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Analyzing a Weighted Digital Sum Variant †
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Consider the following weighted digital sum (WDS) variant: write integer n as n = 2i1 + 2i2 + · · · + 2ik with
i1 > i2 > · · · > ik ≥ 0 and set WM (n) :=

∑k
t=1 t

M2it . This type of weighted digital sum arises (when M = 1)
in the analysis of bottom-up mergesort but is not “smooth” enough to permit a clean analysis. We therefore analyze
its average TWM (n) := 1

n

∑
j<n WM (j).

We show that TWM (n) has a solution of the form

nGM (lgn) + dM lgM n +

M−1∑
d=0

(
lgd n

)
GM,d(lgn),

where dM is a constant and GM (u), GM,d(u)’s are periodic functions with period one (given by absolutely conver-
gent Fourier series).

Keywords: Mellin Transform, Digital Sum

1 Introduction
Exact formulas of different kinds of Digital Sums and Weighted Digital Sums (WDSs) have been stud-
ied before, e.g. in [Del75], [FGK+94], [GH05] and [CFGL09]. In this paper we use Mellin transform
techniques to analyze a new type of WDS. The simplest form of this sum arises in the analysis of the
worst-case running time of bottom-up mergesort.

Assume(i) that the worst-case running time to merge two sorted lists of sizes n1 and n2 into one sorted
list is n1 + n2.

Now, defineCw(n) to be the worst-case running time of bottom-up mergesort with n elements. Bottom-
up mergesort essentially splits a list of n items into two sublists, sorts each recursively, and then merges
them back together. If n is a power of 2, then it splits the list into two even parts and sorts those recursively.

†Work of both authors partially supported by Hong Kong CERG grant 613507.
‡Work done while at Department of Mathematics, Hong Kong University of Science and Technology.

(i) The actual worst-case time is n1 + n2 − 1. But, since any mergesort uses exactly n− 1 merges, the running time derived with
cost n1 + n2 is exactly n− 1 more than the real worst-case running time.
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This yields Cw(2k) = k2k. If n is not a power of 2 though, i.e., n = 2k + j with 1 ≤ j ≤ 2k − 1, then
the algorithm splits the items into one list of size 2k, one list of size j. Therefore, Cw(n) satisfies:

Cw(2k) = k2k.

Cw(2k + j) = Cw(2k) + Cw(j) + (2k + j), for 1 ≤ j ≤ 2k − 1.

Panny and Prodinger [PP95] derived an exact solution for Cw(n) containing a term G(log n), where
G(x), defined by a Fourier series, is periodic with period one. However, the Fourier series is only Cesàro
summable. Furthermore, G(x) is discontinuous at all dyadic points (points of the form x = n/2m, where
n is integer, m is non-negative integer), which are exactly the points of interest.

For a better understanding of this function, start with the binary representation of n, ignore the 0 bits and
write n as the sum of descending powers of 2, i.e. n = 2i1 + 2i2 + · · ·+ 2ik with i1 > i2 > · · · > ik ≥ 0.
Iterating the above recurrence for Cw(n) gives

Cw(n) =

k∑
t=1

it2
it +

k∑
t=1

t2it − 2ik .

∑k
t=1 it2

it is a type of WDS analyzed in [CFGL09]. (It also arises elsewhere, e.g., in the analysis of
binomial queues [Bro78].) This motivates the analysis of the other sum, which we define as

W1(n) :=

k∑
t=1

t2it . (1)

W1(n) is not smooth enough to be analyzed directly (see Figure 1(a)), so we instead study its average

TW1(n) :=
1

n

∑
j<n

W1(j). (2)

(See Figure 1(c).) As in [CFGL09] where the analysis of
∑k
t=1 it2

it was generalized to the analysis
of
∑k
t=1(it)

M2it we may also generalize this problem by weighting the powers of 2 with polynomial
weights, i.e. by defining W0(n) := n and, ∀M ≥ 1 (see Figure 1(b)),

WM (n) :=

k∑
t=1

tM2it (3)

and then introducing the average functions (see Figure 1(d)),

TWM (n) :=
1

n

∑
j<n

WM (j). (4)

We will show that TWM (n) has an exact closed-form formula, which is in the form of

TWM (n) = nGM (lg n) + dM lgM n+

M−1∑
d=0

(
lgd n

)
GM,d(lg n), (5)
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(a) W1(n)/n vs. lgn (b) W2(n)/n vs. lgn

(c) TW1(n)/n vs. lgn (d) TW2(n)/n vs. lgn

Fig. 1: All figures are plotted on a lgn scale. (a) and (b) illustrate W1(n)/n and W2(n)/n. These functions appear
periodic but they are not smooth and contain “large” fluctuations, making direct analysis difficult. (c) and (d) are the
averaged versions, TW1(n)/n and TW2(n)/n, which are analyzed in this paper.

where dM is a constant,GM (u) andGM,d(u)’s are periodic functions with period one given by absolutely
convergent Fourier series. The derivation of a solution in this form is done via standard techniques, e.g.,
the use of the Mellin-Perron Formula. What is novel here is the proof that the resulting Fourier series are
absolutely convergent.

Note: Due to space considerations in this extended abstract, some straightforward proofs of Theorems and Lemmas
have been omitted. These can be found in the 2nd part of [CFGL10], along with much more background information.

2 Background
2.1 The Mellin-Perron Formula
The main tools used in this paper are Dirichlet generating functions and the Mellin-Perron formula. For
more background see, [Rie96, pp.13-23], [FGK+94] and [FS08, pp.762-767].
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Theorem 1 (The Mellin-Perron formula) Let {λj}, j = 1, 2, . . . be a sequence and c > 0 lies in the
half-plane of absolute convergence of

∑∞
j=1 λjj

−s. Then for any m ≥ 1,

1

m!

∑
j<n

λj

(
1− j

n

)m
=

1

2πi

∫ c+i∞

c−i∞

 ∞∑
j=1

λj
js

 nsds

s(s+ 1)(s+ 2) · · · (s+m)
. (6)

In particular, when m = 1 and m = 2,

1

n

∑
j<n

λj(n− j) =
1

2πi

∫ c+i∞

c−i∞

 ∞∑
j=1

λj
js

 nsds

s(s+ 1)
, (7)

1

2n2

∑
j<n

λj(n− j)2 =
1

2πi

∫ c+i∞

c−i∞

 ∞∑
j=1

λj
js

 nsds

s(s+ 1)(s+ 2)
. (8)

Rewriting TWM (n) in terms of summations in the form of the left hand side of (7) and (8) will let us
use the Mellin-Perron formula to evaluate TWM (n) by evaluating the associated line integrals instead, as
shown in the following lemma:

Lemma 1 Let A be a function with A(0) = 0 and TA(n) := 1
n

∑
j<nA(j). Then

TA(n) =
1

2πi

∫ c+i∞

c−i∞

 ∞∑
j=1

∇A(j)

js

 nsds

s(s+ 1)
, (9)

where the backward difference function∇A is defined by∇A(j) = A(j)−A(j − 1) for any function A,
and c > 0 lies in the half-plane of absolute convergence of

∑∞
j=1∇A(j)j−s.

Note that in the right hand side of (9),
∑∞
j=1∇A(j)j−s, the Dirichlet generating function (DGF) of

{∇A(j)}, is the only factor depending upon {λj}.

2.2 Useful Facts Involving the Riemann-Zeta Function
The Riemann-Zeta function ζ(s) will appear in the kernels of the integrals that we will be evaluating. We
therefore list some basic facts concerning ζ(s) [Tit86, WW63] that we will need.

First, ζ(s) is analytic in the whole complex plane with the exception of a simple pole at s = 1 with
residue 1.

Next, in [FGK+94], Flajolet et. al. proved the identity

1

2πi

∫ −1/4+i∞

−1/4−i∞
ζ(s)

nsds

s(s+ 1)
= 0. (10)

By mimicking their proof, we can easily prove the similar identity

1

2πi

∫ −5/4+i∞

−5/4−i∞
ζ(s)

nsds

s(s+ 1)(s+ 2)
= 0. (11)

Finally, when integrating ζ(s), the following asymptotic bounds will be useful:
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Lemma 2 [WW63] If s = σ + it, where σ, t ∈ R, the Riemann-Zeta function satisfies the bound

ζ(s) = O(|t|τ(σ) log |t|) (12)

where

τ(σ) =


1
2 − σ for σ ≤ 0
1
2 for 0 ≤ σ ≤ 1

2

1− σ for 1
2 ≤ σ ≤ 1

0 for 1 ≤ σ.

(13)

2.3 Useful Formulae Involving Some DGFs
We will evaluate the line-integral representation of TWM (n) using the Cauchy Residue Theorem. This
will require knowing the zeros and (residues of) the poles of the integral’s kernel’s components, especially
those of the DGF.

We now list some basic results that will help us understand these.

Definition 1 Express n = (bibi−1 · · · b1b0)2 in its binary representation.
Set v(n) :=

∑i
t=0 bt to be the number of “1”s in the binary representation of n and v2(n) to be the

number of trailing “0”s in the binary representation of n.

Definition 2 ∀M ≥ 0, denote the DGFs of v(n)M and (v(n) + v2(n))M by

VM (s) :=

∞∑
j=1

v(j)M

js
, ZM (s) :=

∞∑
j=1

(v(j) + v2(j))M

js
.

Lemma 3 Let n be a positive integer. Then (a) v(2n) = v(n) and v(2n+ 1) = v(n) + 1; (b) v2(2n) =
v2(n) + 1; (c) if n is odd, v2(n) = 0; (d) v(n)− v(n− 1) = 1− v2(n).

The following lemma gives three basic formulae expressing some special DGFs in terms of ζ(s) and
VM (s).

Lemma 4 For M ≥ 1, ∑
odd j

v(j)M

js
=

(
1− 1

2s

)
VM (s). (14)

The following two DGFs have closed-form formulae in terms of ζ(s):

∞∑
j=1

v2(j)

js
=

1

2s − 1
ζ(s),

∞∑
j=1

∇v(j)

js
=

2s − 2

2s − 1
ζ(s). (15)

2.4 Absolute Convergence of Fourier Series
Evaluating the line integrals of the kernels will reduce to summations of residues at poles regularly spaced
along a vertical line. These summations will best be expressed as Fourier series. For these representations
to be useful, we will need to show that these Fourier series converge absolutely. Our major tools will be
the following two lemmas which are quite technical but straightforward to prove.
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Lemma 5 Let ε > 0, σ0, t0 ∈ R, t0 ≥ 1 + ε and f be a complex function. If

1. f is analytic in X = {s = σ + it : σ ≥ σ0 − ε, |t| ≥ t0 − ε} and

2. ∃A,B > 0 such that ∀σ + it ∈ X , |f(σ + it)| = O(|t|A logB |t|),

then, for every fixed integer q > 0,

∀σ ≥ σ0, ∀|t| ≥ t0, |f (q)(σ + it)| = O(|t|A logB |t|).
Lemma 6 Let g(s) = L(s)f(s) ns

s(s+1) . ∀j ∈ Z, set θj = σ + 2πj
ln 2 i. If

1. ∀j ∈ Z \ {0}, f is analytic at s = θj ,

2. ∃A < 1, B ≥ 0, such that for all integers positive integers q,

3. |f (q)(θj)| = O(|j|A logB |j|) (where the constant in the big O may depend upon q),

4. L(s) is a meromorphic function,

5. ∀j ∈ Z, L(s) has a pole of order at most(ii) n1 at s = θj;
furthermore, the coefficients of the Laurent series of L(s) are identical at each s = θj ,

6. f(s)
s(s+1) has a pole of order at most n2 at s = θ0,

then the sum of residues at s = θj can be written in the form(iii)

∑
j∈Z

Res(g(s), s = θj) =

n1+n2−1∑
i=n1

λin
σ lgi n+

n1−1∑
i=0

Fi(lg n)nσ lgi n, (16)

where the λi’s are constants and Fi(u)’s are periodic functions with period one given by their Fourier
series Fi(u) =

∑
j∈Z ai,je

2πiju. Furthermore, all the Fourier series Fi(u) are absolutely convergent.

3 Analyzing TW1(n)
We can use Lemma 1 to rewrite

TWM (n) =
1

2πi

∫ c+i∞

c−i∞
BM (s)

nsds

s(s+ 1)
, (17)

where BM (s) is the DGF of ∇WM (j);

BM (s) :=

∞∑
j=1

∇WM (j)

js
. (18)

Similar to [FGK+94], [Hwa98], [GH05] and [CFGL09], the main step for evaluating the integral in
(17) is finding the poles of BM (s), the DGF in its kernel. The complication here is that BM (s) is not
“nice” enough to permit integrating the kernel directly. We will have to split BM (s) into two parts, using
the m = 1 case of (6) to evaluate the first part and the m = 2 case of (6) to evaluate the second part.
(ii) “h(s) has a pole of order at most N at s = s0”, permits h(s) to be analytic at s = s0.
(iii) Since we are only upper-bounding the order of poles but do not know their exact order, λi may be zero and the Fi(u)’s may be

constant functions, or even zero functions.
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3.1 Deriving the DGF
We start by noticing that BM (s) can be rewritten in terms of DGFs VM (s) and ZM (s) introduced in
Definition 2.

Lemma 7
BM (s) =

2s − 1

2s − 2
VM (s)− 1

2s − 2
ZM (s).

Proof: Observe that if n is expressed as n = 2i1 + 2i2 + · · ·+ 2ik with i1 > i2 > · · · > ik ≥ 0, then

WM (2n) =

k∑
t=1

tM2it+1 = 2

k∑
t=1

tM2it = 2WM (n),

WM (2n+ 1) =

k∑
t=1

tM2it+1 + (k + 1)M = 2WM (n) + (v(n) + 1)M .

Recalling from Lemma 3 that v(n)− v(n− 1) = 1− v2(n) and v(2n+ 1) = v(n) + 1 gives

∇WM (2n) = 2∇WM (n)− (v(n) + v2(n))M and ∇WM (2n+ 1) = v(2n+ 1)M .

Then, (14) in Lemma 4 permits writing

BM (s) =
∑
odd j

v(j)M

js
+
∑
l=1

2∇WM (l)− (v(l) + v2(l))M

(2l)s

=

(
1− 1

2s

)
VM (s) +

1

2s−1
BM (s)− 1

2s
ZM (s).

Solving for BM (s) proves the lemma. 2

For the remainder of this section we will restrict ourselves to the case M = 1; M > 1 will be analyzed
in the next section. For M = 1, we can use the identities in Lemma 4 to refine this further to B1(s) =

V1(s)− ζ(s)
(2s−1)(2s−2) . Substituting into (17) yields

TW1(n) =
1

2πi

∫ 3+i∞

3−i∞
V1(s)

nsds

s(s+ 1)
− 1

2πi

∫ 3+i∞

3−i∞

ζ(s)

(2s − 1)(2s − 2)

nsds

s(s+ 1)
. (19)

To evaluate the first integral in terms of values of the Riemann-Zeta function, we note that V1(s) is the
DGF of v(j), so the first integral in (19), when transformed from integral back to summation by (7), is a
double summation of v(j). A double summation of v(j) is also a triple summation of∇v(j), and we can
write a closed-form formula for the DGF of ∇v(j) in terms of ζ(s). Equation (8) then provides an exact
formula of the triple summation of∇v(j), and we can evaluate the first integral in (19).

We now present the details. Define TV (n) := 1
n

∑n
j=1

∑j−1
i=1 v(i). Algebraic manipulations permit

writing TV (n) in two different ways:

TV (n) =
1

n

∑
k<n

v(k)(n− k) and TV (n) =
1

n

∑
k<n

∇v(k)

[
(n− k)2 + (n− k)

2

]
. (20)
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Applying (7) to the left equation in (20), yields

TV (n) =
1

2πi

∫ 3+i∞

3−i∞
V1(s)

nsds

s(s+ 1)
, (21)

where the right side is exactly the first integral in (19).
Applying (8) and (7) to the right equation in (20) gives the alternate expression

TV (n) =
n

2πi

∫ 3+i∞

3−i∞

 ∞∑
j=1

∇v(j)

js

 nsds

s(s+ 1)(s+ 2)
+

1

4πi

∫ 3+i∞

3−i∞

 ∞∑
j=1

∇v(j)

js

 nsds

s(s+ 1)
. (22)

Setting (21) equal to (22), substituting into (19) and finally using the right equation of (15) yields a
“nicer” integral representation for TW1(n).

TW1(n) =
n

2πi

∫ 3+i∞

3−i∞

2s − 2

2s − 1
ζ(s)

nsds

s(s+ 1)(s+ 2)

+
1

4πi

∫ 3+i∞

3−i∞

2s − 2

2s − 1
ζ(s)

nsds

s(s+ 1)

− 1

2πi

∫ 3+i∞

3−i∞

1

(2s − 1)(2s − 2)
ζ(s)

nsds

s(s+ 1)
. (23)

All the three integrals can be evaluated exactly using standard methods. e.g. [FGK+94], [CFGL09].
Briefly speaking, each of the integrals are evaluated by integrating the kernel along a rectangular contour
in the complex plane, which can be shown to have, asymptotically, the same value as the desired integral.
The integration along the closed rectangular contour can be computed exactly using the Cauchy Residue
Theorem, after finding the poles and their residues of the kernel. This last step is straightforward because
the poles/residues of the Riemann-Zeta function are well understood (see the references in Section 2.2).

Theorem 2
TW1(n) = nFW,1(lg n)− 1

4
lg n+ FW,0(lg n). (24)

where FW,1(u) and FW,0(u) are two absolutely convergent Fourier series, whose coefficients are given
by

FW,1(u) =
lnπ − γ0 + 2 ln 2

4 ln 2
− 1

2 ln 2

∑
j∈Z\{0}

(
2ζ(βj)

βj(βj + 1)(βj + 2)
+

ζ(αj)

αj(αj + 1)

)
e2πiju

FW,0(u) =
2− 2 lnπ − 5 ln 2

8 ln 2
+

1

2 ln 2

∑
j∈Z\{0}

ζ(βj)

βj(βj + 1)
e2πiju.

4 Analyzing TWM(n) for M > 1
We will now evaluate (17) for M > 1. The DGF BM (s) for M > 1 has a more complicated structure
than B1(s). We will therefore have to introduce new techniques to evaluate it.
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4.1 Properties of Poles of the DGF
To start, we will need the following semi-recursive formula of BM (s). Again, it can be derived through
straightforward manipulations using the definitions and Lemmas of Section 2.3.

Lemma 8 For M > 1, BM (s) satisfies

BM (s) =
2s

2s − 1
ζ(s) +

1

2s − 1

M−1∑
r=1

(
M

r

)
Br(s)−

2s

2s − 2

M∑
r=1

(
M

r

)
Rr(s), (25)

where Rr(s) is defined as

Rr(s) :=

∞∑
i=1

v(i)r
[

1

(2i)s
− 1

(2i+ 1)s

]
. (26)

Denote

Ir(s) := −1

2

∞∑
i=1

v(i)r
(

1

(2i)s
− 2

(2i+ 1)s
+

1

(2i+ 2)s

)
. (27)

Standard algebraic manipulations, e.g. those in [Hwa98, pp.536], let us rewrite a summation of this form
as an integral, making its analytic properties more apparent.

Ir(s) =
s

2s

∫ ∞
1

v(bxc)r
xs+1

ξ(x)dx, (28)

where ξ(x) = − 1
2 when 0 ≤ x− bxc < 1

2 and ξ(x) = 1
2 otherwise.

After noting Rr(s) can be expressed in terms of Ir(s) and another function well studied in [GH05],
Lemma 8 can be rewritten in terms of Ik(s) and ζ(s).

Lemma 9

BM (s) =
PM,1(2s)

(2s − 1)M
ζ(s) +

M∑
k=1

PM,2,k(2s)

(2s − 1)M−k(2s − 2)
Ik(s), (29)

where PM,1(x) and PM,2,k(x) are two polynomials, with P1,1(1) = 1
2 , PM,1(1) = MPM−1,1(1) −

M !/2M for M ≥ 2 and PM,2,k(0) = 0 for k = 1, 2, · · · ,M .

This now permits identifying the poles of BM (s) inside Γ. (See Figure 2 for illustration.)

Corollary 1 For M ≥ 1, The singularities of BM (s) inside Γ are
(i) poles of order at most 1 at s = 1 and s = αj; (ii) poles of order M at s = 0 and s = βj .

Hence, the singularities of BM (s)ns

s(s+1) inside Γ are

(i) poles of order at most 1 at s = 1 and s = αj;
(ii) a pole of order M + 1 at s = 0; and

(iii) poles of order M at s = βj .
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Proof: (29) permits us to identify the singularities by working through the various terms and recalling
that Ik(s) is analytic when <(s) > −1.

The recurrence relations PM,1(1) = MPM−1,1(1)−M !/2M with initial condition P1,1(1) = 1/2 give
PM,1(1) > 0 for M ≥ 1. Hence at s = 0, βj , PM,1(2s)/(2s − 1)M has poles of order exactly M , while
ζ(s) is analytic (but is not zero).

At s = αj , PM,1(2s)/(2s − 1)M and ζ(s) are all analytic.
At s = 1, PM,1(2s)/(2s − 1)M is analytic, but ζ(s) has a simple pole.

At s = 0, βj , the order of poles of PM,2,k(2s)(2s − 1)−(M−k)(2s − 2)−1Ik(s) is at most M − 1.

At s = 1, αj , PM,2,k(2s)(2s− 1)−(M−k)(2s − 2)−1Ik(s) has poles of order at most 1 (due to the term
(2s − 2)−1). 2

4.2 A Formula for TWM(n)

To evaluate the integral in (17), we consider integrating the kernel on the rectangular contour Γ = Γ1 ∪
Γ2 ∪ Γ3 ∪ Γ4, defined in Figure 2.

Re(z)

Im(z)

Γ1

Γ2

Γ3

Γ4

1− 10π
ln 2i

1− 8π
ln 2i

1− 6π
ln 2i

1− 4π
ln 2i

1− 2π
ln 2i

1 + 2π
ln 2i

1 + 4π
ln 2i

1 + 6π
ln 2i

1 + 8π
ln 2i

1 + 10π
ln 2i

10

R

−R

3−1
4

10π
ln 2i

8π
ln 2i

6π
ln 2i

4π
ln 2i

2π
ln 2i

− 2π
ln 2i

− 4π
ln 2i

− 6π
ln 2i

− 8π
ln 2i

−10π
ln 2i

Γ1 = {3 + iy : −R ≤ y ≤ R},
Γ2 = {x+ iR : −1/4 ≤ x ≤ 3},
Γ3 = {−1/4 + iy : −R ≤ y ≤ R}, (30)
Γ4 = {x− iR : −1/4 ≤ x ≤ 3}.

Fig. 2: Contour Γ. The dots represent the poles of BM (s)ns

s(s+1)
inside Γ.

We then show in the two following lemmas that the integrals along the top, bottom and left contours



Analyzing a Weighted Digital Sum Variant 103

vanish as R → ∞. To prove these two lemmas, we need two basic observations. Suppose H(s) =
P (2s)(2s − 1)−N1(2s − 2)−N2 , where P is a polynomial and N1, N2 are non-negative integers.

Fact 1: When <(s) < 0, H(s) can be expressed as a power series of 2s, and this series is absolutely and
uniformly convergent on the line <(s) + (−∞,+∞)i. Furthermore, if P (0) = 0, i.e. the constant term
of P is zero, then the constant term of the power series is also zero.
Fact 2: H(s) is bounded along the line segment (−1/4, 3) + iRj independently of j.

Lemma 10

lim
j→∞

∫ 3+iRj

−1/4+iRj

BM (s)ns

s(s+ 1)
ds = 0.

Proof: For s ∈ (−1/4, 3) + iRj , Grabner and Hwang [GH05] proved that

|IM (s)| = O(|j|3/4 log2M |j|) = o(|j|).

Furthermore, Lemma 2 gives
|ζ(s)| = O(|j|3/4 log |j|) = o(|j|).

By (29) and Fact 2, |BM (s)| is bounded by o(|j|) along (−1/4, 3) + iRj . Hence, as j →∞,∣∣∣∣∣
∫ 3+iRj

−1/4+iRj

BM (s)ns

s(s+ 1)
ds

∣∣∣∣∣ ≤
∫ 3+iRj

−1/4+iRj

∣∣∣∣BM (s)ns

s(s+ 1)

∣∣∣∣ ds
≤

∫ 3+iRj

−1/4+iRj

(
o(|j|)×O(|j|−2)× n3

)
ds

=
13

4
o(|j|−1)n3 → 0

2

Lemma 11 For any positive integer M ,∫ −1/4+i∞

−1/4−i∞
BM (s)

nsds

s(s+ 1)
= 0.

Proof: Grabner and Hwang [GH05] proved the bound∣∣∣∣Ir (−1

4
+ it

)∣∣∣∣ = O(|t|3/4 log2r |t|) = O(|t|3/4+δ)

for any δ > 0. we can then plug this into a result of Hwang [Hwa98][Proposition 2] to get∫ −1/4+i∞

−1/4−i∞

(2kn)s

s(s+ 1)
Ir(s)ds = 0 (31)

for positive integers k, n, r.
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(29) shows that BM (s) can be expressed in the form of

BM (s) =
PM,1(2s)

(2s − 1)M
ζ(s) +

M∑
k=1

PM,2,k(2s)

(2s − 1)M−k(2s − 2)
Ik(s),

while PM,2,k(0) = 0. By Fact 1, when <(s) = −1/4, PM,1(2s)(2s − 1)−M and PM,2,k(2s)(2s −
1)−(M−k)(2s − 2)−1 can be expressed as power series of 2s, and the power series for PM,2,k(2s)(2s −
1)−(M−k)(2s−2)−1 have zero constant terms. Hence, when <(s) = −1/4, we may rewrite BM (s) to be

BM (s) =

∞∑
j=0

pj2
jsζ(s) +

M∑
k=1

∞∑
j=1

qk,j2
jsIk(s)

for some {pj} and {qk,j}. Hence∫ −1/4+i∞

−1/4−i∞
BM (s)

nsds

s(s+ 1)

=

∫ −1/4+i∞

−1/4−i∞

 ∞∑
j=0

pj(2
jn)sζ(s) +

M∑
k=1

∞∑
j=1

qk,j(2
jn)sIk(s)

 ds

s(s+ 1)
.

However, the power series
∑∞
j=0 pj(2

jn)s and
∑∞
j=1 qk,j(2

jn)s are uniformly convergent on −1/4 +
(−∞,∞)i, by Fact 1. This allows interchange of the integral sign and the summation signs.

Hence,
∫ −1/4+i∞
−1/4−i∞ BM (s) nsds

s(s+1) can be expressed as a series, in which each term is either a constant
multiplied by an integral in the form of (31), or a constant multiplied by an integral in the form of (10). 2

Theorem 3

TWM (n) = nGM (lg n) + dM lgM n+

M−1∑
d=0

(
lgd n

)
GM,d(lg n), (32)

where dM is a constant,GM (u) andGM,d(u)’s are periodic functions with period one given by absolutely
convergent Fourier series.

Proof: Consider the contour Γ in Figure 2, taking R → ∞. Lemma 10 and Lemma 11 show that
1

2πi

∫
Γq

BM (s)ns

s(s+1) ds = 0 for q = 2, 3, 4. Hence

TWM (n) =
1

2πi

∫
Γ1

BM (s)
ns

s(s+ 1)
ds,

is the sum of residues at the poles of BM (s)ns

s(s+1) inside Γ, by the Cauchy Residue Theorem.

By Lemma 2, we have the bound |ζ(σ + it)| = O(|t|1/2+ε log |t|) when σ ≥ −ε for sufficiently small
ε. Grabner and Hwang [GH05] also proved that |Ir(σ + it)| = O(|t|1/2+ε log2r |t|) when σ ≥ −ε for
sufficiently small ε. Hence by Lemma 5,

|ζ(q)(αj)|, |ζ(q)(βj)| = O(|j|1/2+ε log |j|)
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and
|I(q)
r (αj)|, |I(q)

r (βj)| = O(|j|1/2+ε log2r |j|)
for any fixed positive integer q.
BM (s) can be expressed in the form of (29). Knowing that each function in the form of P (2s)(2s −

1)−N1(2s − 2)−N2 will have a Laurent series with identical coefficients at θj = σ + 2πj
ln 2 i for any fixed

σ, together with the results from the last paragraph and Corollary 1, we use Lemma 6 when σ = 0, 1 to
derive ∑

j∈Z
Res

(
BM (s)ns

s(s+ 1)
, s = αj

)
= nGM (lg n)

and ∑
j∈Z

Res
(
BM (s)ns

s(s+ 1)
, s = βj

)
= dM lgM n+

M−1∑
d=0

(
lgd n

)
GM,d(lg n),

where GM (u) and GM,d(u)’s are periodic functions with period one given by absolutely convergent
Fourier series. 2
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