technical simulations such as the TRANSIMS project at the Los Alamos National
Laboratory [13]. A more detailed discussion of the motivation behind these models, as well as their
application to large-scale simulations, can be found in [9, 61, 62] and references therein.

Definition 2.1 A Sequential Dynamical System (SDS) S is a triple (G,F,Π) whose components are as
follows:

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 127

1. G(V,E) is a connected undirected graph without multi-edges or self-loops. G = GS is referred
to as the underlying graph of S. We often use n to denote |V | and m to denote |E|.

2. The state of a node vi, denoted by si, takes on a value from some finite domain, D. In this paper,
we focus on D = {0, 1}. We use di to denote the degree of the node vi. Further, we denote
by N(i) the neighbors of node vi in G, plus node vi itself. Each node vi has an associated node
update rule fi : Ddi+1 → D, for 1 ≤ i ≤ n. We also refer to fi as the local transition function.
The inputs to fi are si and the current states of the neighbors of vi. We use F = FS to denote
the global map of S, obtained by appropriately composing together all the local update rules fi,
i = 1, ..., n.

3. Finally, Π is a permutation of the vertex set V = {v1, v2, . . . , vn}, specifying the order in which the
nodes update their states using their local transition functions. Alternatively, Π can be envisioned
as a total ordering on the set of nodes V. In particular, we can view the global map as a sequential
composition of the local actions of each fi on the respective node state si, where the node states
are updated according to the order Π.

The nodes are processed in the sequential order specified by the permutation Π. The processing associated
with a node consists of computing the new value of its state according to the node’s update function, and
changing its state to the new value. In the sequel, we shall often slightly abuse the notation, and not
explicitly distinguish between an SDS’s node itself, vi, and its state, si. The intended meaning will be
clear from the context.

Definition 2.2 A Synchronous Dynamical System (SyDS) S ′ = (G,F) is an SDS without the node
permutation. In an SyDS, at each discrete time step, all the nodes perfectly synchronously in parallel
update their state values.

Thus, SyDSs are similar to the finite classical parallel cellular automata (CA) [22, 23, 25, 28, 76, 77],
except that in an SyDS the nodes may be interconnected in an arbitrary fashion, whereas in a classical
cellular automaton the nodes are interconnected in a regular fashion (such as, e.g., a line, a rectangular
grid, or a hypercube). Another difference is that, while in the classical CA all nodes update according to
the same rule, in an SyDS different nodes, in general, may use different update rules [9, 61].

Given the importance of the number of stable configurations of a Hopfield network viewed as an asso-
ciative memory [29, 24], we next define discrete Hopfield networks. We will briefly summarize what has
been known about the problem of counting their stable configurations in the subsequent sections.

Definition 2.3 A discrete Hopfield network (DHN) [29] is made of n binary-valued nodes; the set of node
states is, by convention, {−1,+1}. Associated to each pair of nodes (vi, vj) is (in general, real-valued)
weight, wij ∈ R. The weight matrix of a DHN is defined as W = [wij]

n
i,j=1. Each node also has a fixed

threshold, hi ∈ R. A node vi updates its state xi from time step t to step t + 1 according to a linear
threshold function of the form

xt+1
i ← sgn(

n∑
j=1

wij · xtj − hi) (1)

where, in order to ensure that xi ∈ {−1,+1}, we define sgn(0) = +1.

128 Predrag T. Tošić

In the sequel, we will often not bother to explicitly distinguish between an S(y)DS’s or DHN’s node,
vi, and this node’s state, denoted si for S(y)DSs and xi for Hopfield networks; the meaning will be clear
from the context.

In the standard DHN model, the nodes update synchronously in parallel, similarly to the classical
cellular automata and the SyDSs as defined above. However, asynchronous Hopfield networks, where
the nodes update sequentially, one at a time, have also been studied [20, 29]. In these sequential DHNs,
however, it is not required that the nodes update according to a fixed permutation like in our SDS model.
We emphasize that these differences are inconsequential insofar as the fixed points are concerned.

In most of the Hopfield networks literature, the weight matrix W is assumed symmetric, i.e., for all
pairs of indices {i, j}, wij = wji holds. A DHN is called simple if wii = 0 along the main diagonal of
W for all i = 1, ..., n [20].

Much of the early work on sequential and synchronous dynamical systems has primarily focused on
the SDSs and SyDSs with symmetric Boolean functions as the node update rules (e.g., [6, 7, 10, 11, 67]).
By symmetric is meant that the future state of a node does not depend on the order in which the input
values of this node’s neighbors are specified. Instead, the future state of vi depends only on the states of
nodes vj in N(i), i.e., on how many of vi’s neighbors are currently in the state sj = 1. In particular,
symmetric Boolean SyDSs correspond to totalistic (Boolean) cellular automata as defined by S. Wolfram
[74, 75, 76]. The computational complexity of counting various configurations in SDSs and SyDSs with
symmetric Boolean update rules is addressed in [61, 67].

We consider in this paper the SDSs, SyDSs and Hopfield networks with the local update rules that
are restricted to monotone Boolean / binary-valued functions. Our preliminary hardness results about the
counting problems in monotone Boolean SDSs and SyDSs can be found in [60, 62]. The SDSs with
the local transition rules that are both monotone and symmetric are, in essence, sequential threshold
cellular automata [65, 66, 68] that are defined over arbitrary finite graphs, as opposed to the usual regular
Cayley graphs of the classical cellular automata [22]. We will consider the monotone update rules that
are not necessarily symmetric; however, these monotone Boolean functions will be required to be of a
linear threshold kind, so that our subsequent results would imply analogous results for discrete Hopfield
networks [29, 30], whose update rules are, by default, always required to be linear (but not necessarily
monotone) threshold functions.

We next define the notion of monotone Boolean functions. This definition of monotonicity readily
extends to other partially ordered domains such as {−1,+1} that has been commonly used in Hopfield
networks literature.

Definition 2.4 Given two Boolean vectors, X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn), define a
binary relation “�” as follows: X � Y if xi ≤ yi for all i, 1 ≤ i ≤ n. An n-input Boolean function f
is monotone if X � Y implies that f(X) ≤ f(Y).

Notice that the notion of monotonicity given in Definition 2.4 allows us to compare only Boolean
vectors of the same length.

Definition 2.5 A configuration of a Boolean SDS S = (G,F,Π) or an SyDS S ′ = (G,F) is a vector
(b1, b2, . . . , bn) ∈ {0, 1}n. A configuration C can also be thought of as a function C : V → {0, 1}n.

The global map computed by an S(y)DS S, denoted F = FS , specifies for each configuration C
the next configuration reached by S after carrying out the updates of all the node states, whether in
parallel or in the order given by Π. Thus, the map FS : {0, 1}n → {0, 1}n total function on the set of

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 129

global configurations. This function therefore defines the dynamics of S. We say that S moves from a
configuration C to a configuration FS (C) in a single transition step. Alternatively, we say that S(y)DS
S moves from a configuration C at time t to a configuration FS (C) at time t + 1. Assuming that
each node update function fi is computable in time polynomial in the size of the description of S , each
transition step will also take polynomial time in the size of the S(y)DS’s description.

Definition 2.6 The configuration space (also called phase space) PS of an SDS or SyDS S is a directed
graph whose nodes are configurations and whose directed edges capture transitions from a configuration
to its successor configuration. More formally, there is a vertex in PS for each global configuration of S.
There is a directed edge from a vertex representing configuration C′ to that representing configuration C
if FS (C′) = C.

Note that, since an SDS or SyDS is deterministic, each vertex in its phase space has the out-degree of
1. Since the domain D of state values is assumed finite, and the number of nodes in the S(y)DS is finite,
the number of configurations in the phase space is also finite. If the size of the domain (that is, the number
of possible states of each node) is |D|, then the number of global configurations in PS is |D|n.

We next define some prominent types of configurations that are of particular interest insofar as capturing
the important qualitative (and quantitative) properties of a discrete dynamical system’s global behavior
(that is, its dynamics).

Definition 2.7 Given two configurations C′ and C of an SDS or SyDS S, configuration C′ is a
PREDECESSOR of C if FS (C′) = C, that is, if S moves from C′ to C in one global transition step.
Similarly, C′ is an ANCESTOR of C if there is a positive integer t ≥ 1 such that FS

t(C′) = C, that is,
if S evolves from C′ to C in one or more transitions.

In particular, a predecessor of a given configuration is a special case of an ancestor.

Definition 2.8 A configuration C of an S(y)DS S is a GARDEN OF EDEN (GE) configuration if C
does not have a predecessor.

Definition 2.9 A configuration C of an S(y)DS S is a FIXED POINT (FP) configuration if FS (C) = C,
that is, if the transition out of C is back to C itself.

Note that a fixed point is a configuration that is its own predecessor. Also note, that the fixed point
configurations are also often referred to as stable configurations (esp. in the Hopfield networks literature);
we will use the two terms interchangeably throughout the paper.

2.1 The Basics of Computational Complexity of Counting
We next define the computational complexity classes pertaining to the counting problems that we shall
work with in the sequel. We also define the notion of (weakly) parsimonious reductions that are used to
reduce one counting problem to another.

Definition 2.10 A counting problem Ψ belongs to the class #P if there exists a polynomial time bounded
nondeterministic Turing machine (NTM) such that, for each instance I of Ψ, the number of nondeter-
ministic computational paths this NTM takes that lead to acceptance of this problem instance equals the
number of solutions of I(Ψ).

130 Predrag T. Tošić

For an alternative but equivalent definition of the class #P in terms of polynomially balanced relations,
we refer the reader to [51].

The hardest problems in the class #P are the #P-complete problems.

Definition 2.11 A counting problem Ψ is #P-complete if and only if (i) it belongs to the class #P, and (ii)
it is hard for that class, i.e., every other problem in #P is efficiently reducible to Ψ.

Thus, if we could solve any particular #P-complete problem in (deterministic) polynomial time, then
all the problems in class #P would be solvable in (deterministic) polynomial time, and the entire class #P
would collapse to P.(i)

As one would expect, the counting versions of the standard decision NP-complete problems, such as
SATISFIABILITY or HAMILTON CIRCUIT, are #P-complete [51]. What is curious, however, is that the
counting versions of some tractable decision problems, such as BIPARTITE MATCHING or MONOTONE
2CNF SATISFIABILITY, are also #P-complete [71, 72].

Definition 2.12 Given two problems Π and Π
′
, a PARSIMONIOUS REDUCTION from Π to Π

′
is a

polynomial-time transformation g that preserves the number of solutions; that is, if an instance I of Π
has nI solutions, then the corresponding instance g(I) of Π

′
also has ng(I) = nI solutions.

In practice, one often resorts to reductions that are “almost parsimonious”, in a sense that, while they
do not exactly preserve the number of solutions, nI in the previous definition can be efficiently recovered
from ng(I) .

Definition 2.13 Given two problems Π and Π
′
, a WEAKLY PARSIMONIOUS REDUCTION from Π to

Π
′

is a polynomial-time transformation g such that, if an instance I of Π has nI solutions, and
the corresponding instance g(I) of Π

′
has ng(I) solutions, then nI can be computed from ng(I) in

polynomial time.

We observe that any parsimonious reduction is also, trivially, weakly parsimonious.
All of our results on the computational complexity of counting various kinds of configurations in SDSs,

SyDSs and discrete Hopfield networks will be obtained by reducing counting problems about certain types
of Boolean formulae that are known to be #P-complete to the problems about S(y)DSs or Hopfield nets
of a desired, appropriately restricted kind. That such reductions suffice follows from the well-known
property of every problem that is hard for a given complexity class; for the record, we state that property
in the context of the class #P in the Lemma below.

Lemma 2.1 [51] Given two decision problems Π and Π
′
, if the corresponding counting problem #Π

is known to be #P-hard, and if there exists a (weakly) parsimonious reduction from Π to Π
′
, then the

counting problem #Π
′

is #P-hard, as well.

3 Related Work
Various models of cellular and network automata have been studied in a variety of contexts, from uncon-
ventional models for parallel and distributed computing (e.g., [22, 47, 68]), to complex dynamical systems
[24, 25, 38], to theoretical biology [43, 44]. Beside the classical (parallel) cellular automata [22, 28] and

(i) Strictly speaking, since #P is a class of function problems (as opposed to the classes of decision problems such as P, NP and
PSPACE), if an #P-complete problem turns out to be solvable in deterministic polynomial time, that would imply that P#P = P.

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 131

their sequential or asynchronous variants [34, 66, 68], perhaps the most studied class of models of network
or graph automata are the Hopfield networks [29, 30].

Computational aspects of the classical Cellular Automata have been studied in many contexts. Prior
to the 1980s, most of the theoretical work dealt with infinite CA and the fundamental (un)decidability
results about the global CA properties. Some examples of such properties of infinite CA are surjectivity,
injectivity, and invertibility of a cellular automaton’s global map; see, e.g., [2, 49, 52]. Systematic study
of other computational aspects of CA, from topological to formal language theoretic to computational
complexity theoretic, was prompted in the 1980s by the seminal work of S. Wolfram [74, 75, 76]. Among
other issues, Wolfram addressed the fundamental characteristics of CA in terms of their computational
expressiveness and universality. He also offered the first broadly accepted classification of all CA into
four qualitatively distinct classes in terms of the structural complexity of the possible computations or,
equivalently, dynamical evolutions. The state of the art pertaining to a broad variety of computational
properties of CA in both theoretical and experimental domains by the end of the ”golden decade” of
cellular automata research (the 1980’s) can be found in [28].

Since most interesting global properties of sufficiently general infinite CA have been shown to be
formally undecidable, the computational complexity proper (that is, as contrasted with the computability
theory) has been mainly concerned with the computational aspects of finite CA, or those pertaining to
finite subconfigurations of infinite CA. Most work within that framework has focused on the fundamental
decision problems about the possible CA computations. We include below a very short survey of some of
the more important results in that context.

The first NP-complete problems for CA are shown by Green in [26]; these problems are of a general
REACHABILITY flavor, i.e., they address the properties of the FORWARD DYNAMICS of CA. Kari studies
the reverse dynamics, more specifically, the reversibility and surjectivity problems about CA [39]. Sutner
also addresses the BACKWARD DYNAMICS problems, such as the problem of an arbitrary configuration’s
PREDECESSOR EXISTENCE, and their computational complexity in [57]. In the same paper, Sutner es-
tablishes the efficient solvability of the predecessor existence problem for an arbitrary CA with a fixed
neighborhood radius. In [14], Durand solves the injectivity problem for arbitrary 2-D CA but restricted
to the finite subconfigurations only; that paper contains one of the first results on coNP-completeness of a
natural and important problem about CA. Furthermore, Durand addresses the REVERSIBILITY PROBLEM
in the same, two-dimensional CA setting in [15]. Some good surveys on various directions of computa-
tional complexity-theoretic research on cellular automata can be found in [40, 47].

The SDS and SyDS models introduced in Section 2 are closely related to the graph automata (GA)
models studied in [46, 50] and the one-way cellular automata studied in [54]. In fact, the general finite-
domain SyDSs exactly correspond to the graph automata of Nichitiu and Remila in [50]. Barrett, Mortveit
and Reidys [10, 11, 48] and Laubenbacher and Pareigis [45] investigate the mathematical properties of
sequential dynamical systems. Barrett et al. study the computational complexity of several problems
about the configuration space structure of SDSs and SyDSs. Those problems include the REACHABILITY,
PREDECESSOR EXISTENCE and PERMUTATION EXISTENCE problems [7, 8]. Problems related to the
existence of the GARDEN OF EDEN and the FIXED POINT configurations are studied in [9]. In particular,
NP-completeness for the problem of FIXED POINT EXISTENCE (FPE) in various restricted classes of
Boolean S(y)DSs is proven in [9]. However, the FPE problem becomes easy when all the nodes of a
Boolean S(y)DS are required to update according to monotone functions.

The subarea of computational complexity that addresses counting or enumeration of various combi-
natorial structures dates back to the seminal work of L. Valiant in the late 1970s [71, 72]. Counting

132 Predrag T. Tošić

problems naturally arise in many contexts, from approximate reasoning and Bayesian belief networks in
AI (e.g., [55]), to network reliability and fault-tolerance [70], to theoretical biology [3], to phase transi-
tions in statistical physics, which is a large body of work in itself (some representative references include
[4, 35, 36, 38]).

It has been observed, however, that the progress in understanding the complexity of counting problems
has been much slower than the progress related to our understanding of decision and search problems
[27, 70]. Since the reductions used in proving counting problems hard have to preserve the number of
solutions, rather than just whether a solution exists or not, they are in general more difficult to devise
than the reductions used to establish, say, NP-completeness of the corresponding decision problems. For
example, most standard reductions used to establish computational hardness of certain decision or search
problems on graphs tend to “blow up” the underlying graph, thereby destroying the local structures that
impact the number of those problems’ solutions [27].

One area where this understanding of the complexity of counting has been particularly poor, is whether
the general counting problems that are provably hard remain hard when various restrictions are placed
on the problem instances [70]. Some of the relatively recent results in that context, such as those on
the hardness of counting in planar graphs [32], and especially in sparse graphs [27, 70], have directly
inspired our recent work (see [60, 61, 62, 67]), as well as the investigations summarized in this paper.

Counting problems naturally arise in the context of discrete dynamical systems, as well. Indeed, being
able to efficiently solve certain counting problems is essential for the full understanding of the underlying
dynamical system’s qualitative behavior. The most obvious counting problem is to determine (or estimate)
the number of attractors of the dynamical system [3]. As noted earlier, we refer to these attractors and
other, not necessarily attracting stable configurations as to the fixed points (FPs); we do not address the
issue of distinguishing among different types of those stable configurations (e.g., attractive vs. repulsive,
etc.) in this paper.

For example, in the context of Hopfield networks, the interpretation of the FP count is that it tells us how
many distinct patterns a given Hopfield network can memorize [3, 29, 30]. Computational complexity of
counting FPs and other structures of interest in discrete Hopfield networks is addressed in [18, 19, 20]. We
shall discuss in the next section how our results in this paper strengthen those in [18, 19] for the symmetric
discrete Hopfield nets with integer weight matrices and linear threshold update rules.

4 Complexity of Counting Various Configurations of Monotone
SDSs, SyDSs and Discrete Hopfield Networks

Our general approach to establishing the computational intractability of the counting problems of inter-
est about SDSs, SyDSs and Discrete Hopfield Nets (DHNs) will be as follows. We first identify certain
restricted variants of Boolean Satisfiability problem, whose counting versions (that is, determining how
many satisfying truth assignment an arbitrary Boolean formula in a particular, restricted form has) are
known to be intractable, that is, #P-complete. We then construct an S(y)DS or DHN and show that ex-
actly enumerating a particular kind of such network automaton’s configurations (e.g., its fixed points) is
at least as hard as exactly enumerating the satisfying assignments of the Boolean formula. For showing
intractability of counting problems, we use weakly parsimonious reductions that approximately preserve
the number of solutions; for details on complexity of counting in general, and (weakly) parsimonious re-
ductions from one counting problem to another in particular, we refer the reader to any standard reference
on computational complexity, such as the book by C. Papadimitriou [51].

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 133

Monotone Boolean functions, formulae and circuits [73] have been extensively studied in many areas of
computer science, from machine learning to connectionist models in AI to VLSI circuit design. Cellular
and other types of network automata with the local update rules restricted to monotone Boolean functions
have also been of a considerable interest (e.g., [9, 66]). The problem of counting FPs of monotone Boolean
SDSs and SyDSs is originally addressed in [60, 62]. It is shown there that, in general, counting FPs of
such S(y)DSs either exactly or approximately is computationally intractable. This intractability holds
even for the graphs that are simultaneously bipartite, planar, and very sparse on average [60, 62, 64]. In
particular:

Lemma 4.1 [62] Counting exactly the fixed points of a monotone Boolean SDS or SyDS defined over a
star graph, and such that the update rule of the central node of the star is given as a MON 2CNF formula
of size O(n), where n is the number of nodes in the star graph, is #P-complete.

Moreover, by the results of D. Roth [55], subsequently strengthened by S. Vadhan [70], the problem of
approximately counting FPs in the setting as in Lemma 4.1 above is NP-hard [62].

To summarize, enumerating the fixed points of monotone Boolean SDSs and SyDSs defined on bi-
partite, planar and sparse on average underlying graphs exactly is #P-complete, and for any ε > 0,
approximating the number of FPs in such monotone S(y)DSs to within 2n

1−ε
is NP-hard. Our next goal

is to show that the hardness of the exact enumeration of FPs for monotone S(y)DSs holds even when the
underlying graphs are required to be uniformly sparse. We will also argue that, as a consequence of our
construction in the proof of Theorem 4.2 below, the problem of enumerating stable configurations of other
types of discrete dynamical systems, such as the discrete Hopfield networks, is also in general computa-
tionally intractable. Moreover, that intractability holds for those discrete dynamical systems even when
they are defined on very sparse underlying graphs or networks.

Given the importance of the number of stable configurations of a Hopfield network viewed as an asso-
ciative memory (e.g., [24]), we next summarize what has been known about the problem of counting their
stable configurations.

In [18], Floreen and Orponen establish the following two interesting results:(ii)

Theorem 4.1 (i) The problem of determining the number of fixed point configurations of a simple discrete
Hopfield network, with a symmetric weight matrix W = [wij] such that all the weights wij are integers
and wii = 0 along the main diagonal, is #P-complete; and

(ii) the problem of determining the number of predecessor configurations of a given configuration of a
simple discrete Hopfield network, with a symmetric weight matrix W = [wij] such that all the weights
wij are from the set {−1, 0,+1} and wii = 0 along the main diagonal, is #P-complete.

For proving (i), Floreen and Orponen devise a Hopfield network that is quite dense, i.e., with many
non-zero weights wij . This would correspond to an SDS or SyDS where there are, informally speaking,
several nodes each of which having many neighbors. In contrast, our result in Lemma 4.1 allows only for
a single node that has a large neighborhood; see [60, 62] for more details.

Prior to moving to our main results, for the sake of completeness, we state the following

Lemma 4.2 Counting FPs of an arbitrary SDS or SyDS all of whose nodes use Boolean-valued linear
threshold rules is #P-complete.

(ii) We slightly rephrase the statement of these results from the linear algebra language originally used in [18] into the discrete
language we are using throughout this paper, in order to make the comparison and contrast with our own results clear.

134 Predrag T. Tošić

4.1 Counting Configurations of Uniformly Sparse SDSs and SyDSs
with Monotone Update Rules

The first major result of this paper pertains to the computational complexity of counting the fixed point
configurations of monotone Boolean SDSs and SyDSs that are defined over uniformly sparse underlying
graphs.

One of the original motivations behind our interest in that problem was to improve upon the complexity
of counting results in [18, 19]. We shall show below that the result (i) from [18] discussed above can be
considerably strengthened along several dimensions. That is, the hardness of counting FPs will be proven
to still hold even when the following restrictions on the problem instances are simultaneously imposed:

– the underlying graphs will be required to be uniformly sparse, with no node degree exceeding 3;
– all linear threshold update rules will be restricted to monotone functions by disallowing negative

weights;
– only two (positive) integer values for the weights will be allowed; and
– each S(y)DS node will choose one from only two allowed monotone linear threshold update rules.
We remark that, since each node of an SDS or SyDS in the Theorem that follows is required to have

only O(1) neighbors, the issue of encoding of the local update rules, that is discussed in detail in [62],
is essentially irrelevant in the present context. In particular, even a truth table with one row for each
combination of the values of a given node’s neighbors is permissible [61, 62].

In the sequel, BOOL-MON-S(Y)DS will stand for a monotone Boolean SDS or SyDS.

Theorem 4.2 Counting the fixed points of BOOL-MON-S(Y)DSs exactly is #P-complete, even when
all of the following restrictions on the structure of such an S(y)DS simultaneously hold:

• the monotone update rules are linear threshold functions;

• the S(y)DS is with memory, and such that, along the main diagonal, wii = 1 for all indices i,
1 ≤ i ≤ n;

• at most two different positive integer weights are used by each local update rule;

• each node has at most three neighbors in the underlying graph of this S(y)DS;

• only two different monotone linear threshold rules are used by the S(y)DS’s nodes.

Proof: We first describe the construction of a BOOL-MON-SYDS from an instance of a Boolean mono-

tone 2CNF (MON-2CNF) formula [21] such that no variable appears in more than three different clauses.
We then outline why is this reduction from the problem of counting satisfying assignments of such a
formula to the problem of counting FPs in the resulting SyDS weakly parsimonious [21].

Let’s assume that a MON-2CNF Boolean formula is given, such that there are n variables, m clauses,
each variable appears in at least one clause, and no variable appears in more than three clauses. In
particular, these requirements together imply that m = O(n), but we shall keep m and n as two distinct
parameters for clarity.

The corresponding SyDS S is constructed as follows. To each variable in the formula corresponds a
variable node, and to each clause, a clause node. In addition, a cloned clause node is introduced for each
of the original m clause nodes. Thus, the underlying graph of S has exactly n + 2m nodes. A variable
node is adjacent to a clause node if and only if, in the Boolean formula, the corresponding variable appears

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 135

C’C’C’

. . .

C1 . . .

x x x x x4 n21 3

 . . .

1

C Cm2 C
3

C4

2 3 4 mC’ C’

Fig. 1: Figure 4.1: The underlying graph of a bounded-degree monotone linear threshold Boolean S(y)DS in the
construction of Theorem 4.2. The original clause nodes are marked Cj , the cloned clause nodes are primed, as in
C′

j , and the variable nodes are denoted by xi.

in the corresponding clause. Each clause node is adjacent to its clone. Finally, the cloned clause nodes
form a ring among themselves.

Therefore, the underlying graph of this SyDS looks as in Figure 4.1.
In the sequel, we shall slightly abuse the notation and use xi both to denote a variable in the Boolean

formula, and the corresponding variable node in the S(y)DS or discrete Hopfield network we are con-
structing. Similarly, in this proof as well as throughout the rest of the paper, Cj will denote both clauses
in the Boolean formulae and clause nodes in the S(y)DSs or Hopfield networks that are being constructed
from those formulae. Again, the intended meaning will be clear from the context.

With these conventions in mind, we now define the update rules for the clause nodes, cloned clause
nodes, and variable nodes of the constructed SyDS. The cloned clause nodes C ′j and the variable nodes
xi will update according to the Boolean AND rule. The original clause nodes, Cj , will update according
to the following monotone linear threshold update rule:

Cj ←

{
1, if 2C ′j + Cj + xj1 + xj2 ≥ 4

0, otherwise
(2)

where xj1 , xj2 is a shorthand for the two variable nodes that are adjacent to the clause node Cj .
The given construction can be slightly rephrased, in order to emphasize that the resulting SyDS also

satisfies the symmetry requirement as it is usually defined in the Hopfield networks literature, namely, so
that the underlying matrix of weights is a symmetric matrix. To that end, the Boolean AND rule used by
the cloned clause nodes can be written in an equivalent, but more “linear-threshold-like”, form:

C ′j ←

{
1, if 2Cj + C ′j + C ′j−1 + C ′j+1 ≥ 5

0, otherwise
(3)

Notice that the function defined in equation (3) evaluates to 1 if and only if all of its inputs are 1, and thus,
indeed, the given formula is nothing but a linear-threshold-like way of writing the ordinary Boolean AND

136 Predrag T. Tošić

on four inputs. If this latter convention on how we write the update rules at the cloned clause nodes and
the variable nodes is adopted, then the resulting S can be also viewed as a discrete Hopfield network with
parallel node updates. We will turn to the related complexity of counting results in the context of Hopfield
networks in the next subsection.

We now show that the reduction from the counting problem #MON-2CNF-SAT to the counting prob-
lem #FP for the constructed SyDS is, indeed, weakly parsimonious. To that end, we summarize the case
analysis. If, at any time step t, one of the cloned clause nodes C ′j evaluates to 0, that will ensure that,
within no more than m

2 steps, all the cloned clause nodes will become 0, and stay in state 0 thereafter.
This will also cause all the original clause nodes’ states Ck, and, consequently, also all the variable
nodes’ states xi, to become 0, as well. Thus, if at any point a single cloned clause node’s state becomes
0, the entire SyDS will eventually collapse to the “sink” fixed point 0n+2m. Clearly, this sink FP does not
correspond to a satisfying assignment to the original Boolean formula.

Now, the only way that no cloned clause node ever evaluates to 0 is that the following two conditions
simultaneously hold:

– each C ′k and Ck is initially in the state 1, for 1 ≤ k ≤ m; and
– the initial states xi of the variable nodes are such that they correspond to a satisfying truth assignment

to the variables in the original Boolean formula.
If these conditions hold, then each such global configuration (xn, Cm, C ′m) = (xnsat, 1

m, 1m) is a
fixed point of S, where xnsat ∈ {0, 1}n is a short-hand for an n-tuple of Boolean values that corresponds
to a satisfying truth assignment (x1, ..., xn) to the underlying monotone 2CNF formula. Moreover, the
satisfying truth assignments of the original Boolean formula are in a one-to-one correspondence with
these non-sink FPs of S.

Since no variable in the MON-2CNF formula from which we are constructing the SyDS appears in
more than three clauses, each variable node xi in the SyDS has at most three neighbors. Since we use
2CNF, each clause node Cj has two variable node neighbors, plus one cloned clause neighbor, C ′j , for
the total of three neighbors. Finally, each cloned clause node C ′j clearly has exactly three neighbors.
In particular, by the result of C. Greenhill in [27], we can make the underlying graph of SyDS S be
3-regular, and the #P-completeness of the counting problem #FP will still hold.

We also observe that only two different monotone linear threshold functions are used in the construction
above; furthermore, when the update rules are written in the form as in expressions (2) and (3), it is im-
mediate that at most two different integer weights are used in each of those two linear threshold functions.
Hence, the claim of the Theorem follows insofar as monotone linear threshold SyDSs are concerned.

Finally, by the invariance of FPs with respect to the node update ordering [48], it follows that exactly
enumerating FPs of monotone linear threshold SDSs defined on uniformly sparse graphs is #P-complete,
as well. 2

In the construction above, the SyDS dynamics from every starting global configurations that is not
of the form (xnsat, 1

m, 1m) will eventually converge to the sink state 0n+2m. In particular, the basin of
attraction of C = 0n+2m includes all configurations of the form (xnunsat, 1

m, 1m), where xnunsat is a
shorthand for an ordered n-tuple of Boolean values that corresponds to an unsatisfying (i.e., falsifying)
truth assignment to the corresponding variables x1, ..., xn in the original MON-2CNF formula. The
rest of the configurations in the sink’s basin of attraction are such that (Cm, C ′m) 6= (1m, 1m), where
xn ∈ {0, 1}n is arbitrary.

Hence, in order to determine exactly the size of the basin of attraction for the sink state C = 0n+2m,

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 137

that is, the number of that configuration’s ancestors, we must be able to exactly determine the number
of falsifying truth assignments to the original MON-2CNF Boolean formula. It is easy to see that one
can find an ordering Π under which the same claim holds for the corresponding BOOL-MON-SDS. As a
consequence, we have

Corollary 4.1 The problem of counting exactly all the ancestors of an arbitrary configuration of a BOOL-
MON-S(Y)DS, denoted #ANC, is #P-hard. Moreover, this intractability result holds even when all re-
strictions from Theorem 4.2 are simultaneously imposed on the S(y)DS’s structure.

4.2 Counting Configurations of Discrete Hopfield Networks
We now turn to the corresponding hardness of counting results for discrete Hopfield networks with appro-
priately restricted weight matrices. We start with the problem of fixed point enumeration in the context of
Hopfield nets where each of the nodes has exactly one bit of memory – namely, its own (binary-valued)
current state.

Theorem 4.3 Determining the exact number of stable configurations of a parallel or asynchronous dis-
crete Hopfield network is #P-complete even when all of the following restrictions on the weight matrix
W = [wij] simultaneously hold:

• the matrix is symmetric: wij = wji for all pairs of indices i, j ∈ {1, ..., |V |} (where |V | denotes
the number of nodes in the underlying graph of this DHN);

• wii = 1 along the main diagonal for all i ∈ {1, ..., |V |};

• wij ∈ {0, 1, 2} for all pairs of indices i, j ∈ {1, ..., |V |};

• each row and each column of W has at most three (alternatively, exactly three) nonzero entries off
the main diagonal.

Proof (sketch): In case of the DHNs whose nodes update synchronously in parallel, the claim holds

by virtue of Theorem 4.2, since an SyDS that is constructed as in the proof of that theorem can also be
viewed as a parallel discrete Hopfield network whose weight matrix satisfies all the above listed con-
ditions.(iii) Insofar as the asynchronous DHNs whose nodes update in arbitrary sequential orders are
concerned, while indeed those sequences of node updates need not be repetitions of a fixed permutation
as in the corresponding SDSs, this difference can be easily shown to be immaterial insofar as the fixed
point configurations are concerned. Therefore, Theorem 4.3 about discrete Hopfield networks is nothing
but rephrasing Theorem 4.2, with parallel DHNs in place of SyDSs with monotone linear threshold update
rules, and asynchronous/sequential DHNs replacing SDSs with the same kind of update rules. 2

Next, we consider the problems of enumerating predecessors as well as all ancestors of a given Hopfield
network configuration. We shall establish the computational complexity of those two related counting
problems in the context of simple DHNs, whose weight matrices satisfy wii = 0 for ∀i ∈ {1, ..., |V |}.

Before we proceed with a formal reduction from the problem #MON-2CNF-SAT to the problem
#PRED of enumerating all predecessor configurations of a given DHN configuration, we establish the
(iii) For simplicity of the argument, in this proof sketch we are ignoring the syntactic difference that the state space of a node in a

Hopfield network is {−1,+1}, not {0, 1}.

138 Predrag T. Tošić

following additional conventions. First, the reduction will be from the MON-2CNF Boolean formulae
with each variable appearing in at least one, and in at most (alternatively, exactly) four clauses. Second,
we will abandon the usual convention in the Hopfield networks literature that the underlying graph is fully
connected (i.e., a clique), and instead consider those pairs of vertices {vi, vj} such thatwij = wji = 0 not
to be connected by an edge at all. We will require that the underlying DHN weight matrixW is symmetric
in the usual, Hopfield network sense; as a consequence, the underlying graph of such a discrete Hopfield
network will be undirected, which is also in accordance with our convention about S(y)DSs. Third, in
the construction used in proving Theorem 4.2, we will eliminate the cloned clause nodes C ′j and, instead,
connect the ordinary clause nodes into a ring.

We recall that, in a DHN, the set of possible states of a node is traditionally {−1,+1} (instead of
{0, 1}); while not essential, we will adopt this practice through the rest of the paper when it comes to the
discrete Hopfield networks. With that in mind, we define the update rule of a clause node Cj to be

Cj ←

{
+1, if 2Cj−1 + 2Cj+1 + xj1 + xj2 > 3

−1, otherwise
(4)

For each variable xi in the MON-2CNF formula from which we are constructing our DHN, let ai denote
the number of clauses in which xi appears; thus, under the stated assumptions, for every i ∈ {1, ..., |V |},
we have ai ∈ {1, 2, 3, 4}. We now define the variable node update rules as

xi ←

{
+1, if

∑
{j:xi∈Cj} Cj > ai − 1

−1, otherwise
(5)

Thus a variable node xi updates to +1 if and only if all of the clause nodes Cj(i) corresponding to
those clauses in the formula in which variable xi appears are currently in the state +1.

Finally, we observe that the resulting weight matrix W , while symmetric and with all entries wij ∈
{0, 1, 2}, also has wii = 0 along the main diagonal; therefore, the constructed Hopfield network is
simple (i.e., memoryless) [18, 20].

We are now ready to establish the third main result of this paper:

Theorem 4.4 The problem #PRED of determining the exact number of predecessors of a given configu-
ration of a simple discrete Hopfield network is #P-complete. Moreover, this claim holds even when all of
the following restrictions on the Hopfield net’s weight matrix W = [wij] are simultaneously imposed:

• the matrix is symmetric: wij = wji for all pairs of indices i, j ∈ {1, ..., |V |};

• wii = 0 along the main diagonal for all i ∈ {1, ..., |V |};

• wij ∈ {0, 1, 2} for all pairs of indices i, j ∈ {1, ..., |V |};

• each row and each column has at most / exactly four nonzero entries.

Proof (sketch): The claim of the Theorem will follow from the fact that the satisfying truth assignments

to the Boolean variables x1, ..., xn in the original MON-2CNF Boolean formula are in a one-to-one cor-
respondence with the set of all predecessors of the configuration (+1)n+m in the Hopfield net constructed

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 139

from that formula. In the Hopfield network context, we will identify the Boolean value FALSE of a
variable in the MON-2CNF formula with the corresponding DHN variable node’s state −1, whereas the
Boolean value TRUE of a variable in the formula will be mapped to the state +1 of the corresponding
DHN variable node.

The case analysis is similar to that in the proof of Theorem 4.2. In particular, every configuration
with at least one clause node Cj in the state (−1) will eventually converge to the sink fixed point
(xn, Cm) = ((−1)n, (−1)m). Among the configurations of the form (xn, Cm) = (xn, (+1)m), those
and only those such that the n-tuple xn corresponds to a satisfying truth assignment to the original MON-
2CNF Boolean formula will evolve to the other fixed point configuration, (1n, 1m) = (+1)n+m. More-
over, this convergence to (+1)n+m is easily seen to take a single parallel transition. That is, the predeces-
sors of (+1)n+m are precisely the configurations of the form (xnsat, (+1)m). 2

It immediately follows from the discussion in the proof sketch above that all ancestors of the config-
uration C = (+1)n+m are also this configuration’s predecessors; that is, the convergence from every
configuration in the basin of attraction of C takes exactly one (global) parallel step.

Corollary 4.2 The problem #ANC of determining the exact number of all ancestors of an arbitrary config-
uration of a simple discrete Hopfield network is, in the worst case, #P-hard. Moreover, this intractability
holds even when all the restrictions from Theorem 4.4 on the Hopfield network instances are simultane-
ously imposed.

We remark that the #ANC problem for S(y)DSs and DHNs is indeed #P-complete whenever the basin
of attraction of a fixed point – or, for that matter, of an arbitrary configuration that has ancestors – of
the dynamical system in question is shallow. This shallowness, in particular, ensures that the problem of
enumerating ancestors of all generations is in the class #P. However, for arbitrary basins of attraction that
need not necessarily be shallow, the question arises, whether it can always be verified in polynomial time
if one configuration is an ancestor of another configuration. In fact, the results in [8] imply that, given two
arbitrary configurations C and C′ of a monotone Boolean SDS or SyDS, determining whether C′ is an
ancestor of C (alternatively, whether C is reachable from C′) is, in general, PSPACE-complete.

The implication of the results in [8] for the complexity of counting ancestors of an arbitrary configu-
ration of a monotone Boolean S(y)DS or a discrete Hopfield network with a nonnegative and symmetric
weight matrix is that the problem #ANC need not be in the class #P. In particular, it is an open prob-
lem whether #ANC ∈ #P under the sparseness restrictions as in our three main results earlier in this
paper. Therefore, all we can offer at this stage is a more conservative characterization of the complex-
ity of #ANC in comparison to the complexity of #FP and #PRED – hence the #P-hardness, rather than
#P-completeness, statements about the problem #ANC in Corollaries 4.1 and 4.2.

5 Summary
We have shown in [61, 62, 60, 64] that the problem of enumerating the fixed point configurations of two
related classes of Boolean network automata, called Sequential and Synchronous Dynamical Systems is,
in general, computationally intractable. We continue the general line of inquiry from our prior work in
the present paper, as well. We now focus on those SDSs and SyDSs each of whose nodes is required
to update its state according to a monotone Boolean function, and whose underlying network topologies
are uniformly sparse, so that, in particular, each node has only O(1) neighbors. Our main result in this
paper is that exactly counting the fixed points of monotone, uniformly sparse Boolean SDSs and SyDSs

140 Predrag T. Tošić

such that no node has more than three neighbors is #P-complete. This result immediately implies similar
intractability results for the sparse discrete Hopfield networks. Viewing Hopfield networks as a model
of associative memory, our results imply that determining exactly how many different patterns can be
stored in such an associative memory is, in general, computationally intractable. This computational
intractability remains to hold even when no inhibitive connections (i.e., no edges with negative weights)
are allowed, and, simultaneously,no row or column of the weight matrix has more than four nonzero
entries. Moreover, our hardness result still holds even for those DHNs with integer weight matrices all of
whose entries are from the set 0, 1, 2.

Similarly, determining the exact size of the basin of attraction of a given stable configuration of a dis-
crete Hopfield network with a symmetric weight matrix is equally intractable; moreover, this intractability
result holds even when the Hopfield network is required to be simple, with a uniformly sparse weight ma-
trix, and the same restrictions on the allowed values of weights wij as in our corresponding result about
the enumeration of the stable (or, in the SDS terminology, fixed point) configurations.

Insofar as the future work is concerned, it needs to be pointed out that our results in this paper, as
well as similar in spirit results in our prior work [60, 61, 62, 63, 67, 64, 69] all pertain to the worst-case
complexity of counting the stable configurations and other structures of discrete dynamical systems. Of a
considerable interest to statistical physics, connectionist AI and large-scale multi-agent systems research
communities, however, is the problem of determining average complexity of the relevant decision, search
and counting problems about the underlying system’s dynamics.

Another important problem is that of the hardness of approximate counting of the fixed points and other
types of configurations of interest; we have partially solved that problem for certain classes of underlying
network topologies and node update rules [60, 62, 67, 64], but not for the particular restricted classes of
topologies and update rules for which we have established the hardness of exact counting in this paper
and the extended technical report [63]. Hence, the approximate counting in the settings discussed in the
present paper, as far as we know, is still open.

To summarize our contribution in the present paper, the results in Theorems 4.2 - 4.4, and in particular
the constructions in their corresponding proofs (see also [63] for details), clearly indicate that there are
various restricted classes of uniformly sparse Boolean network automata and Hopfield networks for which
exactly enumerating the stable configurations (FPs), as well as the predecessor and the arbitrary ancestor
configurations, are all computationally intractable in the worst case. These hardness results have some
interesting implications and interpretations – for example, in the context of pattern storage capacity of
sparsely connected Hopfield networks viewed as associative memories. However, what is the average
complexity of these important counting problems (and in particular, under what specific assumptions are
those average or expected case problems tractable), are wide-open problems. We hope to address the
average case complexity of those and other similar counting problems about discrete dynamical networks
in our future work.

Acknowledgements

Many thanks to my colleague Ricardo Vilalta, as well as Department of Computer Science and Texas
Learning & Computation Center (TLC2) at University of Houston.

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 141

References
[1] M. Anthony. “Threshold Functions, Decision Lists, and the Representation of Boolean Functions”, Neu-

roCOLT Techn. Report Series (NC-TR-96-028), January 1996

[2] S. Amoroso, Y. Patt. “Decision procedures for surjectivity and injectivity of parallel maps for tessellation
structures”, Journal of Computer and System Sciences (JCSS), vol. 6, pp. 448 – 464, 1972

[3] R. J. Bagley, L. Glass. “Counting and Classifying Attractors in High Dimensional Dynamical Systems”,
Journal of Theoretical Biology, vol. 183, pp. 269–284, 1996

[4] F. Barahona. “On the computational complexity of Ising spin glass models”, Journal of Physics A:
Mathematical and General, vol. 15, pp. 3241 – 3253, 1982

[5] C. Barrett, B. Bush, S. Kopp, H. Mortveit and C. Reidys. “Sequential Dynamical Systems and Applica-
tions to Simulations”, Technical Report, Los Alamos National Laboratory, September 1999

[6] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns. “Dichotomy
Results for Sequential Dynamical Systems”, Los Alamos National Laboratory Report, LA–UR–00–
5984, 2000

[7] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns. “Predecessor and
Permutation Existence Problems for Sequential Dynamical Systems”, Los Alamos National Laboratory
Report, LA–UR–01–668, 2001

[8] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns. “Reachability
problems for sequential dynamical systems with threshold functions”, Theoretical Computer Science,
vol. 295, issues 1–3, pp. 41–64, February 2003

[9] C. L. Barrett, H. B. Hunt, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, P. T. Tosic. “Gar-
dens of Eden and Fixed Points in Sequential Dynamical Systems”, Discrete Mathematics and Theoretical
Computer Science (DMTCS), spec. ed. Proc. AA DM–CCG, pp. 95–110, 2001

[10] C. Barrett, H. Mortveit, and C. Reidys. “Elements of a theory of simulation II: sequential dynamical
systems” Applied Mathematics and Computation, vol. 107 (2–3), pp. 121–136, 2000

[11] C. Barrett, H. Mortveit and C. Reidys. “Elements of a theory of computer simulation III: equivalence of
SDS”, Applied Mathematics and Computation, vol. 122, pp. 325–340, 2001

[12] C. Barrett and C. Reidys. “Elements of a theory of computer simulation I: sequential CA over random
graphs” Applied Mathematics and Computation, vol. 98, pp. 241–259, 1999

[13] R. Beckman et. al. “TRANSIMS – Release 1.0 – The Dallas-Forth Worth case study”, Tech. Report LA
UR 97–4502, Los Alamos National Laboratory, Los Alamos, New Mexico, 1999

[14] B. Durand. “Inversion of 2D cellular automata: some complexity results”, Theoretical Computer Science,
vol. 134 (2) , pp. 387 – 401, November 1994

[15] B. Durand. “A random NP-complete problem for inversion of 2D cellular automata”, Theoretical Com-
puter Science, vol. 148 (1) , pp. 19 – 32, August 1995

[16] B. Durand. “Global properties of 2D cellular automata”, in E. Goles, S. Martinez (eds.), “Cellular
Automata and Complex Systems”, Kluwer, Dordrecht, 1998

[17] C. Dyer. “One-way bounded cellular automata”, Information and Control, vol. 44, pp. 54 – 69, 1980

[18] P. Floreen, P. Orponen. “On the Computational Complexity of Analyzing Hopfield Nets”, Complex
Systems, vol. 3, pp. 577–587, 1989

[19] P. Floreen, P. Orponen. “Attraction radii in binary Hopfield nets are hard to compute”, Neural Compu-
tation, vol. 5, pp. 812–821, 1993

142 Predrag T. Tošić

[20] P. Floreen, P. Orponen. “Complexity Issues in Discrete Hopfield Networks”, Neuro–COLT Technical
Report Series, NC–TR–94–009, October 1994

[21] M. R. Garey and D. S. Johnson. “Computers and Intractability: A Guide to the Theory of NP-
completeness”, W. H. Freeman and Co., San Francisco, California, 1979

[22] M. Garzon. “Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks”,
Springer, 1995

[23] E. Goles, S. Martinez. “Neural and Automata Networks: Dynamical Behavior and Applications”, Math-
ematics and Its Applications series, vol. 58, Kluwer, 1990

[24] E. Goles, S. Martinez (eds.). “Cellular Automata, Dynamical Systems and Neural Networks”, Mathe-
matics and Its Applications series, vol. 282, Kluwer, 1994

[25] E. Goles, S. Martinez (eds.). “Cellular Automata and Complex Systems”, Nonlinear Phenomena and
Complex Systems series, Kluwer, 1999

[26] F. Green. “NP-Complete Problems in Cellular Automata”, Complex Systems, vol. 1 (3), pp. 453–474,
1987

[27] C. Greenhill. “The Complexity of Counting Colourings and Independent Sets in Sparse Graphs and
Hypergraphs”, Computational Complexity, vol. 9, pp. 52–72, 2000

[28] H. Gutowitz (Editor). “Cellular Automata: Theory and Experiment”, North Holland, 1989

[29] J. J. Hopfield. “Neural networks and physical systems with emergent collective computational abilities”,
Proc. National Academy of Sciences (USA), vol. 79, pp. 2554–2558, 1982

[30] J. J. Hopfield, D. W. Tank. “Neural computation of decisions in optimization problems”, Biological
Cybernetics, vol. 52, pp. 141–152, 1985

[31] B. Huberman, N. Glance. “Evolutionary games and computer simulations”, Proc. National Academy of
Sciences (USA), vol. 90, pp. 7716–7718, August 1993

[32] H. B. Hunt, M. V. Marathe, V. Radhakrishnan, R. E. Stearns. “The Complexity of Planar Counting
Problems”, SIAM Journal of Computing, vol. 27, pp. 1142–1167, 1998

[33] L.P. Hurd. “On Invertible cellular automata” Complex Systems, vol. 1(1), pp. 69-80, 1987

[34] T. E. Ingerson and R. L. Buvel. “Structure in asynchronous cellular automata”, Physica D: Nonlinear
Phenomena, vol. 10 (1–2), pp. 59–68, January 1984

[35] S. Istrail. “Statistical Mechanics, Three-Dimensionality and NP-completeness: I. Universality of Intra-
catability for the Partition Function of the Ising Model Across Non-Planar Lattices (Extended Abstract)”,
Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC ’00), Portland, Oregon, pp.
87 – 96, 2000

[36] M. Jerrum. “Two-dimensional monomer-dimer systems are computationally intractable”, J. Statistical
Physics, vol. 48, pp. 121–134, 1987. Erratum in vol. 59, pp. 1087–1088, 1990

[37] M. Jerrum, A. Sinclair. “Approximating the permanent”, SIAM Journal of Computing, vol. 18, pp. 1149–
1178, 1989

[38] M. Jerrum, A. Sinclair. “Polynomial-time approximation algorithms for the Ising model”, SIAM Journal
of Computing, vol. 22, pp. 1087–1116, 1993

[39] J. Kari. “Reversibility and surjectivity problems of cellular automata”, Journal of Computer and System
Sciences, vol. 48, pp. 149 – 182, 1994

[40] J. Kari. “Theory of cellular automata: A survey”, Theoretical Computer Science, vol. 334, pp. 3 – 33,
2005

Complexity of enumerating possible dynamics of sparsely connected Boolean network automata 143

[41] R. Karp, M. Luby. “Monte-Carlo algorithms for enumeration and reliability problems”, IEEE Symposium
on Foundations of Computer Science, No. 24, pp. 56 – 64, 1983

[42] R. Karp, M. Luby. “Monte Carlo algorithms for the planar multiterminal network reliability problem”,
Journal of Complexity, vol. 1, pp. 45 – 64, 1985

[43] S. A. Kauffman. “Metabolic stability and epigenesis in randomly connected nets”, Journal of Theoretical
Biology, vol. 22, pp. 437 – 467, 1969

[44] S. A. Kauffman. “Emergent properties in random complex automata”, Physica D: Nonlinear Phenomena,
Volume 10, Issues 1–2, pp. 145–156, January 1984

[45] R. Laubenbacher and B. Pareigis. “Finite Dynamical Systems”, Technical report, Department of Mathe-
matical Sciences, New Mexico State University, Las Cruces, New Mexico, 2000

[46] B. Martin. “A Geometrical Hierarchy of Graphs via Cellular Automata”, Proc. MFCS’98 Satellite
Workshop on Cellular Automata, Brno, Czech Republic, August 1998

[47] M. Mitchell. “Computation in Cellular Automata: A Selected Review”, in T. Gramms, S. Bornholdt, M.
Gross, M. Mitchell, T. Pellizzari (editors), “Nonstandard Computation”, pp. 95–140, Weinheim: VCH
Verlagsgesellschaft, 1998

[48] H. Mortveit, C. Reidys. “Discrete sequential dynamical systems”, Discrete Mathematics, vol. 226 (1–3),
pp. 281–295, 2001

[49] J. Myhill. “The converse of Moore’s Garden-of-Eden theorem”, Proc. Amer. Math. Soc. vol. 14, pp.
685-686, 1963

[50] C. Nichitiu and E. Remila. “Simulations of Graph Automata”, Proc. MFCS’98 Satellite Workshop on
Cellular Automata, Brno, Czech Republic, August 1998

[51] C. Papadimitriou. “Computational Complexity”, Addison-Wesley, Reading, Massachusetts, 1994

[52] D. Richardson. “Tessellations with local transformations”, J. of Computer and System Sciences (JCSS),
6, pp. 373-388, 1972

[53] C. Robinson. “Dynamical systems: stability, symbolic dynamics and chaos”, CRC Press, New York,
1999

[54] Zs. Roka. “One-way cellular automata on Cayley graphs”, Theoretical Computer Science, 132 (1–2),
pp. 259–290, September 1994

[55] D. Roth. “On the Hardness of Approximate Reasoning”, Artificial Intelligence, vol. 82, pp. 273–302,
1996

[56] K. Sutner. “De Bruijn graphs and linear cellular automata”, Complex Systems, vol. 5 (1), pp. 19–30,
1990

[57] K. Sutner. “On the computational complexity of finite cellular automata”, Journal of Computer and
System Sciences (JCSS), vol. 50 (1), pp. 87–97, February 1995

[58] K. Sutner. “Computation theory of cellular automata”, Proc. MFCS’98 Satellite Workshop on Cellular
Automata, Brno, Czech Republic, August 1998

[59] C. Schittenkopf, G. Deco and W. Brauer. “Finite automata-models for the investigation of dynamical
systems” Information Processing Letters, vol. 63 (3), pp. 137–141, August 1997

[60] P. Tosic. “On Counting Fixed Point Configurations in Star Networks”, Advances in Parallel and Dis-
tributed Computational Models Workshop (APDCM’05), in Proc. of the 19th IEEE Int’l Parallel &
Distributed Processing Symposium, Denver, Colorado, April 2005 (CD-Rom)

144 Predrag T. Tošić

[61] P. Tosic. “On Complexity of Counting Fixed Point Configurations in Certain Classes of Graph Au-
tomata”, Electronic Colloquium on Computational Complexity, Report ECCC–TR05–051, April 2005

[62] P. Tosic. “Counting Fixed Points and Gardens of Eden of Sequential Dynamical Systems on Planar Bipar-
tite Graphs”, Electronic Colloquium on Computational Complexity, Report ECCC–TR05–091, August
2005

[63] P. Tosic. ”Computational Complexity of Some Enumeration Problems About Uniformly Sparse Boolean
Network Automata”, Electronic Colloquium on Computational Complexity, Report ECCC–TR06–159,
2006

[64] P. Tosic. “On the Complexity of Counting Fixed Points and Gardens of Eden in Sequential and Syn-
chronous Dynamical Systems”, International Journal on Foundations of Computer Science (IJFCS), vol.
17 (5), pp. 1179–1203, October 2006

[65] P. Tosic, G. Agha. “Concurrency vs. Sequential Interleavings in 1-D Threshold Cellular Automata”,
APDCM Workshop, in Proc. of the 18th IEEE Int’l Parallel & Distributed Processing Symposium, Santa
Fe, New Mexico, USA, April 2004

[66] P. Tosic, G. Agha. “Characterizing Configuration Spaces of Simple Threshold Cellular Automata”, Proc.
of the 6th Int’l Conference on Cellular Automata for Research and Industry (ACRI’04), Amsterdam, The
Netherlands, October 2004; Springer’s Lecture Notes in Computer Science (LNCS) series, vol. 3305, pp.
861–870

[67] P. Tosic, G. Agha. “On Computational Complexity of Counting Fixed Points in Symmetric Boolean
Graph Automata”, in Proc. of the 4th Int’l Conference on Unconventional Computation (UC’05), Sevilla,
Spain, October 2005; Springer’s Lecture Notes in Computer Science (LNCS) series, vol. 3699, pp. 191–
205

[68] P. Tosic, G. Agha. “Parallel vs. Sequential Threshold Cellular Automata: Comparison and Contrast”,
in Proc. of the First European Conference on Complex Systems (ECCS’05), paper # 251; European
Complex Systems Society, Paris, France, November 2005

[69] P. Tosic, G. Agha. “On Computational Complexity of Predicting Dynamical Evolution of Large Agent
Ensembles”, Proc. of the 3rd European Workshop on Multiagent Systems (EUMAS’05), pp. 415–426,
Flemish Academy of Sciences, Brussels, Belgium, December 2005

[70] S. Vadhan. “The Complexity of Counting in Sparse, Regular and Planar Graphs”, SIAM Journal of
Computing, vol. 31 (2), pp. 398–427, 2001

[71] L. Valiant. “The Complexity of Computing the Permanent”, Theoretical Computer Science, vol. 8, pp.
189–201, 1979

[72] L. Valiant. “The Complexity of Enumeration and Reliability Problems”, SIAM Journal of Computing,
vol. 8 (3), pp. 410–421, 1979

[73] I. Wegener. “The Complexity of Boolean Functions”, Teubner Series in Computer Science, Wiley, 1987

[74] S. Wolfram. “Computation theory of cellular automata”, Communications in Mathematical Physics, vol.
96, 1984

[75] S. Wolfram. “Twenty problems in the theory of cellular automata”, Physica Scripta, T9, pp. 170-183,
1985

[76] S. Wolfram. “Theory and applications of cellular automata”, World Scientific, 1986

[77] S. Wolfram (ed.). “Cellular Automata and Complexity (collected papers)”, Addison-Wesley, 1994

	Introduction
	Preliminaries
	The Basics of Computational Complexity of Counting

	Related Work
	Complexity of Counting Various Configurations of Monotone SDSs, SyDSs and Discrete Hopfield Networks
	Counting Configurations of Uniformly Sparse SDSs and SyDSs with Monotone Update Rules
	Counting Configurations of Discrete Hopfield Networks

	Summary

