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Partial Quicksort and Quickpartitionsort
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Partial Quicksort sorts the l smallest elements in a list of length n. We provide a complete running time analysis for
this combination of Find and Quicksort. Further we give some optimal adapted versions, called Partition Quicksort,
with an asymptotic running time c1l ln l+c2l+n+o(n). The constant c1 can be as small as the information theoretic
lower bound log2 e.

Keywords: searching, sorting, Find, Quicksort, divide and conquer algorithm, random algorithm, running time anal-
ysis, asymptotic distribution, optimal adapted algorithms, stochastic fixed point equation, contraction method

1 Introduction
Partial Quicksort sorts the l-th smallest elements of a list. The basic idea is a combination of Quickselect
or Find, introduced by Hoare [4], finding the l-th smallest and of Quicksort, also invented by Hoare [5],
for quick sorting. Basically do first Find to find the l-th smallest and then quicksort all l smallest using all
available information obtained so far (splitting). (For the running time analysis it is more convenient, to
quicksort on the run, whenever possible.)

Both stochastic divide-and-conquer algorithms Find [3] [2] [6] and Quicksort [10] [11] [14] are well
studied. Many of the mathematical tools developed there [12] apply and allow a complete analysis of
Partial Quicksort and also finding the optimal adapted algorithms Quickpartitionsort. We will point out
the basic procedure for Partial Quicksort.

For simplicity we discuss first standard Find for finding the l-th and then standard Quicksort for sorting.
In more detail: Choose some pivot element from the list, usually by random with a uniform distribution,
and split the list S into the strictly smaller ones S< and the strictly larger ones S>. If the l-th is in S<
then recall recursively the algorithm for S<. If the l-th is in S> (or the pivot) then sort S< and recall
recursively the algorithm for S>. If neither, then recall the algorithm for S<. (A pseudo-code description
of this recursion is given in [7].)

The recursive formula for the rv X(S, l) of comparisons in order to find the sorted l smallest out of the
set S of different numbers is

X(S, l) = |S| − 1 + 1|S<|<l−1(X1(S<, |S<|) +X2(S>, l − |S<| − 1)) (1)
+ 1|S<|=l−1X1(S<, |S<|) + 1|S<|≥lX1(S<, l).

The rvs X1, X2 denote the number of comparisons (left and right branch) using recursively the same
algorithm. The rv I = |S<| + 1 is independent of the Xi-rvs and given S< and S> the rvs X1, X2 are
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independent. Notice, the distribution of X(S, |S|) is the Quicksort distribution sorting all numbers by
some specified Quicksort version. The rv I = I(n, l) denotes the rank of the pivot after comparisons and
has values on {1, 2, . . . , n}.

The distribution of X(S, l) depends only on |S| and l. We use X(S, l)
D
= X(|S|, l). This is due to the

internal randomness and is true for any input S. We skip the induction on n = |S| via equation (1).
The equation (1) determines recursively the distribution of comparisons X(n, l) in order to find the

sorted l smallest out of n different numbers,

X(n, l)
D
= n− 1 + 1I<l(X1(I − 1, I − 1) +X2(n− I, l − I)) (2)
+ 1I=lX1(I − 1, I − 1) + 1I>lX1(I − 1, l).

The rvs I = I(n, l), Xi(j, k), i, j, k ∈ N, i = 1, 2, k ≤ j < n are independent. The rv I has values in
{1, 2, . . . , n}, Xi(j, ·) have the same distribution as X(j, ·). The equation (2) is a consequence of (1).

From Equation 2 we obtain the best and worst performance of the algorithm. Choosing a pivot by ran-
dom with a uniform distribution, the best is by picking incidentally the l-th largest for the Find procedure
and then doing Quicksort in its best. For standard Quicksort this is picking incidentally the pivot as an
median. We face the worst behavior, if our pivot is the largest all the time.

From equation (2) we obtain for the expectation a(n, l) = EX(n, l)

a(n, l) = n− 1 +

l−1∑
j=1

P (I = j)(a(j − 1, j − 1) + a(n− j, l − j))

+ P (I = l)a(l − 1, l − 1) +

n∑
j=l+1

P (I = j)a(j − 1, l).

The term a(j, j) is the expectation of sorting j numbers by Quicksort. For a uniformly distributed rank of
the pivot we have an explicit solution [7]

a(n, l) = 2n+ 2(n+ 1)Hn − 2(n+ 3− l)Hn+1−l − 6l + 6.

Hn denotes the n-th harmonic number

Hn =

n∑
i=1

1

i
= lnn+ γ + o(1)

γ the Euler constant.
Now to the distribution. For simplicity we stay with a uniform distributed rank of the pivot. The correct

normalization for the X(n, ·) rv is

Y n(
l

n
) =

X(n, l)− a(n, l)
n

.

We obtain the recursion, I = I(n, l)

Y n(
l

n
)
D
= 1I<l

n− I
n

Y n−I2 (
l − I
n− I

) + 1I>l
I − 1

n
Y I−11 (

l

I − 1
) + Cn(

l

n
) (3)
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where

Cn(
l

n
) = 1I≤l

I − 1

n
Y I−11 (1) +

n− 1

n
− a(n, l)

n
(4)

+ 1I≤l
a(I − 1, I − 1)

n
+ 1I<l

a(n− I, l − I)
n

+ 1I>l
a(I − 1, l)

n

The distribution of Y j(1) is the Quicksort distribution to sort j elements. Since we consider only distri-
butions, we do not change the distribution of Y n(·) if we replace Y j1 (1) by other rvs Q(j), independent
of everything so far, with the (same) j-Quicksort distribution. We use this replacement in the sequel.

The equation (3) allows an analysis of the asymptotic of Y n( ln ) in n.We shall give a version of process
valued rvs Y n with the same one dimensional marginals. The definition of the processes Y n is via

(Y n(
l

n
))l
D
= (1I<l

n− I
n

Y n−I2 (
l − I
n− I

) + 1I>l
I − 1

n
Y I−11 (

l

I − 1
) + Cn(

l

n
))l (5)

Extend Y n(·) nicely (continuous linear) to a rv Y n with values in function space D [1], the space of
cadlag functions on the unit interval. The process Y n will converge (see [6]) to a process Y satisfying the
stochastic fixed point equation

(Y (t))t∈[0,1]
D
= (1U≤t(1− U)Y2(

t− U
1− U

) + (1U>tUY1(
t

U
) + C(t))t∈[0,1] (6)

on D. The rvs Y1, Y2, U,Q are independent, Y1 and Y2 have the distribution µ, U is uniformly distributed
on the unit interval I and Q has a limiting Quicksort distribution. The cost function C is given by

C(t) = 2U lnU + 1U>t(2U − 1 + 2(1− t) ln(1− t)− 2(U − t) ln(U − t))
+1U≤t(1 + 2(1− U) ln(1− U) + UQ).

Let K be the operator on the set M(D) of probability measures on D to itself defined by

K(µ) = L((1U≤t(1− U)Y2(
t− U
1− U

) + 1U>tUY1(
t

U
) + C(t))t∈[0,1])

Here Y1, Y2, (U,C) are independent rvs, Y1, Y2 have distribution µ and (U,C) are as above. The symbol
L denotes the distribution of a random variable.

The existence of Y and convergence of Y n to Y is given by the following theorem, which is provided
in [6] in a more general form. The metric d on processes is the uniform Wasserstein metric,

d(µ, ν) = inf E sup
t
|X(t)− Y (t)|

The infimum is taken over all processes (X,Y ) with marginal distributions ν and µ.

Theorem 1. The sequence Kn(δ0) converges to a fixed point ν = L(Y ) of K with respect to the uniform
Wassserstein exponentially fast. The process Y n (5) converges to the fixed point Y of K in terms of
finite dimensional distributions. All one-dimensional distributions Y n(t), n ∈ N have finite exponential
moments of all order and converge to those of Y.
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The Kn convergence is much stronger (uniformly) than the Y n convergence. The trouble are pathwise
jumps of the process. The example 2-Find [3] provides convergence in Skorodhod topology for nice
versions of the processes. However the 3-version converges in (finite dimensional) distribution, but not in
Skorodhod topology. The basic trouble is a process like Zn = 1[.5−1/n,.5) converging to Z ≡ 0 pointwise
in t and in the weak sense, convergence of finite dimensional distributions. However no version of Zn
will converges in Skorodhod topology or uniformly.

In Knof-Roesler [6] the recursive setting is more general in D,

Y n
D
=

∑
i∈N

Ani Y
Ini
i ◦Bni + Cn (7)

Here ((Ani , B
n
i , I

n
i )i, C

n), Y jk , k, j ∈ N are independent. Ani , C
n, Bni have values in D, Bni is a piece-

wise increasing random time change. Under certain assumptions Y n converges in distribution to Y satis-
fying

Y
D
=

∑
i∈N

AiYi ◦Bi + C.

All one dimensional distributions Y n(t) have finite exponential moments of all orders and converge to
those of Y. (All details are given in more generality in [6] and are skipped here.)

Dealing with the positive case (everything positive) is easier, since the distribution of Y n converges
monotone in stochastic order to a limit. (And for suitable versions also point wise.) Otherwise, loosing
the monotonicity, we have to circumvent this difficulty by showing certain sums converge absolutely [6].
Partial Quicksort is a nice example, since C takes positive and negative values in a natural, non trivial
way and still the theory applies and the assumptions are satisfied. The running time analysis of standard
Partial Quicksort is complete.

Analogous, but with more technical effort, we can analyze different versions of Find and Quicksort,
choosing the pivot differently, e.g. as k-median. Find uses in the optimal case [8] asymptotically n +
inf{l, n − l} + o(n) comparisons in order to find the l-th out of n. Afterwards Quicksort uses Q(l) =
(Q(l) − a(l, l)) + a(l, l) comparisons. The dominant term is the deterministic term a(l, l) of the order
cl ln l. The constant c varies with the Quicksort version. c has a lower bound ln2 e. We can do slightly
better, even asymptotically in the second leading term, performing approximate Find and using the best
Quicksort version. That is what adaptive Quickpartitionsort does.

Quickpartitionsort chooses first a pivot k which rank is slightly larger than l with high probability. Then
quicksort the k smallest. In our analysis we use a crude version, take a rv k1 from a sample drawn. If
k1 ≥ l take k = k1 and otherwise repeat the procedure. For the repetition we may forget the k1 and start
afresh, since asymptotically the event of repetition is negligible in the analysis. The overshoot I > l is
also asymptotically negligible, since we will show a(n, l)− a(n, I) is of order o(n).

Quickpartitionsort is kind of optimal in this sense of the second leading term. We can not prove rigorous
mathematical optimality, since the lack of a (tight) lower bound besides n − l plus best Quicksort(l). In
the remaining parts of the paper we state and proof this statement.

2 Quickpartitionsort
Quickpartitionsort is an Algorithm with input a set of n different reals and output the l-th smallest numbers
as a sorted list. The algorithm Quickpartitionsort QP (mn, εn, Qn), n ∈ N depends on three parameters,
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the parameter 1 ≤ mn ≤ n for the sample size, the εn determines the choice of the pivot and Qn is a
Quicksort variant. n is the size of the input.

Quickpartitionsort consists of two basic steps, first a partitioning and then a quick sorting. In more
detail, for given n ∈ N

• For large l, more precisely if mn

mn+1 −
l
n < εn, continue with quick sorting using Qn.

• If mn

mn+1 −
l
n ≥ εn define kn(l) as the k ∈ {1, 2, . . . , n} with k

mn+1 −
l
n is strictly positive and as

close as possible to εn. Take mn samples U1, U2, . . . , Umn without replacement and with uniform
distribution on the list objects. Order them into

U1:mm < U2:mn < . . . < Umn:mn

and take as pivot U the kn(l)-th ordered one Ukn(l):mn
in the sample.

• Compare any element of the list with the pivot element and form the list of numbers strictly smaller
or equal to the list. Let In(l) = I(n, l) be the size of this set (=rank of U in the whole set).

• If In(l) is strictly smaller than l, then start the algorithm afresh. If not continue with quick sorting
that list.

• After quick sorting the l-th smallest of the ordered partial list are the output.

Clearly this algorithms terminates a.e. and does the job.
Before we give results, let us introduce some notation on order statistics and give some well known

statements. Let U1, U2, . . . Un be iid rvs with a continuous distribution function F. The empirical distri-
bution function F is

Fn(x) :=
1

n

n∑
i=1

1Ui≤x.

The empirical distribution function converges pointwise to the underlying distribution function F. The ex-
pectation EFn(x) is F (x) and the variance varFn(x) =

F (x)(1−F (x))
n . The rank of Ui within U1, . . . , Un

is nFn(Ui). The k-th smallest within U1, . . . , Un is denoted by Uk:n. Notice k = nFn(Uk:n) almost ev-
erywhere. If the U are uniformly distributed, then the expectation of the k-th smallest is EUk:n = k

n+1

and the variance var(Uk:n) =
k(k+1)

(n+1)2(n+2) ≤
1
n .

Theorem 2. For every n ∈ N fix a Quicksort versionQn with internal randomness, such that the expected
average sorting time for n objects is of the order c1n lnn+c2n+o(n) for some constants c1 > 0, c2 ∈ R.
Assume

mn →n→∞ ∞, 0 < εn →n 0, mnε
2
n →n ∞,

mn

nεn
→n 0.

Then Quickpartitionsort QP (mn, εn, Qn) uses at most in expectation asymptotically (in n)

c1l ln l + n+ c2l + o(n)

comparisons uniformly in l for an input of size n.
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Proof: Let S be the input of size n and X(S, l) be the number of comparisons during the performance
of Quickpartitionsort QP (mn, εn, Qn). Since we have a stochastic divide-and-conquer algorithms, we
obtain recursive equations of the X-rvs. The X-rvs depend on the external input. By the internal random-
ness of the algorithm, which is independent of the input, we can show by induction that the distribution
of the rvs X depend on the size of the input, but not on the actual input. The induction is tedious, but
easy and we skip it. As a result we can talk of finding the ordered l-th smallest for a list of size n, without
specifying the input list. Therefore we are allowed to use X(n, l) and the distribution of this rv is the
same for every input of size n.

Case: Immediate quicksorting, mn

mn+1 −
l
n < εn.

Then the total number of comparisons is by the Quicksort step,

c1n lnn + c2n− c1l ln l − c2l + o(n)

= nc1 ln
l

n
− n( 1

mn + 1 + εn
) ln

l

n
+ nc2(1−

l

n
) + o(n) = o(n)

Case: A partitioning step is done, mn

mn+1 −
l
n ≥ εn.

Without loss of generality we assume the input is a sequence U1, U2, . . . , Un of iid rvs with a uniform
distribution, independent of any internal randomness. (Since the input does not matter, we can take n iid
rvs independent of the algorithm. The continuous distribution ensures a.e. n different reals.) Without
loss of generality let U1, . . . , Umn

be the drawn random sample of size mn. (Any other random sample
would do the same job, since in the following only the distribution of the rank In(l) matters.) Use any
reasonable algorithm to sort the mn-sample, for example the fixed Quicksort version. An upper bound
for the necessary comparisons is c1mn lnmn + c2mn + o(mn) and for a lower n − 1. (Any reasonable
algorithm will do the job, for definiteness of the Quickpartitionsort one should fix some version.)

Let kn(l)
mn+1 −

l
n := εn(l) > 0 be given as described above. Let U = Ukn(l):mn

be the k-th order statistic

within U1, . . . , Umn
. Let In(l) be the rank of U within the sequence U1, . . . , Un. Recall EU = kn(l)

mn+1

and the variance var(U) = kn(l)(kn(l)+1)
(mn+1)2(mn+2) ≤

1
mn

.

An easy calculation shows

EIn(l) =
mn + 1

2
+ (n−mn)EU

and the variance is

var(In(l)) = (n−mn)
2 var(U) + (n−mn)EU(1− U) ≤ n2

mn
+ n.

Notice

E
In(l)

n
− l

n
=
n−mn

n
εn(l) +

mn + 1

2n
− mnl

n2
= εn(1 + o(1)) > 0

for n sufficiently large. Therefore for n sufficiently large, for simplicity I = In(l)

P (I < l) ≤ P (I − EI < l − EI) ≤ var(I)

(EI − l)2
≤ o(1)

mnε2n
→n 0. (8)

This estimate is uniform in l of consideration.
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Choose some δn satisfying lim infn
δn
εn

> 1 and lnn
mnδ2n

→n 0. This is always possible, e.g. δn =

εn
√
lnn.

For later use we need, n large,

P (I > l + δnn) ≤ P (I − EI > l − EI + δnn) ≤
var I

(−EI) + l + δnn)2

≤ o(1)

mnε2n(
δn
εn

+ o(1))2
= O(

1

mnε2n
) = o(

1

lnn
)

1

n
E(I | l ≤ I) ≤ 1

n
E(1l≤II)(1 + P (l > I)) ≤ δn(1 + o(1))

1

n
E(I ln I | l ≤ I) ≤ 1

n
E(1l≤II)(1 + P (l > I))

≤ (1 + o(1))(
1

n
E(1l≤I≤l+δnnI ln I)

+
1

n
E(1l+δnn<II ln I))

≤ (1 + o(1))((
l

n
+ δn) ln((l + δn)n)

+ (
l

n
+ δn) lnnP (l + δnn < I) ≤ l

n
ln l + o(1)

For the last estimate the crucial point is | l+δnnn ln(l + δnn) − l
n ln l| = o(1). For that show the function

x 7→ ln(1 + b
x ) is monotone increasing (look at the second derivative − b2

(b+x)x(x+b) ) for positive b.
Combining these shows

E(
X(n, l)

n
| l ≤ I) ≤ c1l ln l + c2l + n+ o(l)

uniformly in l.
Let Yj , j ∈ N be iid Bernoulli rv with parameter p = p = P (l ≤ In(l)). Let τ be the smallest j with

Yj = 1. We interpretate Yj = 1 as the i-th try of In(l) is greater equal to l. Then we obtain finally

EXn(l) ≤ m2
nEτ + E(X(n, l) | l ≤ In(l)) = c1l ln l + c2l + n+ o(n).

(Eτ = 1
p .) This estimation is uniformly in l. q.e.d.

By an example we show that there exist mn, εn satisfying the requirements of the theorem. Take
mn = ln5 n, εn = 1

ln2 n
, δn = 1

lnn .

Natural candidates for Quicksort versions are the k-median versions and also the asymptotically opti-
mal Quicksort variant. For the k-median the asymptotic expectation of comparisons is c1,kn lnn+c2,kn+
o(n), [13]. The constant c1,k decrease in k to the optimal value c1,∞ = log2 e. (Optimal by the informa-
tion theoretic lower bound.) For the optimal Quicksort [9] exists a constant c2 such that the expectation is
asymptotically bounded by c1,∞n lnn+ c2n+ o(n). We can apply Theorem 2 and obtain a leading term
of the order c1,∞l ln l and linear terms n+ c2l with unknown c2.
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