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The total Steiner k-distance for b-ary recursive
trees and linear recursive trees

Götz Olaf Munsonius

Department for Mathematics and Computer Science, J.W. Goethe-University Frankfurt,
60054 Frankfurt a. M., Germany

We prove a limit theorem for the total Steiner k-distance of a random b-ary recursive tree with weighted
edges. The total Steiner k-distance is the sum of all Steiner k-distances in a tree and it generalises the
Wiener index. The limit theorem is obtained by using a limit theorem in the general setting of the
contraction method. In order to use the contraction method we prove a recursion formula and determine
the asymptotic expansion of the expectation using the so-called Master Theorem by Roura (2001).

In a second step we prove a transformation of the total Steiner k-distance of b-ary trees with weighted

edges to arbitrary recursive trees. This transformation yields the limit theorem for the total Steiner

k-distance of the linear recursive trees when the parameter of these trees is a non-negative integer.

Keywords: internal path length, Wiener index, total Steiner k-distance, recursive trees, contraction
method

1 Introduction

The analysis of algorithms often leads to the consideration of functionals that deal with distances
between nodes in trees. For example the internal path length of a binary search tree, which
is the sum of all distances between the nodes and the root, equals the number of comparisons
that are needed to build up the tree. Distances are also of interest in the area of complex
networks. Considering a computer network the distance between two computers is the number of
communication links between them. Hence, in this case the distance is a measure for the speed
of data transfers.

More generally, for a set of k nodes in a network the size of the smallest subtree containing
this set is a quantity which is related to the communication potential between these nodes. The
smallest spanning subtree is also called Steiner tree and its size is the so-called Steiner distance
of the given set. As pointed out by Dankelmann et al. (1996), to compare different networks
relative to efficient communication potential their typical Steiner distances can be used. As
stated in Guillemin and Robert (2009), there is also a relation between the Steiner distance and
the efficiency of a traceroute algorithm. Thus, it is of interest to understand Steiner distances in
networks.
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In the present paper, we consider the total Steiner k-distance of random trees. This is the sum
of Steiner distances for all possible choices of k nodes and it generalises the Wiener index (see
Dobrynin et al. (2001) for a survey). The total Steiner k-distance of a tree of size n divided by(
n
k

)
is the average Steiner k-distance of this tree. If not all nodes are lying in the same subtree the

Steiner tree coincides with the so-called ancestor tree, which is the smallest subtree that contains
the given set of nodes and additionally the root. We define the k-th internal path length as the
sum of the sizes of ancestor trees for all possible choices of k nodes. This is a generalisation of
the internal path length.

The underlying tree model in this paper is a b-ary recursive tree with weighted edges. A
recursive tree is a labelled tree in which the labels along each path starting from the root increase.
We consider ordered recursive trees where the number of children is bounded by b for each node.
We additionally attach random weights to the edges of this trees. By proper choices of these edge
weights the results can be transferred to random tree models with unbounded outdegree, such
as the random recursive tree, the random plane oriented recursive tree and the random linear
recursive tree due to Pittel (1994).

The b-ary recursive tree with weighted edges can be considered as a special case of the tree
model in the paper of Broutin and Devroye (2006) in discrete time where the lifetimes of the
edges are independent exponentially distributed random variables. The shape of the random tree
is also obtained as an increasing tree due to Bergeron et al. (1992) and is a special case of the
general model of random trees in Broutin et al. (2008).

We define the random b-ary recursive tree with weighted edges in Section 2 and state some
basic properties. In Section 3 we introduce the k-th internal path length and the total Steiner
k-distance and show the basic recursion formula in higher dimensions for these functionals in
analogy to the two-dimensional recursion formula for the internal path length and the Wiener
index in Neininger (2002). In preparation for using the contraction method in L2 setting, the
asymptotic expansions of the expectations are determined in Section 4 using the Master Theorem
by Roura (2001). Finally the limit theorem in the case of b-ary recursive trees is stated and proved
in Section 5. In the last Section 6 a transformation of the results for the b-ary recursive tree to
linear recursive trees is given.

The internal path length has been studied for severals random trees. The expectation of the
internal path length for increasing trees which include random recursive trees, plane oriented
recursive trees and binary search trees is stated in Bergeron et al. (1992). The distribution of the
internal path length of random binary search trees, random recursive trees, random m-ary search
trees and split trees is investigated in Régnier (1989), Rösler (1991), Mahmoud (1991), Dobrow
and Fill (1999), Neininger and Rüschendorf (1999), Neininger and Rüschendorf (2004) and others.
Distributional properties of the Wiener index of random trees are studied in Neininger (2002)
and Ali Khan and Neininger (2007) for the random binary search tree and the random recursive
tree and in Janson (2003) for simply generated trees. In Janson and Chassaing (2004) the Wiener
index of random quadrangulations is investigated.

The Steiner distance for a random set of k nodes in various random trees is studied in several
papers (see Panholzer (2004a), Panholzer (2004b), Morris et al. (2004), Panholzer and Prodinger
(2004a), Panholzer and Prodinger (2004b) and Guillemin and Robert (2009)). There is also
considered the size of the ancestor tree of k random nodes in random trees.

The total Steiner k-distance is mentioned in Clark et al. (1999) and the expectation for simply
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generated trees is determined. In Dankelmann et al. (1996) upper and lower bounds of the average
Steiner k-distance for deterministic weighted graphs and trees are shown.

We fix some notation. For random variables we write
D
= for equality in distribution and L(X)

for the distribution of X. Let Md
0,2 be the set of centred probability measures on Rd with finite

second moments. The Wasserstein-metric l2 on Md
0,2 is defined by

l2(µ, ν) := inf{‖X − Y ‖2 : L(X) = µ,L(Y ) = ν} (1)

where the L2-norm ‖ · ‖2 is given by ‖X‖2 = (E[‖X‖2])1/2. It is well known that convergence

with respect to the metric l2 (denoted by
l2−→) is equivalent to weak convergence plus convergence

of the second moments (see e.g. Bickel and Freedman (1981)).
For r ∈ N we denote by x(r) = x(x − 1) · · · (x − r + 1) the lower factorial and accordingly

x[r] = x(x+ 1) · · · (x+ r − 1) the upper factorial.

2 The model of the random b-ary recursive tree with weighted edges
We consider the infinite b-ary ordered tree Tb(∞), with the set of nodes V(∞) :=

⋃
k∈N{1, . . . , b}k∪

{0}. A b-ary recursive tree with n nodes is obtained by choosing a subset V ⊂ V(∞) of size n
such that for all u ∈ V the whole path from u to the root belongs to V , together with a labelling
function l : V → {1, . . . , n} such that the labels on every path to the root are decreasing. We
denote by Tb(n) the set of all b-ary recursive trees with n nodes. A random b-ary recursive tree
Tn with n nodes is a uniformly distributed element of Tb(n).

Let Z := (Z1, . . . , Zb) ∈ Rb≥0 be a random vector and attach to every node u of T∞ an

independent copy Z(u) of Z. We consider the entries of Z(u) as weights of the edges from u to
its b children. If all Z(u) are independent of Tn, we refer to Tn with the family {Z(u)|u ∈ V∞} as
a random b-ary recursive tree with edge weights Z.

We will assume for the rest of the paper that the entries of the vector of edge weights are
identically distributed, i.e. for all i, j ∈ {1, . . . , b} we have

Zi
D
= Zj . (2)

The distribution of the random b-ary recursive tree is independent under permutations of the
subtrees. It follows that the assumption (2) does not mean a constraint since we can always
consider the tree with a uniformly distributed permutation of the subtrees.

We introduce some further notation. By Tn we denote the random b-ary recursive tree of
size n with edge weights Z. The subtrees rooted to the children of the root are denoted by
Tn,1, . . . , Tn,b from left to right, i.e. the subtree Tn,i contains all nodes of Tn that lie in the set
{i}∪({i}×

⋃
k∈N{1, . . . , b}k). We define In,j := |Tn,j | the number of internal nodes in the subtree

Tn,j and In := (In,1, . . . , In,b). The weight of the edge between the root of Tn and the one of Tn,i
is given by Zi. The notation u ∈ Tn means that u is a node of Tn.

We can describe the random b-ary recursive tree by an evolution process. We start with the
root as an internal and its b children as external nodes at the next level. In each step we choose a
random element uniformly distributed on the set of all external nodes. The chosen node becomes
an internal one, and its b children join the set of external nodes. All nodes are labelled in the
order of their appearance.



530 Götz Olaf Munsonius

Considering this evolution process, we see that the subtree sizes In = (In,1, . . . , In,b) of a
random recursive b-ary tree can be described by a Pólya urn with b colours. Starting with one
ball of each colour (corresponding to the external children of the root), each drawn ball is returned
to the urn with b − 1 additional balls of the same colour. Then, the number of drawings of one
colour corresponds to the number of internal nodes in the corresponding subtree. We summarise
some well known results about this Pólya urn needed later (see e.g. Johnson and Kotz (1977)).
The explicit formula for the distribution of the subtree size is given by

P (In+1,1 = k) =
1

b− 1

Γ
(
k + 1

b−1

)
Γ(k + 1)

Γ(n+ 1)

Γ
(
n+ 1 + 1

b−1

) . (3)

and the joint factorial moment formula is for (r1, . . . , rb) ∈ Zb≥0, r =
∑b
i=1 ri and α = b/(b− 1)

E

 b∏
j=1

I
(rj)
n+1,j

 =
n(r)

α[r]

b∏
j=1

(
1

b− 1

)[rj ]

. (4)

Further, the normalised subtree sizes In/n converges almost surely to a Dirichlet β( 1
b−1 ,...,

1
b−1 )

distributed random vector D with parameters ( 1
b−1 , . . . ,

1
b−1 )

In
n
−→ D a.s. (5)

and in particular
In,i
n
−→ Di a.s., (6)

for i = 1, . . . , b where L(Di) = β( 1
b−1 ,1)

is the beta distribution (see Athreya (1969)).

Using this convergence result, one can show that for natural numbers k, l ∈ N with l ≤ k there
exist constants c̃1(k, l) and c̃2(k, l) independent of n such that for n→∞

E

[
I ln,1

(
n− In,1
k − l

)
log In,1

]
= c̃1(k, l)nk log n+ c̃2(k, l)nk + o(nk) (7)

and

E

[
I ln,1

(
n− In,1
k − l

)]
= c̃1(k, l)nk + o(nk). (8)

In particular, it turns out that

c̃1(k, l) =
1

b− 1

Γ
(
l + 1

b−1

)
Γ
(
k + b

b−1

) (9)

and with D1 as in (6)

c̃2(k, l) =
1

(k − l)!
E
[
Dl

1(1−D1)k−l logD1

]
. (10)

A prove is given in Munsonius (2010).
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3 The k-th internal path length and the total Steiner k-distance

We consider a labelled rooted tree T with labels {1, . . . , n} and weighted edges. For a subset
M ⊂ {1, . . . , n} of labels, the ancestor tree for M in T is defined by the smallest subtree of T
which contains all nodes with labels in M and the root. Let DM (T ) be the sum of the edge
weights of the ancestor tree of the nodes with labels in M in the given tree T . We define the
generalised k-th internal path length of T by

Pk(T ) =
∑

M⊂{1,...,n}
|M |=k

DM (T ). (11)

Similarly, we define SM (T ) as the sum of the edge weights of the spanning subtree in T of the
nodes with labels in M . This is also known as the Steiner distance of M . The total Steiner
k-distance is then defined by

Wk(T ) =
∑

M⊂{1,...,n}
|M |=k

SM (T ). (12)

As special cases, P1 is the internal path length and W2 the Wiener index.
In the case that T is a random b-ary recursive tree of size n we write DM,n := DM (T ),

SM,n := SM (T ), Pk,n := Pk(T ) and Wk,n := Wk(T ). It turns out that we obtain a recursion in
dimension k for Pk,n and Wk,n. In Neininger (2002) this recursion is stated in the case k = 2.

b
1

b3 4 b

b6 7 b

b9 b11 b2
b8 b10 b5 b

1
b3 4 b

b6 7 b

b9 b11 b2
b8 b10 b5

Fig. 1: The ancestor tree (left) and the Steiner tree (right) for the set M = {6, 9} with thick edges.

Lemma 3.1 Let Tn be a random b-ary recursive tree of size n with weighted edges. Further, we
denote by Pk,n resp. Wk,n the k-th internal path length resp. total Steiner k-distance of Tn and by
Pk,n,i resp. Wk,n,i the corresponding sizes of the subtrees Tn,i for i = 1, . . . , b. Then the following
recursions hold:

Pk,n =

b∑
i=1

{
Pk,n,i +

k−1∑
l=1

Pl,n,i

(
n− In,i
k − l

)
+ Zi

[(
n

k

)
−
(
n− In,i

k

)]}
(13)

and

Wk,n =

b∑
i=1

{
Wk,n,i +

k−1∑
l=1

Pl,n,i

(
n− In,i
k − l

)
+ Zi

[(
n

k

)
−
(
n− In,i

k

)
−
(
In,i
k

)]}
. (14)
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Proof: For all subsets M ⊂ {1, . . . , n} with |M | = k that are subsets of the labels in only one
subtree Tn,i the summand DM,n is given by

DM,n = DM,n,i + Zi (15)

where DM,n,i is the size of the ancestor tree for M in Tn,i. The sum over all such subsets yields∑
M⊂Tn,i

|M |=k

DM,n = Pk,n,i + Zi

(
In,i
k

)
. (16)

If there are l < k elements ofM in the set of labels that are in Tn,i, there are
(
n−In,i

k−l
)

constellations
for the remaining k− l nodes. For each such constellation we get the sum over all subsets of size
l in the subtree Tn,i. This yields the summand(

n− In,i
k − l

)
Pl,n,i + Zi

[(
In,i
l

)(
n− In,i
k − l

)]
. (17)

Considering the above findings, we obtain

Pk,n =

b∑
i=1

{
Pk,n,i +

k−1∑
l=1

Pl,n,i

(
n− In,i
k − l

)
+ Zi

[
k−1∑
l=1

(
In,i
l

)(
n− In,i
k − l

)
+

(
In,i
k

)]}
. (18)

Since we have
k∑
l=0

(
In,i
l

)(
n− In,i
k − l

)
=

(
n

k

)
(19)

the claim for the k-th internal path length follows.
If not all elements of M are in one subtree we have SM,n = DM,n. Hence, the total Steiner

k-distance differs from the k-th internal path length only in the summands where all nodes are
in the same subtree. It is ∑

M⊂Tn,i

|M |=k

SM,n = Wk,n,i. (20)

Comparing this to the computations above, we immediately get the claim for the total Steiner
k-distance. 2

From the description by the evolution process, we see that conditioned upon (In,1, . . . , In,b) the
subtrees are independent, random b-ary recursive trees of sizes In,1, . . . , In,b respectively (after
changing the labels in an obvious way). Together with the lemma above this yields the following
corollary.

Corollary 3.2 For k ∈ N, we set Xk,n = (P1,n, P2,n, . . . , Pk−1,n,Wk,n)T , the vector consisting
of the l-th internal path lengths (l = 1, . . . , k − 1) and the total Steiner k-distance of a random
b-ary recursive tree of size n with edge weights Z. Then we have

Xk,n
D
=

b∑
i=1

Ai(n)X
(i)
k,In,i

+ b(n) (21)
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where A
(n)
1 , . . . , A

(n)
b are random k × k matrices given by

(Ai(n))l,m =

{(
n−In,i

l−m
)
, for 1 ≤ m ≤ l ≤ k,

0, otherwise,
(22)

and b(n) is a random k-dimensional vector with

(b(n))l =

b∑
i=1

Zi

[(
n

l

)
−
(
n− In,i

l

)
− 1{l=k}

(
In,i
k

)]
(23)

for l ∈ {1, . . . , k}. Moreover, (A
(n)
1 , . . . , A

(n)
b , b(n)), (X

(1)
k,j )j≥0, . . . , (X

(b)
k,j)j≥0 are independent and

X
(i)
k,n
D
= Xk,n for all n ∈ N.

4 The expectation of Pk,n and Wk,n

We are going to use the contraction method to show a limit theorem for these functionals. Since
we apply the contraction theorem in L2 we have to centre the functionals. Therefore, we have to
identify the asymptotic expansion of the expectation.

It follows from Corollary 3.2 that

E[Pk,n] = bE
[
Pk,In,1

]
+ E[tk(n)] (24)

= b

n−1∑
j=0

E
[
Pk,In,1

| In,1 = j
]
P (In,1 = j) + E[tk(n)] (25)

= b

n−1∑
j=0

E [Pk,j ]P (In,1 = j) + E[tk(n)] (26)

where

E[tk(n)] := b

k−1∑
l=1

E

[
Pl,In,1

(
n− In,1
k − l

)]
+ bE[Z1]

((
n

k

)
− E

[(
n− In,1

k

)])
(27)

as well as

E[Wk,n] = b

n−1∑
j=0

E [Wk,j ]P (In,1 = j) + t̃k(n) (28)

where t̃k(n) = E[tk(n)]− bE[Z1]E
[(
In,1

k

)]
.

In order to apply the contraction method it suffices to know an asymptotic expansion of the
expectation which is fairly good. In Roura (2001), recursions of the given type are considered
and the asymptotic expansions of the solutions are identified.

We need two notions from Roura (2001).
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Definition 4.1 Let ω(z) ≥ 0 be a function on [0, 1] such that 1 ≤
∫ 1

0
ω(z) dz <∞. Furthermore,

assume that there is some µ < 0 such that
∫ 1

0
ω(z)zµ dz converges. Then we say that ω(z) is a

shape function.

Definition 4.2 We say that

Fn =

{
bn, if 0 ≤ n < N

tn +
∑

0≤k<n ωn,kFk, if n ≥ N
(29)

is a continuous recursive definition of Fn iff there exists some shape function ω(z), some constant
0 < q ≤ 1 and some function Mn = Θ(nq) with integer values such that, with zn,j = j/Mn,
0 ≤ j ≤Mn, with In,j = [zn,jn, zn,j+1n), 0 ≤ j < Mn, and with

εn,j =

∣∣∣∣∣∣
∑
k∈In,j

ωn,k −
∫ zn,j+1

zn,j

ω(z) dz

∣∣∣∣∣∣ , 0 ≤ j < Mn, (30)

∑
0≤j<Mn

εn,j = O(n−%) for some % > 0. (31)

One of the main conclusions of Roura (2001) is the following theorem.

Theorem 4.3 (Roura (2001, Theorem 3.3 (1))) Let Fn be a function defined by a contin-
uous recursive definition, and let Bna logc n · ξn be the main term of tn, where B > 0, a and c
are arbitrary constants, and ξn = µn or ξn = 1/µn for some sublogarithmical function µn. Let

ϕ(x) =
∫ 1

0
ω(z)zx dz, and H = 1− ϕ(a). If H > 0, then

lim
n→∞

Fn
tn

=
1

H
. (32)

Theorem 4.3 also holds in the case B < 0 which is seen directly by consideration of the sequence
−Fn.

To determine the asymptotic expansion via this theorem we have to find the asymptotic ex-
pansion of E[t(n)] and we have to show that (26) is a continuous recursive definition of E[Pk,n].

Lemma 4.4 For N = 1, b1 = 0 and

ωn,k = b
k

n
P (In,1 = k) (33)

equation (29) is a continuous recursive definition with shape function

ω(z) =
b

b− 1
z

1
b−1 . (34)

The proof uses Stirlings formula for the Gamma function and can be found in Munsonius
(2010). It is omitted here for technical reasons.

We now obtain the asymptotic expansion of the expectation of Pk,n by induction on k.
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Theorem 4.5 For k ≥ 1 let Pk,n be the k-th internal path length of a random b-ary recursive

tree of size n with edge weights Z. Then there exist constants c
(1)
p,k and c

(2)
p,k such that for n→∞

E[Pk,n] = c
(1)
p,kn

k log n+ c
(2)
p,kn

k + o(nk). (35)

Proof: We use induction on k. For k = 1 it is P1,n the internal path length, i.e. the sum of
all weighted depths. In Javanian and Vahidi-Asl (2006) the expectation of the depth of the n-th
node in a random b-ary recursive tree without edge weights is identified. Since the edge weights
and the shape of the tree are independent, the expectation of the weighted depth is obtained by
Wald’s equality. By summing up these values we have

E[P1,n] =
b

b− 1
E[Z1]n log n+ c

(2)
p,1n+ o(n) (36)

where

c
(2)
p,1 = E[Z1]

 b

b− 1
γ − 3b+ 2

2b− 2
+
b(b− 2)

(b− 1)2

∞∑
j=1

1

(j + 2)
(
j + b

b−1

)
 (37)

with the Euler constant γ ≈ 0.577. The details of this computation can be found in Munsonius
(2010).

Now assume the claim is proved for E[Pl,n] for all 1 ≤ l < k. We want to use Theorem 4.3.
Therefore, we identify the asymptotic expansion of E[tk(n)] in (27).

By induction hypothesis we get

E

[
Pl,In,1

(
n− In,1
k − l

)]
=

n−1∑
j=0

E [Pl,j ]

(
n− j
k − l

)
P (In,1 = j) (38)

=

n−1∑
j=0

{
c
(1)
p,l j

l log j + c
(2)
p,l j

l + o(jl)
}(n− j

k − l

)
P (In,1 = j) (39)

= E

[{
c
(1)
p,l I

l
n,1 log In,1 + c

(2)
p,l I

l
n,1 + o

(
I ln,1

)}(n− In,1
k − l

)]
. (40)

With equations (7) and (8) we obtain

E[tk(n)] = C̃
(1)
k nk log n+ C̃

(2)
k nk + o(nk) (41)

with

C̃
(1)
k := b

k−1∑
l=1

c
(1)
p,l c̃1(k, l) (42)

and

C̃
(2)
k := b

k−1∑
l=1

(
c
(1)
p,l c̃2(k, l) + c

(2)
p,l c̃1(k, l)

)
+ bE[Z1]

(
1

k!
− c̃1(k, 0)

)
. (43)
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We set

c
(1)
p,k :=

k(b− 1) + 1

(k − 1)(b− 1)
C̃

(1)
k =

kb− (k − 1)

(k − 1)(b− 1)
b

k−1∑
l=1

c
(1)
p,l c̃1(k, l). (44)

Now we deduce a representation of E[Pk,n] as a continuous recursive definition in the sense of
Definition 4.2. But instead of E[Pk,n], we consider

Gk,n :=
1

n

(
E[Pk,n]− c(1)p,kn

k log n
)

(45)

and obtain by equation (26)

Gk,n =
E[Pk,n]− c(1)p,knk log n

n
(46)

=

n−1∑
j=1

E [Pk,j ]− c(1)p,kjk log j

j

j

n
bP (In,1 = j) (47)

+
1

n

E[tk(n)] +

n−1∑
j=0

c
(1)
p,kj

k log(j)bP (In,1 = j)− c(1)p,kn
k log n

 (48)

=

n−1∑
j=0

ωn,jGk,j + sk(n), (49)

with Gk,0 := 0, ωn,j being given in Lemma 4.4 and

sk(n) :=
1

n

(
E[tk(n)] + c

(1)
p,kbE

[
Ikn,1 log In,1

]
− c(1)p,kn

k log n
)
. (50)

By Lemma 4.4 this is a continuous recursive definition. We determine the main term of sk(n).

Using equations (7) and (41) as well as the definition (44) of c
(1)
p,k and c̃1(k, k) = 1/(k(b− 1) + 1)

(see equation (9)) we obtain

sk(n) =
(
C̃

(1)
k + bc

(1)
p,k c̃1(k, k)− c(1)p,k

)
nk−1 log n+

(
C̃

(2)
k + bc

(1)
p,k c̃2(k, k)

)
nk−1 + o(nk−1) (51)

=
(
C̃

(2)
k + bc

(1)
p,k c̃2(k, k)

)
︸ ︷︷ ︸

=:Ĉk

nk−1 + o(nk−1). (52)

We set ξn = 1, a = k− 1, c = 0 and B = Ĉk 6= 0. Using the terminology of Theorem 4.3 we show
H = 1− ϕ(k − 1) > 0. It is for b ≥ 2 and k > 1

ϕ(k − 1) =

∫ 1

0

b

b− 1
z

1
b−1+k−1 dz =

b

kb− (k − 1)
< 1. (53)

Therefore,H = (b−1)(k−1)/(k(b−1)+1) > 0 and Theorem 4.3 yields limn→∞Gk,n/sk(n) = 1/H.
Hence we get

E[Pk,n]− c(1)p,kn
k log n = c

(2)
p,kn

k + o(nk), (54)
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where

c
(2)
p,k =

k(b− 1) + 1

(b− 1)(k − 1)

(
C̃

(2)
k + bc

(1)
p,k c̃2(k, k)

)
(55)

for k > 1 and the proof is finished. 2

The same method yields the asymptotic expansion of the expectation of Wk,n.

Theorem 4.6 For k ≥ 2 let Wk,n be the total Steiner k-distance of a random b-ary recursive

tree of size n with edge weights Z. Then there exist constants c
(1)
w,k and c

(2)
w,k such that for n→∞

E[Wk,n] = c
(1)
w,kn

k log n+ c
(2)
w,kn

k + o(nk). (56)

Proof: We set

Hk,n :=
1

n

(
E[Wk,n]− c(1)p,kn

k log n
)
, (57)

with c
(1)
p,k as in Theorem 4.5, and obtain by equation (28) the recursion

Hk,n =

n−1∑
j=0

ωn,jHk,j + rk(n) (58)

where rk(n) is given—analogous to (50)—by

rk(n) = sk(n)− 1

n
bE[Z1]E

[(
In,1
k

)]
(59)

with sk(n) as in (50). With the factorial moments in equation (4) as well as (50) in combination
with (52) we see that

rk(n) =
(
C̃

(2)
k + bc

(1)
p,k c̃2(k, k)

)
nk−1 − 1

n
bE[Z1]E

[(
In,1
k

)]
+ o(nk−1) (60)

=

(
C̃

(2)
k + bc

(1)
p,k c̃2(k, k)− bE[Z1]

1

k!(k(b− 1) + 1)

)
nk−1 + o(nk−1). (61)

As in the proof of Theorem 4.5 we have a continuous recursive definition for Hk,n. Again, the
main term of the additive term rk(n) is of order nk−1. Hence, we finally receive by Theorem 4.3
as in the proof of Theorem 4.5 the claim with

c
(1)
w,k = c

(1)
p,k (62)

and with (55)

c
(2)
w,k =

k(b− 1) + 1

(k − 1)(b− 1)

(
C̃

(2)
k + bc

(1)
p,k c̃2(k, k)− b

k(b− 1) + 1

1

k!
E[Z1]

)
(63)

= c
(2)
p,k −

b

(k − 1)(b− 1)k!
E[Z1]. (64)

2
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Remark 4.7 While it does not seem that there is an easy way to compute the constants c
(2)
w,k and

c
(2)
p,k it is easy to determine the constants c

(1)
w,k = c

(1)
p,k inductively. By definition (9) of c̃1(k, l) we

get starting with (44)

c
(1)
p,k =

k(b− 1) + 1

(k − 1)(b− 1)

b

b− 1

1

Γ
(
k + 1

b−1

)(
k + 1

b−1

) k−1∑
l=1

c
(1)
p,lΓ

(
l +

1

b− 1

)
. (65)

We substitute Γ
(
k + 1

b−1

)
c
(1)
p,k =: Bk and get by recursive computations

Bk =
b

(k − 1)(b− 1)

k−1∑
l=1

Bl (66)

=
b

(k − 1)(b− 1)

(
(k − 2)(b− 1)

b

b

(k − 2)(b− 1)

k−2∑
l=1

Bl +Bk−1

)
(67)

=
b

(k − 1)(b− 1)

(
(k − 2)(b− 1)

b
+ 1

)
Bk−1 (68)

=
1

(k − 1)!

Γ
(
k + 1

b−1

)
Γ
(

1 + 1
b−1

)B1. (69)

By resubstitution and with c
(1)
p,1 = b

b−1E[Z1] we finally conclude

c
(1)
p,k =

1

(k − 1)!

b

b− 1
E[Z1]. (70)

5 The limit theorem for Pk,n and Wk,n

We finally show a limit theorem for the k-th internal path length and the total Steiner k-distance.
We can use the multivariate contraction method in L2 setting (Neininger (2001)) because we
know the asymptotic expansion of the expectations fairly well. Corollary 3.2 provides the needed
recursion formula.

Theorem 5.1 (Limit theorem for b-ary trees with edge weights) For k ∈ N we set

Xk,n = (P1,n, P2,n, . . . , Pk−1,n,Wk,n)T (71)

the vector consisting of the l-th internal path lengths (l = 1, . . . , k − 1) and the total Steiner
k-distance of a random b-ary recursive tree of size n with edge weights Z where Var(Z1) < ∞.
Then we have for

X∗k,n :=


1
n 0 · · · 0

0 1
n2

. . .
...

...
. . .

. . . 0
0 · · · 0 1

nk

 (Xk,n − E[Xk,n]) (72)
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and n→∞
l2(X∗k,n, Xk)→ 0 (73)

where Xk is the unique distributional fixed point of the map T :Mk
0,2 →Mk

0,2 given for µ ∈Mk
0,2

by

T (µ) := L

(
b∑
i=1

A∗iX
(i)
k + b∗

)
(74)

with random k × k matrices A∗i given by

(A∗i )l,m =

{
1

(l−m)!D
m
i (1−Di)

l−m, for m ≤ l ≤ k,

0, otherwise,
(75)

and a random k-dimensional vector b∗ given by

b∗l = c
(1)
p,l

b∑
i=1

Di logDi +
1

l!

b∑
i=1

Zi
(
1− (1−Di)

l − 1{l=k}Dk
i

)
(76)

+

b∑
i=1

l∑
m=1

c
(2)
p,m

(l −m)!
Dm
i (1−Di)

l−m − c(2)p,l + 1{l=k}

(
c
(2)
p,k − c

(2)
w,k

)(
1−

b∑
i=1

Dk
i

)
, (77)

where D := (D1, . . . , Db) has the Dirichlet distribution with parameter (1/(b− 1), . . . , 1/(b− 1)),

L(X
(i)
k ) = µ, and X

(1)
k , . . . , X

(b)
k , D, Z are independent.

Proof: We denote by δ(x) the diagonal matrix of size k with entries x, x2, x3, . . . , xk, i.e.
(δ(x))ij = xi1{i=j} for i, j ∈ {1, . . . , k}. Then we obtain by Corollary 3.2

δ(1/n)(Xk,n − E[Xk,n])
D
=

b∑
i=1

δ(1/n)Ai(n)δ(In,i)X
(i)∗
k,In,i

+ b(n) (78)

with X
(i)∗
k,In,i

= δ(In,i)
−1 (Xk,In,i − E

[
Xk,In,i

])
and for l ≤ k because of c

(1)
p,k = c

(1)
w,k

b
(n)
l =

1

nl

(
b∑
i=1

Zi

[(
n

l

)
−
(
n− In,i

l

)
− 1{l=k}

(
In,i
k

)]
− c(1)p,ln

l log n− c(2)p,ln
l (79)

+

b∑
i=1

l∑
m=1

(Ai)l,m

[
c(1)p,mI

m
n,i log In,i + c(2)p,mI

m
n,i

]
(80)

+1{l=k}

(
c
(2)
p,k − c

(2)
w,k

)(
nk −

b∑
i=1

Ikn,i

))
+ o(1). (81)

To be able to apply the contraction theorem (Neininger, 2001, Theorem 4.1) it remains to show
that for n→∞ (

A
(n)
1 , . . . , A

(n)
b , b(n)

)
l2−→ (A∗1, . . . , A

∗
b , b
∗) , (82)
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b∑
i=1

E
∥∥(A∗i )

TA∗i
∥∥
op
< 1 (83)

and

E

[
1{In,i≤l}∪{In,i=n}

∥∥∥(A
(n)
i )TA

(n)
i

∥∥∥
op

]
→ 0 (84)

for all l ∈ N.

We start by showing (82). We have for m ≤ l ≤ k(
δ(1/n)Ai(n)δ(In,i)

)
l,m

=
1

nl
Imn,i

(
n− In,i
l −m

)
(85)

=
1

(l −m)!

Imn,i
nm

l−m−1∏
ν=0

(
1− In,i + ν

n

)
. (86)

It is not difficult to show (δ(1/n)Ai(n)δ(In,i))l,m → Dm
i (1−Di)

l−m/(l−m)! almost surely using

the convergence in (6). By deterministic boundedness we get convergence with respect to the
l2-metric. Since (δ(1/n)Ai(n)δ(In,i))l,m = 0 in the cases where m > l we obtain

δ(1/n)Aiδ(In,i)
l2−→ A∗i (87)

with A∗i as in the theorem.

To show the convergence of b(n) we first consider the term

(b̃n)l :=
1

nl

b∑
i=1

{
l∑

m=1

(
n− In,i
l −m

)
c(1)p,mI

m
n,i log In,i

}
− c(1)p,l log n (88)

=
1

nl

b∑
i=1

{
l∑

m=1

1

(m− 1)!

b

b− 1
E[Z1]Imn,i

(
n− In,i
l −m

)
log In,i

}
− c(1)p,ln

−1
b∑
i=1

In,i log n+ o(1).

(89)

With x(l) = xl + o(xl) we have

l∑
m=1

1

(m− 1)!

(
n− In,i
l −m

)
Im−1n,i =

l−1∑
m=0

(n− In,i)(l−m−1)

m!(l −m− 1)!
Imn,i (90)

=
1

(l − 1)!

l−1∑
m=0

(
l − 1

m

)
Imn,i(n− In,i)l−1−m + o(nl−1) (91)

=
1

(l − 1)!
nl−1 + o(nl−1). (92)
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Using this we obtain from (89)

(b̃n)l =

b∑
i=1

b

b− 1

1

(l − 1)!
E[Z1]

In,i
n

log In,i − c(1)p,l
b∑
i=1

In,i
n

log n+ o(1) (93)

= c
(1)
p,l

b∑
i=1

In,i
n

log
In,i
n

+ o(1). (94)

The convergence (6), the assumption Var(Z1) <∞ and deterministic boundedness yields

b
(n)
l

l2−→ c
(1)
p,l

b∑
i=1

Di logDi +
1

l!

b∑
i=1

Zi
(
1− (1−Di)

l − 1{l=k}Dk
i

)
(95)

+

b∑
i=1

l∑
m=1

c(2)p,m(A∗i )l,m − c
(2)
p,l + 1{l=k}

(
c
(2)
p,k − c

(2)
w,k

)(
1−

b∑
i=1

Dk
i

)
(96)

=: b∗l (97)

and (82) is proved.
To prove (83) we observe that the eigenvalues of A∗i are given by Dl

i for l = 1, . . . , k. Since
Di is bounded by 1 and non-negative, it is ‖A∗i ‖op = ‖(A∗i )T ‖op = Di. We use the inequality

‖AB‖op ≤ ‖A‖op‖B‖op. With
∑b
i=1D

2
i < 1 almost surely we finally conclude

E

[
b∑
i=1

∥∥(A∗i )
TA∗i

∥∥
op

]
≤ E

[
b∑
i=1

D2
i

]
< 1. (98)

The condition (84) follows from the deterministic boundedness of ‖A(n)
i ‖op and

lim
n→∞

P ({In,i ≤ l} ∪ {In,i = n}) = 0 (99)

which can be seen directly from equation (3). The contraction theorem (Neininger, 2001, Theorem
4.1) yields the claim. 2

Remark 5.2 In particular, the Limit Theorem 5.1 implies Var(Pk,n) = Cn2k + o(n2k) and

Var(Wk,n) = C̃n2k + o(n2k) with two constants C, C̃ > 0.

6 Bijection to linear recursive trees
In this section we transfer the results for the random b-ary recursive tree with weighted edges
to linear recursive trees. The model of linear recursive trees is introduced by Pittel (1994). In
this tree every node u has a weight wu. Starting with the root, the tree grows node by node.
In each step the new node is attached to a randomly chosen node of the previous ones. The
probability that node u is chosen is proportional to the weight wu of the node. In the case of
linear recursive trees the weight is given by wu = 1 + β deg(u) where deg(u) is the number of



542 Götz Olaf Munsonius

children of u and β ∈ R≥0 is the parameter of the tree. As a special case the random recursive
tree can be considered as a linear recursive tree with parameter β = 0. This procedure provides
recursive trees with unbounded degrees of the nodes.

To transfer the results of the first part to linear recursive trees we choose a special weight
vector and define an equivalence relation on the set of b-ary recursive trees. We choose for the
edges the weight vector (1, 0, . . . , 0) ∈ Rb. The weighted depth of a node is the sum of the weights
of the edges along the path from this node to the root. For every node u which is the root or the
leftmost child of another node we can define the set of nodes N(u) which contains all nodes which
lie in the subtree rooted to u and have the same weighted depth as u. We say that two b-ary
recursive trees are equivalent if and only if they differ only in permutations within the sets N(u)
for all leftmost children u and the root. Here the exchange of two nodes means the exchange of
the whole subtrees rooted to these nodes. Let ψ denote the projection of Tb(n) onto the set of
equivalence classes and T (n) denote the set of all recursive trees of size n. Then we have the
following lemma.

Lemma 6.1 For any n ∈ N there exists a bijection

ϕ : T (n+ 1)→ ψ(Tb(n)).

Proof: Given a recursive tree T ∈ T (n+ 1), we define its image under the bijection ϕ. The node
u with label 2 in T has to be a child of the root. We identify this node with the root ϕ(u) of
ϕ(T ). The siblings of the node with label 2 in T are identified with the nodes in the set N(ϕ(u))
(the little squares in Figure 2). For every node v in T , we now recursively identify its child with
the smallest label (denoted by w) with the leftmost child (ϕ(v), 1) of ϕ(v) in ϕ(T ). The siblings
of the node w correspond to the nodes in N(ϕ(v), 1). This construction defines a bijection. 2

A more detailed prove is stated in Munsonius (2010).

b
13 b

T 4 b

b6 7 b

b9 b11 b2
b8 b10 b5 rs

28 b

'(T )10 b

3 rs

rs5
rs rs

rs

rs46 b7 b9 b

b11rs rs

Fig. 2: A recursive tree T with eleven nodes and its image ϕ(T ) (without edge weights)

From the construction of this bijection we can deduce a relation between the sizes of the
subtrees in T and ϕ(T ).

Lemma 6.2 Let T be a linear recursive tree. For every node v ∈ T we have

|tv| = 1 + |t̃(ϕ(v),1)| (100)

where tv is the subtree of T rooted to v and t̃(ϕ(v),1) is the subtree of ϕ(T ) rooted to (ϕ(v), 1).
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Proof: The subtree of v ∈ T consists of v and the subtrees rooted to the children of v. By the
bijection ϕ the first child of v is mapped onto (ϕ(v), 1). The other children of v are mapped
to nodes in the subtree t̃(ϕ(v),1). Hence for every node u 6= v in tv the image ϕ(u) belongs to

t̃(ϕ(v),1).

On the other hand, if a node ϕ(u) is in t̃(ϕ(v),1) then u is a child of v or it belongs to the subtree
rooted at one of the children of v. Hence every node in tv except v corresponds to a unique node
in t̃(ϕ(v),1) and the claim follows. 2

Moreover, we have that ϕ maps the distribution of a random linear recursive tree on the
distribution of a random b-ary recursive tree.

Lemma 6.3 For b ∈ Z≥0 let T (n + 1) be a random linear recursive tree of size n + 1 with
parameter b and Tb+2(n) be a random b+ 2-ary recursive tree of size n. Then we have

ψ(Tb+2(n))
D
= ϕ(T (n+ 1)). (101)

This can be shown by induction on the size of the trees and is implicit stated in Broutin and
Devroye (2006). The key idea is to equip the linear recursive tree with external nodes which all
have the same probability to become the next internal one. When an external node becomes an
internal one there appear b + 1 new external siblings and one external child of the new internal
node. These correspond to the b + 2 external children of a new internal node in the b + 2-ary
recursive tree.

To translate the limit theorem for the total Steiner k-distance and the k-th internal path
length, it remains to investigate the transformation of these functionals under the maps ϕ and
ψ. We recall the notation. It denotes Pk(T ) the k-th internal path length and Wk(T ) the total
Steiner k-distance of a tree T . To obtain a transformation formula for Pk and Wk we first prove
a representation which uses the sizes of subtrees.

Lemma 6.4 Given a tree T with weighted edges and a node v ∈ T we denote by Zv the weight
of the edge which is between node v and its parent. Further, let tv be the subtree rooted to v and
|tv| the size of tv. Then we have

Pk(T ) =
∑
v∈T

Zv

[(
|T |
k

)
−
(
|T | − |tv|

k

)]
(102)

and

Wk(T ) =
∑
v∈T

Zv

[(
|T |
k

)
−
(
|T | − |tv|

k

)
−
(
|tv|
k

)]
. (103)

Proof: To prove this lemma we count how often the weight of an edge is added for the k-th
internal path length. Each edge subdivides the tree into two subtrees, one of them containing
the root. For a set M of k nodes, a given edge is not in the ancestor tree of M if and only if all
nodes of M are in the subtree containing the root. Therefore, there are exactly

(|T |
k

)
−
(|T |−|tv|

k

)
subsets of k nodes in T for which the edge with weight Zv is contained in the ancestor tree.

The same arguments provide the formula for the total Steiner k-distance. Here, a given edge
is not in the Steiner tree if and only if all nodes of M are in only one of the two subtrees. 2
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The two Lemmata 6.2 and 6.4 yield the transformation formulae for the total Steiner k-distance
and the k-th internal path length under the map ϕ.

Lemma 6.5 Let ϕ be the bijection of Lemma 6.1, T a recursive tree with n+ 1 nodes and ϕ(T )
provided with the edge weight vector (1, 0, . . . , 0). Then we have

Pk(T ) = Pk(ϕ(T )) + n

(
n

k − 1

)
(104)

and

Wk(T ) = Wk(ϕ(T )) +Wk−1(ϕ(T ))− Pk−1(ϕ(T )) + n

(
n

k − 1

)
. (105)

Proof: We first consider the k-th internal path length. Since in T all edge weights are equal to
1 we get from Lemma 6.4

Pk(T ) =
∑
u∈T

[(
n+ 1

k

)
−
(
n+ 1− |tu|

k

)]
. (106)

In the tree ϕ(T ) all weights are 0 except the ones between one node and its leftmost child. Hence
we obtain with Lemma 6.4

Pk(ϕ(T )) + n

(
n

k − 1

)
=

∑
v∈ϕ(T )

[(
n

k

)
−
(
n− |t̃(v,1)|

k

)]
+ n

(
n

k − 1

)
(107)

=
∑
u∈T

[(
n+ 1

k

)
−
(
n+ 1− |tu|

k

)]
(108)

= Pk(T ). (109)

With the same arguments we conclude

Wk(ϕ(T )) +Wk−1(ϕ(T ))− Pk−1(ϕ(T )) + n

(
n

k − 1

)
(110)

=
∑

v∈ϕ(T )

[(
n

k

)
−
(
n− |t̃(v,1)|

k

)
−
(
|t̃(v,1)|
k

)]
(111)

+
∑

v∈ϕ(T )

[(
n

k − 1

)
−
(
n− |t̃(v,1)|
k − 1

)
−
(
|t̃(v,1)|
k − 1

)]
(112)

−
∑

v∈ϕ(T )

[(
n

k − 1

)
−
(
n− |t̃(v,1)|
k − 1

)]
+ n

(
n

k − 1

)
(113)

=
∑

v∈ϕ(T )

[(
n+ 1

k

)
−
(
n− |t̃(v,1)|

k

)
−
(
|t̃(v,1)|+ 1

k

)]
(114)

=
∑
u∈T

[(
n+ 1

k

)
−
(
n+ 1− |tu|

k

)
−
(
|tu|
k

)]
= Wk(T ). (115)

2
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We finally obtain the limit theorem for the total Steiner k-distance and the k-th internal path
length for linear recursive trees.

Theorem 6.6 (Limit theorem for linear recursive trees) For k ∈ N we denote by

Xk,n = (P1,n, P2,n, . . . , Pk−1,n,Wk,n)T (116)

the vector consisting of the l-th internal path lengths (l = 1, . . . , k − 1) and the total Steiner
k-distance of a random linear recursive tree of size n with parameter b− 2 ∈ Z≥0. Then we have
for n→∞

E[Pk,n] =
1

(k − 1)!

1

b− 1
nk log n+

(
c
(2)
p,k +

1

(k − 1)!

)
nk + o(nk), (117)

E[Wk,n] =
1

(k − 1)!

1

b− 1
nk log n+

(
c
(2)
w,k +

1

(k − 1)!

)
nk + o(nk) (118)

and

X∗k,n :=


1
n 0 · · · 0

0 1
n2

. . .
...

...
. . .

. . . 0
0 · · · 0 1

nk

 (Xk,n − E[Xk,n])
l2−→ Xk, (119)

where the distribution of Xk is given in Theorem 5.1 and c
(2)
p,k and c

(2)
w,k are the same as in Theorem

4.5 and Theorem 4.6.

Proof: Let Tb(n− 1) be a random b-ary recursive tree with edge weights Z(0) where

P (Z(0) = ei) =
1

b
(120)

for all i = 1, . . . , b, where ei is the vector consisting of 0 everywhere except for the i-th entry which
is 1. We denote by T̃b(n − 1) the tree obtained by ordering the siblings (and the corresponding
subtrees) in Tb(n− 1) in such a way that the edge with weight 1 is always the leftmost one. The
k-th internal path length and the total Steiner k-distance are invariant under this rearrangement.
Further, the sizes of the subtrees which belong to the edges with edge weight 1 depend only on
the image under ψ. Thus, we see that Pk and Wk are invariant under the map ψ. In total we
have

Pk(ψ(T̃b(n− 1))) = Pk(Tb(n− 1)) (121)

and
Wk(ψ(T̃b(n− 1))) = Wk(Tb(n− 1)). (122)

Let Tn be a random linear recursive tree of size n with weight function u 7→ 1 + (b− 2) deg(u)

and ϕ be the bijection of Lemma 6.1. By Lemma 6.3 it holds ϕ(Tn)
D
= ψ(T̃b(n−1)) and therefore

according to (121) and (122)

Pk(ϕ(Tn))
D
= Pk(Tb(n− 1)) (123)
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as well as
Wk(ϕ(Tn))

D
= Wk(Tb(n− 1)). (124)

This implies by Lemma 6.5

E[Pk,n] = E[Pk(Tb(n− 1))] +
1

(k − 1)!
nk + o(nk) (125)

and

E[Wk,n] = E[Wk(Tb(n−1))]+E[Wk−1(Tb(n−1))]−E[Pk−1(Tb(n−1))]+
1

(k − 1)!
nk+o(nk). (126)

With Theorems 4.5 and 4.6 the asymptotic formulae for the expectations follow.
Let X̃∗k,n−1 be the vector corresponding to X∗k,n for the random b-ary recursive tree Tb(n− 1).

Lemma 6.5 yields with equations (123) and (124)

X∗k,n
D
= X̃∗k,n−1 +


0
...
0
Y

 (127)

where

Y :=
Wk−1(Tb(n− 1))− E[Wk−1(Tb(n− 1))]

nk
− Pk−1(Tb(n− 1))− E[Pk−1(Tb(n− 1))]

nk
. (128)

Remark 5.2 implies Y
l2−→ 0. Thus, the claim follows by Theorem 5.1. 2

Remark 6.7 Random plane oriented recursive trees without the order of the nodes equals in
distribution the random linear recursive tree with parameter β = 1. Since the k-th internal path
length as well as the total Steiner k-distance are invariant under changing of the order of the tree
the Limit Theorem 6.6 with b = 3 provides in particular the corresponding limit theorem for the
plane oriented recursive tree.
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1989.

U. Rösler. A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl., 25(1):85–100, 1991.
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