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The Bernoulli sieve: an overview
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The Bernoulli sieve is a version of the classical balls-in-boxes occupancy scheme, in which random frequencies of
infinitely many boxes are produced by a multiplicative random walk, also known as the residual allocation model
or stick-breaking. We give an overview of the limit theorems concerning the number of boxes occupied by some
balls out of the first n balls thrown, and present some new results concerning the number of empty boxes within the
occupancy range.
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1 Introduction
In a classical occupancy scheme n balls are thrown independently in an infinite array of boxes with
probability pk of hitting box k = 1, 2, . . ., where (pk)k∈N is a fixed sequence of positive frequencies
summing up to one. The quantities of traditional interest are

• Kn the number of boxes occupied by at least one of n balls,

• Kn,r the number of boxes occupied by exactly r out of n balls,

• Mn the range of occupancy, equal to the maximal index of occupied box,

• Ln := Mn −Kn the number of empty boxes within the occupancy range,

• Zn the number of balls in the Mnth box.

In applications ‘boxes’ are clusters, species, types of data etc. The quantities in the list characterise the
sample variability, which for large n is dominantly determined by the boxes occupied by a few balls, thus
determined by the way the frequencies pk approach zero as k →∞. The first two variables are functionals
of the induced partition of n, defined as the unordered collection of positive occupancy counts.

The Bernoulli sieve is a version of the occupancy scheme with random frequencies

pk := W1W2 · · ·Wk−1(1−Wk), k ∈ N, (1)

where (Wk)k∈N are independent copies of a random variable W taking values in (0, 1). The name derives
from the following recursive construction based on i.i.d. qk =d 1−W : at round 1 a coin with probability
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q1 for heads is flipped for each of n balls and every time it turns heads the ball is put in box 1, then at
round 2 a coin with probability q2 for heads is flipped for each of the remaining balls and every time it
turns heads the ball is sent to box 2, and so on until all balls are allocated in boxes.

It is useful to identify frequencies (1) with the lengths of component intervals induced by splitting [0, 1]
at points visited by a multiplicative random walk (Qk)k∈N0

, where

Q0 := 1, Qj :=

j∏
i=1

Wi, j ∈ N.

In the spirit of Kingman’s ‘paintbox representation’ of exchangeable partitions [18], we may identify the
boxes with open intervals (Qk, Qk−1), and mark the balls by independent pointsU1, . . . , Un sampled from
the uniform [0, 1] distribution, independently of (Qk). The event Ui ∈ (Qk−1, Qk) then means that ball
i falls in box k. Keep in mind that in the natural order the intervals are indexed from the right to the left,
thus the occupancy range is determined by the interval containing the leftmost mark min(U1, . . . , Un).

The Bernoulli sieve has nonrandom frequencies only when the law of W is a Dirac mass δp located
at some p ∈ (0, 1), the frequencies pk comprise then a geometric distribution. Results for this case can
be readily recast from the numerous studies on sampling from the geometric distribution [5, 6, 19, 25]
and related models like the leader election algorithms [3, 11, 22, 28], absorption sampling [7, 24] etc.
It is known that asymptotic expansions of the moments of Kn,Mn and many other quantities have a
component that oscillates periodically on the log n-scale with a small amplitude [11, 27]. The same
applies to distributions of the Ln’s [19, 26]. There are some peculiarities in the symmetric case p = 1/2
[11, 28].

The best analytically tractable case involves random factors having beta(θ, 1) density P{W ∈ dx} =
θxθ−1dx on (0, 1) with parameter θ > 0. In this case the Bernoulli sieve may be viewed as a way to
generate a random partition of nwhich follows the multivariate distribution known as the Ewens sampling
formula [1]. This model has been widely studied in connection with problems of combinatorics, statistics
and biology. In particular, the case θ = 1 of uniform factors is related to records and cycle patterns of
random permutations under the uniform distribution on the symmetric group. It is well known [1] that
(Kn−θ log n)/(θ log n)1/2 is asymptotically normal, and that theKn,r’s converge jointly to independent
Poisson(θ/r) random variables. These classical results are complemented by the observation that Mn

exhibits the same asymptotics of moments and distribution as Kn, and the number of empty boxes has the
following surprising limit law:

Theorem 1.1 [16] If W has beta(θ, 1) distribution then Ln →d L∞, where L∞ has probability gener-
ating function

EsL∞ =
Γ(1 + θ)Γ(1 + θ − θs)

Γ(1 + 2θ − θs)
, s ∈ [0, 1],

which corresponds to a mixed Poisson distribution with the parameter distributed like θ | log(1−W )|.

Throughout we shall use the following notation for the moments

µ := E| logW |, σ2 := Var (logW ), ν := E| log(1−W )|,

which may be finite or infinite. The standing assumption for what follows is that the distribution of
| logW | is non-lattice. In particular, the case of sampling from the geometric distribution will be excluded.
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2 Markov chains and distributional recursions
A random combinatorial structure which captures the occupancy of boxes by n indistinguishable balls
is the weak composition C∗n comprised of nonnegative integer parts summing up to n. The term weak
composition means that zero parts are allowed, for instance, the sequence (2, 3, 0, 1, 0, 0, 1, 0, 0, 0, . . .)
(padded by infinitely many 0’s) is a possible value of C∗7 . A related structure which contains less infor-
mation is a composition Cn obtained by discarding zero parts of C∗n. Discarding further the order of parts
in Cn yields a random partition of n. The parts of C∗n can be represented (see [18, p. 452]) as the mag-
nitudes of jumps of a time-homogeneous nonincreasing Markov chain Q∗n = (Q∗n(k))k∈N0

on integers,
which starts at n and moves from n to m with transition probabilities

q∗(n,m) =

(
n

m

)
E(1−W )n−mWm, m = 0, . . . , n.

In the same direction, parts of the composition Cn are the magnitudes of jumps of a Markov chain Qn =
(Qn(k))k∈N0

with transition probabilities

q(n,m) =

(
n

m

)
E(1−W )n−mWm

1− EWn
, m = 0, . . . , n− 1.

This Markovian realisation implies the following distributional recursions (see [16, Section 3]):

M0 = 0, Mn =d MQ∗n(1) + 1, n ∈ N,

K0 = 0, Kn =d KQn(1) + 1, n ∈ N, (2)

L0 = 0, Ln =d LQ∗n(1) + 1{Q∗n(1)=n}, n ∈ N, (3)

where in the right-hand side Q∗n(1) is assumed independent of {Mn : n ∈ N} and {Ln : n ∈ N}, and
Qn(1) independent of {Kn : n ∈ N}. Analysis of the recursions by known direct methods is difficult, as
these impose restrictive conditions on the moments of Qn(1) or Q∗n(1). Nevertheless, coupling with the
multiplicative random walk allows to gain a lot of information about the compositions. For instance, let
g(n,m) be the potential function, equal to the probability that Qn ever visits state m,

g(n,m) =

∞∑
j=0

P{Qn(j) = m}.

The coupling implies that ([12, Proposition 5])

lim
n→∞

g(n,m) =
1− EWm

µm
, (4)

which is 0 if µ =∞.
The coupling readily implies stochastic subadditivity Mn+m <d Mn + M ′m where the terms in the

right-hand side are independent. Indeed, note first that Mn is nondecreasing. Now, when n balls have
been allocated within the range Mn, adding m new balls leads to (stochastically) maximal increase of the
occupancy range when all m fall outside the old range Mn, in which event the new range of occupancy
is distributed like Mn +M ′m. With analogous notation, Ln+m <d Ln + L′m for exactly the same reason
(although Ln is not monotone).
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3 Asymptotics of Mn

Passing from the multiplicative to conventional (additive) random walk we introduce

S0 := 0, Sk := | logW1|+ . . .+ | logWk|, k ∈ N. (5)

In this scenario the Bernoulli sieve can be defined as allocation of balls with exponentially distributed
marks Ej = − logUj , 1 ≤ j ≤ n, in boxes (Sk, Sk+1), k ∈ N0. Define

Nt := inf{k ≥ 1 : Sk > t}, t ≥ 0, (6)

which is the first time (Sk) enters (t,∞). From the extreme-value theory we know that the maximum
statistic Tn := max(E1, . . . , En)) satisfies Tn− log n→d T, where T has the standard Gumbel distribu-
tion P{T ≤ x} = exp(−e−x), x ∈ R. A key observation is that

Mn = NTn ,

thus the asymptotic behaviour of Mn is very much the same as that of Nlogn, and the latter can be
concluded by means of the renewal theory. A complete description of possible limit laws and scal-
ing/centering constants for the number of renewals Nt [16, Proposition A.1] leads to the following classi-
fication of possible limit laws for Mn.

Theorem 3.1 [16] The following assertions are equivalent:

(i) There exist sequences {an, bn : n ∈ N} with an > 0 and bn ∈ R such that, as n→∞, the variable
(Mn − bn)/an converges weakly to some non-degenerate and proper distribution.

(ii) The distribution of | logW | either belongs to the domain of attraction of a stable law, or the function
P{| logW | > x} slowly varies at∞.

Accordingly, there are five possible modes of convergence:

(a) If σ2 < ∞ then, with constants bn = µ−1 log n and an = (µ−3σ2 log n)1/2, the limiting distribu-
tion of (Mn − bn)/an is standard normal.

(b) If σ2 =∞, and ∫ x

0

y2 P{| logW | ∈ dy} ∼ L(x) x→∞,

for some function L slowly varying at∞, then, with bn = µ−1 log n and an = µ−3/2c[logn], where
c(x) is any positive function satisfying limx→∞ xL(c(x))/c2(x) = 1, the limiting distribution of
(Mn − bn)/an is standard normal.

(c) If
P{| logW | > x} ∼ x−αL(x), x→∞, (7)

for some L slowly varying at∞ and α ∈ (1, 2) then, with bn = µ−1 log n and an = µ−
α+1
α clogn,

where c(x) is any positive function satisfying limx→∞ xL(c(x))/cα(x) = 1, the limiting distribu-
tion of (Mn − bn)/an is α-stable with characteristic function

t 7→ exp{−|t|αΓ(1− α)(cos(πα/2) + i sin(πα/2) sgn(t))}, t ∈ R.
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(d) Assume that the relation (7) holds with α = 1. Let r : R→ R be any nondecreasing function such
that limx→∞ xP{| logW | > r(x)} = 1 and set

m(x) :=

∫ x

0

P{| logW | > y}dy, x > 0.

Then, with bn = log n/(m(log n/r(m(log n)))) and

an :=
r(log n/m(log n))

m(log n)
,

the limiting distribution of (Mn − bn)/an is 1-stable with characteristic function

t 7→ exp{−|t|(π/2− i log |t| sgn(t))}, t ∈ R.

(e) If the relation (7) holds for α ∈ [0, 1) then, with bn ≡ 0 and an := logα n/L(log n), the limiting
distribution of Mn/an is the Mittag-Leffler law θα with moments

∫ ∞
0

xk θα(dx) =
k!

Γk(1− α)Γ(1 + αk)
, k ∈ N.

4 Asymptotics of Kn

Loosely speaking, ν controls the mean number of empty boxes, so that ν < ∞ implies limn→∞ ELn =
ν/µ < ∞ (Theorem 7.1 to follow). Thus when ν < ∞ the identity Kn = Mn − Ln suggests that Kn

does not differ much from Mn. A first result of this kind was obtained in [12]: assuming ν < ∞ and
σ2 <∞ it was shown that

(Kn − µ−1 log n)/
√
σ2µ−3 log n→d normal (0, 1), n→∞.

The proof was based on a careful analysis of the recursion (2) to conclude on the asymptotics of VarKn

and to eventually prove the normal limit.
The similarity between Mn and Kn was justified in full generality in [16], where is was shown that

under the assumption ν <∞ Theorem 3.1 remains valid if Mn is replaced by Kn.
Another approach which allows one to treat the cases of finite and infinite ν in a unified way was

proposed in [15]. It was suggested to approximate Kn by N∗(log n), where

N∗(x) := #{k ∈ N : pk ≥ e−x}
= #{k ∈ N : W1 · · ·Wk−1(1−Wk) ≥ e−x}, x > 0.

The connection exemplifies the general idea that the variability of Kn stems from randomness in frequen-
cies (pk) superposed with randomness in sampling, and the first often plays a dominating role through the
conditional law of large numbers Kn ∼ E(Kn | (pk)) a.s. (see [23]). Thus we believe that the approach
based onN∗(x) offers a natural and the most adequate way to study the asymptotics ofKn. The following
result was proved in [15].
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Theorem 4.1 If there exist functions f : R+ → R+ and g : R+ → R such that (Nt − g(t))/f(t)
converges weakly (as t → ∞) to some non-degenerate and proper distribution, then also (Kn − bn)/an
converge weakly (as n→∞) to the same distribution, where the constants are given by

bn =

∫ logn

0

g(log n− y)P{| log(1−W )| ∈ dy}, an = f(log n).

As in [16], the convergence criterion forNt leads to a complete characterisation of possible normalisations
and limiting laws for Kn, see Corollary 1.1 in [15]. But Theorem 4.1 says more: if ν =∞ the behaviour
of Ln may affect the asymptotics of Kn = Mn−Ln. The following example illustrates the phenomenon.

Example 4.1 Assume that, for some γ ∈ (0, 1/2),

P{W > x} =
1

1 + | log(1− x)|γ
, x ∈ [0, 1).

Then

E log2W <∞ and P{| log(1−W )| > x} ∼ x−γ as x→∞,

and in this case,

an = const log1/2 n and dn = µ−1(log n− (1− γ)−1 log1−γ n+ o(log1−γ n)).

Thus we see that the second term dn−µ−1 log n of centering cannot be ignored. Moreover, one can check
that

ELn ∼
1

µ

n∑
k=1

EW k

k
∼ bn − µ−1 log n ∼ 1

µ(1− γ)
log1−γ n,

which reveals the indispensable contribution of Ln.

5 Weak convergence of Kn,r

Assume µ < ∞. For B := {
∏k
i=1Wi : k ∈ N0} the set of sites visited by the multiplicative random

walk, consider a point process with unit atoms located at points of − logB (which are the sites visited by
Sk, k ∈ N0). By the renewal theorem the point process − logB − log n vaguely converges to a shift-
invariant renewal process P on the whole line. Therefore, the point process nB converges vaguely to a
point process B := exp(−P) on R+. Think of intervals between consequitive points of B as a series of
boxes. Note that the process is self-similar, meaning that cB =d B for every c > 0, and has the intensity
measure (µx)−1dx, so the atoms accumulate at 0 and∞. In the role of balls assume the points of a unit
Poisson process U independent of B. A well-known fact of extreme value theory is that U is the vague
limit of the point process with unit atoms located at nUj , 1 ≤ j ≤ n. The location of the leftmost atom
of U , say Y , has exponential distribution. For r ≥ 0 define K̂r to be the number of component intervals
of (Y,∞) \ B that contain exactly r atoms of U . The existence of weak limits for the occupancy counts is
read off from the convergence of point processes:
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Theorem 5.1 [17] As n→∞ we have the joint convergence in distribution

(Ln,Kn,1,Kn,2, . . .)→d (K̂0, K̂1, K̂2, . . .)

along with

EKn,r → EK̂r =
1

rµ
, r > 0.

When W =d beta(θ, 1) the process B is Poisson with intensity θx−1dx. By self-similarity, the partition
induced by allocation of n leftmost atoms of U is the Ewens partition. The theorem allows to re-prove the
results on asymptotics of the Ewens partition mentioned in Introduction, along with Theorem 1.1. Except
the beta(θ, 1) case no explicit formulas for the distribution of occupancy counts are known; in general
the K̂r’s are neither independent, nor Poisson. See more on self-similar partitions in [13, Section 5].

6 Asymptotics of Zn
The variable Zn is analogous to the number of winners in the leader election algorithm [4, 5, 6, 25].

Theorem 6.1 [16] The number of balls in the last occupied box satisfies:

(1) If µ <∞ then Zn →d Z, n→∞, where the variable Z has distribution

P{Z = k} =
E(1−W )k

µk
, k ∈ N.

(2) If (7) holds with α ∈ [0, 1) then

logZn
log n

→d Z
(α), n→∞,

where the law of Z(0) is δ1, while for α ∈ (0, 1) we have Z(α) =d beta(1− α, α).

(3) If (7) holds with α = 1 and µ =∞, then

m(logZn)

m(log n)
→d Z

(1), n→∞,

where m(x) =
∫ x

0
P{| logW | > y}dy , and Z(1) =d uniform[0, 1].

The case µ <∞ is quite elementary, as is seen from

P{Zn = m} = g(n,m)P{Qm(1) = 0} = g(n,m)
E(1−W )m

1− EWm
(8)

and (4). In the case µ = ∞ the result follows from the known limit distribution of the undershoot
U(z) = z − SN(z)−1 (see [8, 10]) and the representation

P{Zn > k} = P{U(En,n) > En,n − En−k,n}, k ∈ N,

where E1,n ≤ . . . ≤ En,n = Tn are the order statistics of the exponential variables Ej , 1 ≤ j ≤ n.



336 Alexander Gnedin, Alexander Iksanov, Alexander Marynych

7 Asymptotics of Ln
Although there is an explicit formula

ELn =

n∑
k=1

(−1)k+1

(
n

k

)
1− E(1−W )k

1− EW k
, (9)

it does not seem possible to employ it in order to conclude on the asymptotic behaviour of ELn without
restrictive additional assumptions.

Using a different approach we arrived at

Theorem 7.1 The expectation ELn exhibits the following asymptotic behaviour:

(i) If µ =∞ and ν =∞ then

lim inf
n→∞

EWn

E(1−W )n
≤ lim inf

n→∞
ELn ≤ lim sup

n→∞
ELn ≤ lim sup

n→∞

EWn

E(1−W )n
.

In particular,

lim
n→∞

EWn

E(1−W )n
= γ0 ∈ [0,∞]

implies limn→∞ ELn = γ0.

(ii) If ν <∞ and µ ≤ ∞ then
lim
n→∞

ELn = ν/µ.

(iii) If µ <∞ and ν =∞ then, as n→∞,

ELn ∼
1

µ

∫ n

1

Ee−y(1−W )

y
dy.

Proof: Part (i). Set sm = EWm

E(1−W )m . We will use the representation

ELn = EsZn , (10)

which follows from (8). The array cn,m := P{Zn = m} verifies the conditions of Lemma 8.1 in Ap-
pendix, in particular by the assumption µ = ∞. Hence the lemma can be applied to tn = ELn, whence
the assertion. When γ0 is well defined the proof is simpler, as in this case the statement follows from (10),
divergence of Zn, and by using dominated convergence in the case γ0 < ∞, respectively using Fatou’s
lemma in the case γ0 =∞.

See [16] and [17] for (ii).
For part (iii) we use the poissonised version of the Bernoulli sieve, in which balls are thrown one-by-one

at the epochs of a unit Poisson process (Πt)t≥0, independent of Wk’s. One can check that

E(LΠt |(Wk)k∈N) =

∞∑
k=1

(
e−tW1·...·Wk−1(1−Wk) − e−tW1·...·Wk−1

)
.
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Recalling definitions (5),(6) and setting ϕ(t) := Ee−t(1−W ), U(x) := ENx =
∑∞
k=1 P{Sk−1 ≤ x}, we

have

ELΠt = E
∞∑
k=1

(
ϕ(te−Sk−1)− exp(−te−Sk−1)

)
=

∫ ∞
0

(
ϕ(te−x)− exp(−te−x)

)
U(dx) (11)

=

∞∑
k=1

(−1)k+1 t
k

k!

(1− E(1−W )k)

(1− EW k)
, (12)

where the familiar formula for Laplace transform of the potential measure,∫ ∞
0

e−sxU(dx) =
1

1− EW s
, s > 0,

has been utilised. Note that (12) is an obvious counterpart of (9).
Set K(t) = ϕ(et)− exp(−et), t ∈ R. Since ν =∞ and∫ ∞

0

e−z(1−W ) − e−z

z
dz = | log(1−W )|,

we conclude that

lim
t→∞

∫ t

−∞
K(z)dz =∞. (13)

Applying a minor extension of [29, Theorem 5] to the equality

ELΠet
=

∫ ∞
0

K(t− x)U(dx), (14)

which is equivalent to (11), yields

ELΠet
∼ 1

µ

∫ t

0

ϕ(ex)dx ∼ 1

µ

∫ et

1

ϕ(x)

x
dx.

The asymptotics of ELn is now obtained by the depoissonisation Lemma 8.2 in Appendix. The lemma
is applicable because ELΠ(t) is slowly varying. Indeed, slow variation of

∫ t
1
ϕ(u)du/u is checked

straightforwardly from ϕ(t) ↓ 0 and the divergence of the integral for t =∞. 2

Similarly to the above, the proof of the next theorem is based on the poissonisation technique.

Theorem 7.2 [16] If µ < ∞ and ν < ∞ then Ln →d L∞ as n → ∞ for some random variable L∞
whose distribution satisfies

P{L∞ ≥ i} =
1

µ

∞∑
j=1

EW j

j
P{Lj = i}, i ∈ N.

Moreover, the convergence of all moments holds, i.e. ELkn → ELk∞ <∞ for k ∈ N.



338 Alexander Gnedin, Alexander Iksanov, Alexander Marynych

It is also known that if µ < ∞ and ν = ∞ then Ln →d ∞ (see [17]), and that Ln →P 0 if ν < ∞ and
µ =∞. In the cases not covered by these results the question about the weak convergence of Ln is open.

Note that Theorem 7.2 only gives implicit specification of the limit law through distributions of Ln’s,
which are not easy to determine, with one remarkable exception. Obviously from the recursive construc-
tion of the Bernoulli sieve, the distribution of L1 is geometric with parameter EW . Curiously, the same
is true for all n provided the law of W is symmetric about the midpoint 1/2.

Proposition 7.1 If W =d 1−W then Ln is geometrically distributed with parameter 1/2 for all n ∈ N.

Proof: The argument is based on the recursion (3) for marginal distributions of the Ln’s. The symmetry
W =d 1−W yields EW k = E(1−W )k for all k ∈ N and

P{Q∗n(1) = n} = P{Q∗n(1) = 0} (15)

for all n ∈ N. We will show by induction on n that P{Ln = k} = 2−k−1 for all k ∈ N0. Using (3) and
(15) we obtain

P{Ln = 0} = P{Q∗n(1) = 0}+

n−1∑
k=1

P{Lk = 0}P{Q∗n(1) = k}

= P{Q∗n(1) = 0}+
1

2

(
1− 2P{Q∗n(1) = 0}

)
=

1

2
,

by the induction hypothesis. Assuming now that P{Ln = i} = 2−i−1 for all i < k we have

P{Ln = k} =

n−1∑
j=1

P{Q∗n(1) = j}P{Lj = k}+ P{Q∗n(1) = n}P{Ln = k − 1}

= 2−k−1
(

1− 2P{Q∗n(1) = 0}
)

+ P{Q∗n(1) = 0}2−k = 2−k−1,

and the proof is complete. 2

Alternatively, one can use a representation of Ln through the sojourns of the Markov chain Q∗n in
positive states. Indeed, recall that L1 has geometric distribution with parameter EW . Then using (15) and
induction it can be checked that the distribution of Ln does not depend on n ≥ 1.

8 Appendix.
For ease of reference we include a result due to Toeplitz and Schur (see [20], Theorem 2 on p. 43 and
Theorem 9 on p. 52). We rewrite it in a form suitable for our purposes.

Lemma 8.1 Let {sn, n ∈ N} be any sequence of real numbers and let {cnm, n,m ∈ N} be a nonnegative
array. Define another sequence {tn, n ∈ N} by tn =

∑n
m=1 cnmsm. If

(i) limn→∞ cnm = 0 for all m,

(ii) limn→∞
∑n
m=1 cnm = 1,
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then
lim inf
n→∞

sn ≤ lim inf
n→∞

tn ≤ lim sup
n→∞

tn ≤ lim sup
n→∞

sn ≤ +∞.

Now we address the issue of depoissonisation. Recall that the function ELΠ(t) is slowly varying.

Lemma 8.2 If limt→∞ ELΠt = +∞ then ELn ∼ ELΠn , as n→∞.

Proof: For any fixed ε ∈ (0, 1),

ELΠt = ELΠt1{|Πt−t|>εt} + ELΠt1{|Πt−t|≤εt} =: A(t) +B(t).

Sublinearity of ELΠt and the elementary large deviation bound for the Poisson distribution [2],

P{|Πt − t| > εt} < c1e
−c2t, t > 0 (16)

with some c1, c2 > 0, yield A(t)→ 0.
It remains to evaluate B(t). Since both Mn and Kn are non-decreasing, we have

B(t) = E(MΠt −KΠt)1{|Πt−t|≤εt} ≤ EL[(1−ε)t] + E(M[(1+ε)t] −M[(1−ε)t]).

Similarly, B(t) ≥ EL[(1+ε)t] − E(M[(1+ε)t] −M[(1−ε)t]). First step is to prove that

lim
ε↓0

lim
n→∞

E(M[(1+ε)n] −Mn) = 0. (17)

Recalling the notation Tn = max(E1, . . . , En) and using the subadditivity of U(·) we obtain

D(n) := E
(
M[(1+ε)n] −Mn

)
= E

(
U(T[(1+ε)n])− U(Tn)

)
≤ EU(T[(1+ε)n] − Tn)1{T[(1+ε)n]>Tn}.

An appeal to estimate U(x) < ax+ b (with some a, b > 0) allows us to conclude that

D(n) ≤ E
(
a(T[(1+ε)n] − Tn) + b

)
1{T[(1+ε)n]>Tn} ≤ a(H[(1+ε)n] −Hn) + bP{T[(1+ε)n] > Tn},

where the equality ETn = Hn :=
∑n
k=1

1
k has been utilised. Since

lim
ε↓0

lim
n→∞

(H[(1+ε)n] −Hn) = 0

and by exchangeability
P{T[(1+ε)n] > Tn} = 1− n

[(1 + ε)n]
→ ε,

as n→∞, we arrive at (17).
We are ready to finish the proof. Divide the inequality

ELΠn/(1−ε) ≤ A(n/(1− ε)) + ELn + E(M[ 1+ε1−εn] −Mn), (18)
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by ELΠn . Letting n→∞ then ε→ 0 and using the slow variation of ELΠn we obtain

lim inf
n→∞

ELn
ELΠn

≥ 1.

The upper bound follows in the same way from the inequality

ELΠn/(1+ε) ≥ ELn − E(Mn −M[ 1−ε1+εn]). (19)

2
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[5] F. T. Bruss and R. Grübel. On the multiplicity of the maximum in a discrete random sample. Ann.
Appl. Prob., 13(4):1252–1263, 2003.

[6] F. T. Bruss and C. A. O’Cinneide. On the maximum and its uniqueness for geometric random
samples. J. Appl. Probab., 27:598–610, 1990.

[7] C. F. Dunkl. The absorption distribution and the q-binomial theorem. Communications in Statistics
- Theory and Methods, 10(19):1915–1920, 1981.

[8] E. B. Dynkin. Some limit theorems for sums of independent random variables with infinite mathe-
matical expectations. Selected Transl. in Math. Statist. and Probability, 1:171–189, 1961.

[9] B. Eisenberg, G. Stengle, and G. Strang. The asymptotic probability of a tie for first place. Ann.
Appl. Prob., 3:731–745, 1993.

[10] K. B. Erickson. Strong renewal theorems with infinite mean. Trans. Amer. Math. Soc., 151:263–291,
1970.

[11] J. Fill, H. Mahmoud, and W. Szpankowski. On the distribution for the duration of a randomized
leader election algorithm. Ann. Appl. Prob., 6:1260–1283, 1996.

[12] A. Gnedin. The Bernoulli sieve. Bernoulli, 10:79–96, 2004.



The Bernoulli sieve: an overview 341

[13] A. Gnedin. Regeneration in random combinatorial structures. Probability Surveys, 7:105–156, 2010.

[14] A. Gnedin, A. Hansen, and J. Pitman. Notes on the occupancy problem with infinitely many boxes:
general asymptotics and power laws. Probability Surveys, 4:146–171, 2007.

[15] A. Gnedin, A. Iksanov, and A. Marynych. Limit theorems fot the number of occupied boxes in the
Bernoulli sieve. Submitted to Theory of Stochastic Processes, 2010.

[16] A. Gnedin, A. Iksanov, P. Negadajlov, and U. Rösler. The Bernoulli sieve revisited. Ann. Appl. Prob.,
19:1634–1655, 2009.

[17] A. Gnedin, A. Iksanov, and U. Rösler. Small parts in the Bernoulli sieve. Discrete Mathematics and
Theoretical Computer Science, Proceedings Series Volume AI:239–246, 2008.

[18] A. Gnedin and J. Pitman. Regenerative composition structures. Ann. Probab., 33:445–479, 2005.

[19] W. M. Y. Goh and P. Hitczenko. Gaps in samples of geometric random variables. Discrete Mathe-
matics, 22:2871–2890, 2007.

[20] G. H. Hardy. Divergent Series. AMS Bookstore, 2000.

[21] P. Hitczenko and A. Knopfmacher. Gap-free compositions and gap-free samples of geometric ran-
dom variables. Discrete Mathematics, 294(3):225–239, 2005.

[22] S. Janson and W. Szpankowski. Analysis of an asymmetric leader election algorithm. Electron. J.
Combin., 4(1), Art. #R17, 1997.

[23] S. Karlin. Central limit theorems for certain infinite urn schemes. J. Math. Mech., 17:373–401,
1967.

[24] A. W. Kemp. Absorption sampling and the absorption distribution. J. Appl. Prob., 35:489–494,
1998.

[25] P. Kirschenhofer and H. Prodinger. The number of winners in a discrete geometrically distributed
sample. Ann. Appl. Probab., 6:687–694, 1996.

[26] G. Louchard and H. Prodinger. On gaps and unoccupied urns in sequence of geometrically dis-
tributed random variables. Discrete Mathematics, 308(9):1538–1562, 2008.

[27] G. Louchard and H. Prodinger. The asymmetric leader election algorithm: another approach. Annals
of Combinatorics, 12(4):449–478, 2009.

[28] H. Prodinger. How to select a loser. Discrete Math., 120:149–159, 1993.

[29] M. S. Sgibnev. Renewal theorem in the case of an infinite variance. Siberian Math. J., 22:787–796,
1981.



342 Alexander Gnedin, Alexander Iksanov, Alexander Marynych


	Introduction
	Markov chains and distributional recursions
	Asymptotics of Mn
	Asymptotics of Kn
	Weak convergence of Kn,r
	Asymptotics of Zn
	Asymptotics of Ln
	Appendix.

