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Renewal theory in analysis of tries and
strings: Extended abstract

Svante Janson
Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

We give a survey of a number of simple applications of renewal theory to problems on random strings, in particular
to tries and Khodak and Tunstall codes.
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1 Introduction
Although it long has been realized that renewal theory is a useful tool in the study of random strings
and related structures, it has not always been used to its full potential. The purpose of the present paper
is to give a survey presenting in a unified way some simple applications of renewal theory to a number
of problems involving random strings, in particular several problems on tries, which are tree structures
constructed from strings. (Other applications of renewal theory to problems on random trees are given in,
e.g., [1], [3], [9], [13], [19], [20].)

Since our purpose is to illustrate a method rather than to prove new results, we present a number of
problems in a simple form without trying to be as general as possible. In particular, for simplicity we
exclusively consider random strings in the alphabet {0, 1}, and assume that the “letters” (bits) ξi in the
strings are i.i.d. Note, however, that the methods below are much more widely applicable and extend in
a straightforward way to larger alphabets. The methods also, at least in principle, extend to, for example,
Markov sources where ξi is a Markov chain. (See e.g. Szpankowski [24, Section 2.1] and Clément,
Flajolet and Vallée [2] for various interesting probability models of random strings.) Indeed, one of the
purposes of this paper is to make propaganda for the use of renewal theory to study e.g. Markov models,
even if we do not do this in the present paper. (Some such results may appear elsewhere.)

The results below are (mostly) not new; they have earlier been proved by other methods, in particular
Mellin transforms. Indeed, such methods often provide sharper results, with better error bounds or higher
order terms. Nevertheless, we believe that renewal theory often is a valuable method that yields the leading
terms in a simple and intuitive way, and that it ought to be more widely used for this type of problems.
Moreover, as said above, this method may be easier to extend to other situations.

We treat a number of problems on random tries in Sections 3–5 (insertion depth, imbalance, size).
Tunstall and Khodak codes are studied in Section 6. A random walk in a region bounded by two crossing
lines is studied in Section 7, where we give a (partial) extension of a result by Drmota and Szpankowski
[6]. Further results, including related results for b-tries and Patricia tries, and detailed proofs are given in
the full-length paper [14].
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Notation
We use

p−→ and d−→ for convergence in probability and in distribution, respectively.
If Zn is a sequence of random variables and µn and σ2

n are sequences of real numbers with σ2
n > 0 (for

large n, at least), then Zn ∼ AsN(µn, σ
2
n) means that (Zn − µn)/σn

d−→ N(0, 1).
We denote the fractional part of a real number x by {x} := x− bxc.

Acknowledgement. I thank Allan Gut and Wojciech Szpankowski for inspiration and helpful discussions.

2 Preliminaries
Suppose that Ξ(1),Ξ(2), . . . is an i.i.d. sequence of random infinite strings Ξ(n) = ξ

(n)
1 ξ

(n)
2 · · · , with letters

ξ
(n)
i in an alphabetA. (When the superscript n does not matter we drop it; we thus write Ξ = ξ1ξ2 · · · for

a generic string in the sequence.) For simplicity, we consider only the caseA = {0, 1}, and further assume
that the individual letters ξi are i.i.d. with ξi ∼ Be(p) for some fixed p ∈ (0, 1), i.e., P(ξi = 1) = p and
P(ξi = 0) = q := 1− p.

Given a finite string α1 · · ·αn ∈ An, let P (α1 · · ·αn) be the probability that the random string Ξ
begins with α1 · · ·αn. In particular, for a single letter, P (0) = q and P (1) = p, and in general

P (α1 · · ·αn) =

n∏
i=1

P (αi) =

n∏
i=1

pαiq1−αi . (2.1)

Given a random string ξ1ξ2 · · · , we define

Xi := − lnP (ξi) = − ln
(
pξiq1−ξi

)
=

{
− ln q, ξi = 0,

− ln p, ξi = 1.
(2.2)

Note that X1, X2, . . . is an i.i.d. sequence of positive random variables with

EXi = H := −p ln p− q ln q, (2.3)

the usual entropy of each letter ξi, and

EX2
i = H2 := p ln2 p+ q ln2 q, (2.4)

VarXi = H2 −H2 = pq(ln p− ln q)2 = pq ln2(p/q). (2.5)

The variance (2.5) is in data compression known as the minimal coding variance, see [16]. Note that the
case p = q = 1/2 is special; in this case Xi = ln 2 is deterministic and VarXi = 0.

By (2.2), Xi is supported on {ln(1/p), ln(1/q)}. It is well-known, both in renewal theory and in the
analysis of tries, that one frequently has to distinguish between two cases: the arithmetic (or lattice) case
when the support is a subset of dZ for some d > 0, and the non-arithmetic (or non-lattice) case when it is
not. This yields the following cases:

arithmetic The ratio ln p/ ln q is rational. More precisely, Xi then is d-arithmetic, where d equals
gcd(ln p, ln q), the largest positive real number such that ln p and ln q both are integer multiples
of d. If ln p/ ln q = a/b, where a and b are relatively prime positive integers, then

d = gcd(ln p, ln q) =
| ln p|
a

=
| ln q|
b

. (2.6)
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non-arithmetic The ratio ln p/ ln q is irrational.

We let Sn denote the partial sums of Xi: Sn :=
∑n
i=1Xi. Thus

P (ξ1 · · · ξn) =

n∏
i=1

P (ξi) =

n∏
i=1

e−Xi = e−Sn . (2.7)

(This is a random variable, since it depends on the random string ξ1 · · · ξn; it can be interpreted as the
probability that another random string Ξ(j) begins with the same n letters as observed.)

We introduce the standard renewal theory notation (see e.g. Gut [8, Chapter 2]), for t ≥ 0 and n ≥ 1,

ν(t) := min{n : Sn > t}. (2.8)

We also allow the summation to start with an initial random variable X0, which is independent of
X1, X2, . . . , but may have an arbitrary real-valued distribution. We then define

Ŝn :=

n∑
i=0

Xi = X0 +

n∑
i=1

Xi, (2.9)

ν̂(t) := min{n : Ŝn > t}. (2.10)

3 Insertion depth in a trie
A trie is a binary tree structure designed to store a set of strings. It is constructed from the strings by
a recursive procedure, see e.g. Knuth [15, Section 6.3], Mahmoud [17, Chapter 5] or Szpankowski [24,
Section 1.1]: If there is just one string, it is stored in the root; otherwise, the strings beginning with 0 are
passed to the left subtree, and the strings beginning with 1 to the right subtree, and the construction is
repeated in the subtrees, with a node at depth k inspecting the (k + 1)th bit of the strings that are passed
to it.

The trie is a finite subtree of the complete infinite binary tree T∞, where the nodes can be labelled by
finite strings α = α1 · · ·αk ∈ A∗ :=

⋃∞
k=0Ak (the root is the empty string). A string Ξ is stored at the

node labelled by α if α is the shortest prefix of Ξ that is not a prefix of any other string in the set.
Let Dn be the depth (= path length) of the node containing a given string, for example the first, in the

trie constructed from n random strings Ξ(1), . . . ,Ξ(n). (By symmetry, any of the n strings will have a
depth with the same distribution.) Denoting the chosen string by Ξ = ξ1ξ2 · · · , the depth Dn is thus at
most k if and only if no other of the strings begins with ξ1 · · · ξk. Conditioning on the string Ξ, each of
the other strings has this beginning with probability P (ξ1 · · · ξk), and thus by independence,

P(Dn ≤ k | Ξ) =
(
1− P (ξ1 · · · ξk)

)n−1
=
(
1− e−Sk

)n−1
. (3.1)

Let X0 = X
(n)
0 be a random variable, independent of Ξ, with the distribution

P(X
(n)
0 > x) =

(
1− ex/n

)n−1
+

=
(
1− ex−lnn

)n−1
+

, x ∈ (−∞,∞). (3.2)

Then, for any k ≥ 1,

P(Dn ≤ k) = P
(
X0 > lnn− Sk

)
= P

(
Ŝk > lnn

)
= P

(
ν̂(lnn) ≤ k

)
(3.3)
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and thus
Dn

d
= ν̂(lnn). (3.4)

Further, as n→∞, the quantity in (3.2) converges to exp(−ex), and thus X(n)
0 → X∗0 , where −X∗0 has

the Gumbel distribution with P(−X∗0 ≤ x) = exp(− exp(−x)).
We can apply standard renewal theory theorems, and immediately obtain the following. For other,

earlier proofs see Knuth [15, Sections 6.3 and 5.2], Pittel [21, 22] and Mahmoud [17, Section 5.5]. The
Markov case is treated by Jacquet and Szpankowski [12], ergodic strings by Pittel [21], and a class of
general dynamical sources by Clément, Flajolet and Vallée [2].

Theorem 3.1. For every p ∈ (0, 1),
Dn

lnn

p−→ 1

H
, (3.5)

with H the entropy given by (2.3). Moreover, the convergence holds in every Lr, r < ∞, too. Hence, all
moments converge in (3.5) and

EDr
n ∼ H−r(lnn)r, 0 < r <∞. (3.6)

Theorem 3.2. More precisely:
(i) If ln p/ ln q is irrational, then, as n→∞,

EDn =
lnn

H
+

H2

2H2
+
γ

H
+ o(1). (3.7)

(ii) If ln p/ ln q is rational, then, as n→∞,

EDn =
lnn

H
+

H2

2H2
+
γ

H
+ ψ1(lnn) + o(1), (3.8)

where ψ1(t) is a small continuous function, with period d = gcd(ln p, ln q) in t, given by

ψ1(t) := − 1

H

∑
k 6=0

Γ(−2πik/d)e2πikt/d. (3.9)

Theorem 3.3. Suppose that p ∈ (0, 1). Then, as n→∞,

Dn −H−1 lnn√
lnn

d−→ N
(

0,
σ2

H3

)
,

with σ2 = H2 −H2 = pq(ln p− ln q)2. If p 6= 1/2, then σ2 > 0 and this can be written as

Dn ∼ AsN
(
H−1 lnn,H−3σ2 lnn

)
.

Moreover,

VarDn =
σ2

H3
lnn+ o(lnn).
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In the argument above, X0 depends on n. This is a nuisance, although no real problem. An alternative
that avoids this problem is to Poissonize by considering a random number of strings. In this case it is
simplest to consider 1 + Po(λ) strings, so that a selected string Ξ is compared to a Poisson number Po(λ)
of other strings, for a parameter λ → ∞. Conditioned on Ξ, the number of other strings beginning
with ξ1 · · · ξk then has the Poisson distribution Po(λP (ξ1 · · · ξk)). Thus we obtain instead of (3.4), now
denoting the depth by Dλ, Dλ

d
= ν̂(lnλ), where X0 := X∗0 now is independent of n.

We obtain the same asymptotics as for Dn above. It is in this case easy to depoissonize, by noting that
Dn is stochastically monotone in n, and derive the results for Dn from the results for Dλ by choosing
λ = n± n2/3.

4 Imbalance in tries
Mahmoud [18] studied the imbalance factor of a string in a trie, defined as the number of steps to the right
minus the number of steps to the left in the path from the root to the leaf where the string is stored. We
define

Yi := 2ξi − 1 =

{
−1, ξ1 = 0,

+1, ξ1 = 1,

and denote the corresponding partial sums by Vk :=
∑k
i=1 Yi. Thus the imbalance factor ∆n of the string

Ξ in a random trie with n strings is VDn
, with Dn as in Section 3 the depth of the string.

It follows easily that (3.3) holds also conditioned on the sequence (Y1, Y2, . . . ), and as a consequence

(Dn,∆n) = (Dn, VDn
)

d
=
(
ν̂(lnn), Vν̂(lnn)

)
.

In particular,

∆n
d
= Vν̂(lnn).

A general renewal theory theorem [8, Section 4.2] applies, and we obtain the central limit theorem by
Mahmoud [17]:

Theorem 4.1. As n→∞,

∆n ∼ AsN

(
p− q
H

lnn,
pq ln2(pq)

H3
lnn

)
.

5 The expected size of a trie
A trie built of n strings as in Section 3 has n external nodes, since each external node contains exactly one
string. However, the number of internal nodes, Wn, say, is random. We will study its expectation. For
simplicity we Poissonize directly and consider a trie constructed from Po(λ) strings; we let W̃λ be the
number of internal nodes. The results below have previously been found by other methods, in particular,
more precise asymptotics have been found using Mellin transforms; see Knuth [15], Mahmoud [17],
Fayolle, Flajolet, Hofri and Jacquet [7], and, in particular, Jacquet and Régnier [10, 11]. The Markov case
is studied by Régnier [23] and dynamical sources by Clément, Flajolet and Vallée [2].
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If α = α1 · · ·αk is a finite string, let I(α) be the indicator of the event that α is an internal node in the
trie. This event occurs if and only if there are at least two strings beginning with α. In our Poisson model,
the number of strings beginning with α has a Poisson distribution Po(λP (α)), and thus

E W̃λ =
∑

α∈A∗

E I(α) =
∑

α∈A∗

P
(
Po(λP (α)) ≥ 2

)
=
∑

α∈A∗

f(λP (α)), (5.1)

where
f(x) := P

(
Po(x) ≥ 2

)
= 1− (1 + x)e−x. (5.2)

Sums of the type in (5.1) are often studied using Mellin transform inversion and residue calculus.
Renewal theory presents an alternative, and the key renewal theorem implies the following. As said in the
introduction, this opens the way to straightforward generalizations, e.g. to Markov sources.

Theorem 5.1. Suppose that f is a non-negative function on (0,∞), and that F (λ) =
∑

α∈A∗ f(λP (α)),
with P (α) given by (2.1). Assume further that f is a.e. continuous and satisfies the estimates

f(x) = O(x2), 0 < x < 1, and f(x) = O(1), 1 < x <∞. (5.3)

Let g(t) := etf(e−t).
(i) If ln p/ ln q is irrational, then, as λ→∞,

F (λ)

λ
→ 1

H

∫ ∞
−∞

g(t) dt =
1

H

∫ ∞
0

f(x)x−2 dx. (5.4)

(ii) If ln p/ ln q is rational, then, as λ→∞,

F (λ)

λ
=

1

H
ψ(lnλ) + o(1), (5.5)

where, with d := gcd(ln p, ln q) given by (2.6), ψ is a bounded d-periodic function having the Fourier
series

ψ(t) ∼
∞∑

m=−∞
ψ̂(m)e2πimt/d (5.6)

with

ψ̂(m) = ĝ(−2πm/d) =

∫ ∞
−∞

e2πimt/dg(t) dt =

∫ ∞
0

f(x)x−2−2πim/d dx. (5.7)

Furthermore,

ψ(t) = d

∞∑
k=−∞

g(kd− t). (5.8)

If f is continuous, then ψ is too.

Returning to W̃λ, we obtain the following for the expected number of internal nodes in the Poisson trie.
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Theorem 5.2. (i) If ln p/ ln q is irrational, then, as λ→∞,

E W̃λ

λ
→ 1

H
. (5.9)

(ii) If ln p/ ln q is rational, then, as λ→∞,

E W̃λ

λ
=

1

H
+

1

H
ψ2(lnλ) + o(1), (5.10)

where, with d = gcd(ln p, ln q), ψ2 is a continuous d-periodic function with average 0 and Fourier
expansion

ψ2(t) =
∑
k 6=0

Γ(1− 2πik/d)

1 + 2πik/d
e2πikt/d =

∑
k 6=0

2πik

d
Γ
(
−1− 2πik

d

)
e2πikt/d.

The case of a fixed number n of strings is easily handled by comparison, and (5.9) and (5.10) imply the
corresponding results for Wn:

Theorem 5.3. (i) If ln p/ ln q is irrational, then, as n→∞,

EWn

n
→ 1

H
.

(ii) If ln p/ ln q is rational, then, as n→∞, with ψ2 as in Theorem 5.2,

EWn

n
=

1

H
+

1

H
ψ2(lnn) + o(1).

6 Tunstall and Khodak codes
Tunstall and Khodak codes are variable-to-fixed length codes that are used in data compression. See [4],
[5] and the survey [25] for details and references, as well as for an analysis using Mellin transforms.

The idea is that an infinite string can be parsed as a unique sequence of nonoverlapping phrases be-
longing to a certain (finite) dictionary D.

By a random phrase we mean a phrase distributed as the unique initial phrase in a random infinite string
Ξ. Thus a phrase α in the dictionary D is chosen with probability P (α). We let the random variable L be
the length of a random phrase.

In Khodak’s construction of such a dictionary, we fix a threshold r ∈ (0, 1) and construct a parsing tree
as the subtree of the complete infinite binary tree such that the internal nodes are the strings α = α1 · · ·αk
with P (α) ≥ r; the external nodes are thus the strings α such that P (α) < r but the parent, α′ say, has
P (α′) ≥ r. The phrases in the Khodak code are the external nodes in this tree. For convenience, we let
R = 1/r > 1. Let M = M(R) be the number of phrases in the Khodak code.

In Tunstall’s construction, we are instead given a number M . We start with the empty phrase and then
iteratively M − 1 times replace a phrase α having maximal P (α) by its two children α0 and α1.

It is easily seen that Khodak’s construction with some r > 0 gives the same result as Tunstall’s with
M = M(R). Conversely, a Tunstall code is almost a Khodak code, with r chosen as the smallest P (α) for
a proper prefix α of a phrase; the difference is that Tunstall’s construction handles ties more flexibly; there
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may be some phrases too with P (α) = r. Thus, Tunstall’s construction may give any desired number
M of phrases, while Khodak’s does not. We will see that in the non-arithmetic case, this difference is
asymptotically negligible, while it is important in the arithmetic case. (This is very obvious if p = q =
1/2, when Khodak’s code always gives a dictionary size M that is a power of 2.)

Let us first consider the number of phrases, M = M(R), in Khodak’s construction with a threshold
r = 1/R. This is a purely deterministic problem, but we may nevertheless apply our probabilistic renewal
theory arguments. In fact, M , the number of leafs in the parsing tree, equals 1 + the number of internal
nodes. Thus, M = 1 +

∑
α f(RP (α)) with f(x) := 1[x ≥ 1], and we may apply Theorem 5.1.

Theorem 6.1. Consider the Khodak code with threshold r = 1/R.
(i) If ln p/ ln q is irrational, then, as R→∞,

M(R)

R
→ 1

H
.

(ii) If ln p/ ln q is rational, then, as R→∞,

M(R)

R
=

1

H
· d

1− e−d
e−d{(lnR)/d} + o(1).

Next, consider the length L of a random phrase. We will use the notation LT
M for a Tunstall code with

M phrases and LK
R for a Khodak code with threshold r = 1/R.

Consider first the Khodak code. By construction, given a random string Ξ = ξ1ξ2 · · · , the first phrase
in it is ξ1 · · · ξn where n is the smallest integer such that P (ξ1 · · · ξn) = e−Sn < r = e− lnR. Hence, by
(2.8),

LK
R = ν(lnR). (6.1)

Hence, renewal theory immediately yields the following (as well as convergence of higher moments).

Theorem 6.2. For the Khodak code, the following holds as R→∞, with σ2 = H2−H2 = pq ln2(p/q):

LK
R

lnR

a.s.−→ 1

H
, (6.2)

LK
R ∼ AsN

( lnR

H
,
σ2

H3
lnR

)
, (6.3)

VarLK
R ∼

σ2

H3
lnR. (6.4)

If ln p/ ln q is irrational, then

ELK
R =

lnR

H
+

H2

2H2
+ o(1). (6.5)

If ln p/ ln q is rational, then, with d := gcd(ln p, ln q) given by (2.6),

ELK
R =

lnR

H
+

H2

2H2
+

d

H

(1

2
−
{ lnR

d

})
+ o(1). (6.6)
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In the arithmetic case, it suffices to consider thresholds such that − ln r = lnR is a multiple of d; in
this case (6.6) becomes

ELK
R =

lnR

H
+

H2

2H2
+

d

2H
+ o(1). (6.7)

We analyze the Tunstall code by comparing it to the Khodak code, which leads to the following result.

Theorem 6.3. For the Tunstall code, the following holds asM →∞, with σ2 = H2−H2 = pq ln2(p/q):

LT
M

lnM

a.s.−→ 1

H
, (6.8)

LT
M ∼ AsN

( lnM

H
,
σ2

H3
lnM

)
, (6.9)

VarLT
M ∼

σ2

H3
lnM. (6.10)

If ln p/ ln q is irrational, then

ELT
M =

lnM

H
+

lnH

H
+

H2

2H2
+ o(1). (6.11)

If ln p/ ln q is rational, then, with d := gcd(ln p, ln q) given by (2.6),

ELT
M =

lnM

H
+

lnH

H
+

H2

2H2
+

1

H
ln

sinh(d/2)

d/2

+
d

H
ψ4

({ lnM + ln(H(1− e−d)/d)

d

})
+ o(1), (6.12)

where

ψ4(x) :=
edx − 1

ed − 1
− x. (6.13)

Note that ψ4 is continuous, with ψ4(0) = ψ4(1) = 0. ψ4 is convex and thus ψ4 ≤ 0 on [0,1]. In the
symmetric case p = q = 1/2, d = H = ln 2 and ψ4(x) = 2x − 1− x, with a minimum −0.086071 . . . .

7 A stopped random walk
Drmota and Szpankowski [6] consider walks in a region in the first quadrant bounded by two crossing
lines. One of their results is about a random walk in the plane taking only unit steps north or east, which
is stopped when it exits the region; the probability of an east step is p each time. Coding steps east by 1
and north by 0, this is the same as taking our random string Ξ. Drmota and Szpankowski [6] study, in our
notation, the exit time

DK,V := min{n : n > K or Sn > V ln 2}

for given numbers K and V , with K integer. We thus have

DK,V = (K + 1) ∧ ν(V ln 2). (7.1)
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We have here kept the notations K and V from [6], but for convenience we in the sequel write V2 :=
V ln 2. We assume p 6= q, since otherwise DK,V = (K ∧ bV c) + 1 is deterministic.

We need a little more notation. Let as usual φ(x) := (2π)−1/2e−x
2/2 and Φ(x) :=

∫ x
−∞ φ(y) dy be the

density and distribution functions of the standard normal distribution. Further, let

Ψ(x) :=

∫ x

−∞
Φ(y) dy = xΦ(x) + φ(x). (7.2)

We can now state our version of the result by Drmota and Szpankowski [6]. We do not obtain as sharp
error estimates as they do; on the other hand, our result is more general and includes the transition region
when V2/H ≈ K and both stopping conditions are important.

Theorem 7.1. Suppose that p 6= q and that V,K →∞. Let V2 := V ln 2 and σ̃2 := (H2 −H2)/H3 >
0.

(i) If (K − V2/H)/
√
V2 → +∞, then DK,V is asymptotically normal:

DK,V ∼ AsN
(V2
H
, σ̃2V2

)
. (7.3)

Further, Var(DK,V ) ∼ σ̃2V2.
(ii) If (K − V2/H)/

√
V2 → −∞, then DK,V is asymptotically degenerate:

P(DK,V = K + 1)→ 1. (7.4)

Further, VarD = o(V2).
(iii) If (K − V2/H)/

√
V2 → a ∈ (−∞,+∞), then DK,V is asymptotically truncated normal:

V
−1/2
2 (DK,V − V2/H)

d−→ (σ̃Z) ∧ a = σ̃
(
Z ∧ (a/σ̃)

)
. (7.5)

with Z ∼ N(0, 1). Further,

Var(DK,V ) ∼ V2 Var(σ̃Z ∧ a) = V2σ̃
2 Var(Z ∧ (a/σ̃)).

(iv) In every case,

EDK,V =
V2
H
− σ̃

√
V2Ψ

(V2/H −K
σ̃
√
V2

)
+ o(

√
V2) (7.6)

= K − σ̃
√
V2Ψ

(K − V2/H
σ̃
√
V2

)
+ o(

√
V2). (7.7)

(v) If (K − V2/H)/
√
V2 ≥ lnV2, then

EDK,V =
V2
H

+
H2

2H2
+ ψ5(V2) + o(1), (7.8)

where ψ5 = 0 in the non-arithmetic case and ψ5(t) = d
H

(
1/2− {t/d}

)
in the d-arithmetic case.

(vi) If (K − V2/H)/
√
V2 ≤ − lnV2, then

EDK,V = K + 1 + o(1). (7.9)
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