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Finding hidden cliques in linear time
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In the hidden clique problem, one needs to find the maximum clique in an n-vertex graph that has a clique of size
k but is otherwise random. An algorithm of Alon, Krivelevich and Sudakov that is based on spectral techniques is
known to solve this problem (with high probability over the random choice of input graph) when k > c+/n for a
sufficiently large constant c. In this manuscript we present a new algorithm for finding hidden cliques. It too provably
works when k& > c¢y/n for a sufficiently large constant c. However, our algorithm has the advantage of being much
simpler (no use of spectral techniques), running faster (linear time), and experiments show that the leading constant ¢
is smaller than in the spectral approach. We also present linear time algorithms that experimentally find even smaller
hidden cliques, though it remains open whether any of these algorithms finds hidden cliques of size o(y/n).

Keywords: random graphs, hidden clique

1 Introduction

The input graph G in the hidden clique model (a.k.a. planted clique) is chosen at random as follows. Given
parameters n, k, first a random graph G” is chosen from the distribution G, 1 2 (the graph has n vertices
and every edge is included independently with probability 1/2). Then a random set K of k vertices is
selected, and for every two vertices 4, j € K, the edge (¢, ) is added to the graph (if not already there).

It is well known that with high probability, the size of the maximum clique in G’ is roughly 2 log n, and
that if & is larger than this size, then most likely K is the unique maximum clique in G. Our goal is to
develop algorithms that find K (with high probability over the choice of G) when £ is sufficiently large.
The problem becomes more difficult the smaller & is as a function of n. (This can be formally proved by
employing operations that change the values of n and k, such as selecting at random a subgraph of G and
searching for a maximum clique in the subgraph. Details are omitted.)

Kuceral(1995)) observed that when k > c+/n log n for some sufficiently large constant c, then it is likely
that the vertices of K are those with highest degree in G In this case K can be found efficiently by first
sorting all vertices of GG in order of increasing degree, and then returning the k top vertices. If however
k < cy/nlogn for a sufficiently small constant ¢ > 0, Kucera’s simple algorithm no longer works. In
particular, in this case the highest degree vertex in G is unlikely to be from K.
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Alon, Krivelevich and Sudakov in|Alon et al.| (1998)) presented a spectral algorithm for finding hidden
cliques of size ¢y/n for some sufficiently large constant ¢. Their algorithm can be explained as follows.
Consider the order n matrix A’ which is the 1 version of the adjacency matrix of G'(V, E’) — entries
Aj; = 0and fori # j, entry Aj; = 1if (i,j) € E" and Aj; = —1if (4,5) ¢ E’. Itis well known that
for G’ selected from G,, 1 5 it is very unlikely that this matrix has an eigenvalue larger than 2y/n. On the
other hand, for the corresponding +1 adjacency matrix A of G, the existence of the clique K forces an
eigenvalue of value at least & — 1. Hence if k& > 2,/n, the value of the largest eigenvalue of A serves as
a distinguisher between G, 1,2 graphs and graphs with planted cliques. The corresponding eigenvector
can serve as a starting point for finding the actual planted clique K, which indeed can be found (with high
probability over the choice of input graph) using some extra work.

Alon et al.|(1998) also observed that the leading constant in the value of k = cy/n can be improved as
follows. Pick at random a constant number ¢ of vertices from G. With probability roughly (k/n)! they
all belong to K. Hence in an expected number of (n/k)! ~ n'/? independent attempts, we shall indeed
pick t vertices from K. Consider now only the graph G induced on their common neighbors. With high
probability it has only n; ~ n/2¢ vertices, it is still random, and it has a clique of size c\/n—t ~ ¢2'/2, /n;.
Hence with respect to Gy, it suffices to solve a hidden clique problem with more favorable parameters. As
a consequence, it follows that for every € > 0 one can find planted cliques of size €y/n in time pOUogl/e)

So far, all attempts to develop polynomial time algorithms that find hidden cliques of size o(y/n)
failed. See for example |Jerrum|(1992) regarding the metropolis process, or|Feige and Krauthgamer (2003)
regarding Lovasz-Schrijver hierarchies of semidefinite programs. For approaches based on maximizing a
cubic form, see [Frieze and Kannan|(2008)).

Observe that one can find planted cliques in time n . For example, one can systematically con-
sider all sets of vertices of size 3 logn until one finds a clique of size 3 logn. With high probability over
the choice of G it must be the case that all these vertices belong to K, and that all their common neighbors
are the remaining vertices of K.

Being a problem on random inputs that can be solved in time n but for which no polynomial
time algorithm is known, there are interesting connections between the hidden clique problem and other
problems of a similar computational complexity status. See/Hazan and Krauthgamer|(2009) for example.

O(logn)

O(logn)

1.1 Our results

A convenient aspect of the hidden clique problem is that the input distribution is well defined. Hence
the performance of algorithms for this problem can be evaluated empirically, and this may help guide the
design of improved algorithms. Of course, given an algorithm that seems to perform well empirically, one
would still need theoretical analysis to show that its performance is indeed as suggest by the experimenta-
tion, since the results of experiments might be an artifact of the use of imperfect random generators in the
generation of the input graph, or it might be the case that the true asymptotic behavior of the algorithm
did not yet manifest itself on the sizes of input graphs that were tried.

We followed this experimental assisted approach, and tested several algorithms. Some of them ap-
peared to perform better experimentally then the algorithm of |Alon et al| (1998) that has the previous
best theoretical performance guarantees. Of the algorithms that we tested, the simplest one is a linear
time algorithm that we call LDR (for Low Degree Removal). For this algorithm we prove the following
performance guarantees.
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Theorem 1 For a sufficiently large constant ¢ > 0, the LDR algorithm solves the hidden clique problem
when k > c\/n (with probability at least 2/3, where probability is taken over the choice of the random
input graph G).

Experimental results suggest that a constant such as ¢ = 1 in Theorem [I]suffices. However, to keep the
proof of Theorem|T]simple, we shall take c to be a large constant. Observe that once c is sufficiently large,
one may hope that the LDR algorithm solves the hidden clique problem with probability that approaches 1
as n grows. Again, to keep the proof simple, we shall not attempt to prove such a stronger claim.

Among the linear time algorithms that we tried, the one with best performance (smallest value of leading
constant ¢ for which the hidden clique was found) is not LDR, but a more complicated algorithm that we
call TPMR (for Truncated Power Method Removal). Experimental result are inconclusive as to whether
LDR or TMPR can actually find hidden cliques of size o(y/n). We leave this as an open question.

The manuscript is organized as follow. In Section[2]we present a high level discussion of approaches to
finding hidden cliques. In Section [3] we present and analyze the LDR algorithm. In Section 4 we present
two other algorithms that we tried, LDRM and TPMR, and discuss them briefly. The appendix contains
some of our experimental results.

2 What does it take to find a planted clique?

Assume that one wishes to develop an algorithm that finds planted cliques whenever k > f(n), where f is
some function increasing more rapidly than 2 log n (which is the size of the maximum clique in a random
graph). What might serve as an intermediate step towards finding the planted clique K? We list several
approaches:

1. Finding a random vertex from K. In this case, the neighborhood of this vertex is a random graph
on roughly n/2 vertices that contains a planted clique of size k — 1 > f(n/2). Hence the algorithm
can be continued recursively.

2. Finding an arbitrary vertex from K. In this case, the neighborhood of this vertex is a graph on
roughly n/2 vertices that contains a planted clique of size k — 1 > f(n/2). However, the graph
is not necessarily distributed as a uniform random graph, and this might interfere with recursive
applications of the algorithm (especially at deep levels of the recursion). Nevertheless, one would
expect (at every level ¢) the increase in the value of k; compared to f(n;) to compensate for the
distortion of the uniform distribution, and hence that being able to find an arbitrary vertex from the
hidden clique to suffice in order to find the whole clique.

3. Find a collection of ¢ vertices, most of which are from K. One can imagine that if ¢ is large enough
(e.g., t > k/2) then this gives so much information about K that K can be efficiently found. On
the other hand, if ¢ is small (say ¢ < logn), this becomes similar (though a bit better) than approach
(4) below.

4. Find a collection of ¢ vertices, at least one of which belongs to K. In this case, one can branch
to ¢ runs, at least one of which is similar to approach (2). Then, in £ = clog, n iterations, one
generates n¢ problems (still polynomial in n for constant c), and one of which has roughly n/2°
vertices and a planted clique of size k — £. This may suffice to find the planted clique. For example,
if for k = /n/logn one had ¢t = log n, then one can choose £ > log log n and presumably find the
planted clique once k; > /ny.
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5. Find a random vertex not in K. In this case, remove it. The resulting graph is random on n — 1
vertices with a planted clique of size k > f(n — 1). Hence the algorithm can be repeated.

6. Find an arbitrary vertex not in K. In this case, remove it. The resulting graph has n—1 vertices with
a planted clique of size k > f(n — 1). However, the graph is not random (though close to random),
and it is not clear how many times the argument can be repeated before it breaks down. The gain in
k; compared to f(n;) might not be significant enough to compensate for the non-randomness.

Algorithms for finding planted cliques can be thought of as having a first phase in which all vertices
are sorted in some order that is hopefully correlated with being in K. Thereafter, one of the approaches
above is employed. The algorithm of |Kucera|(1995)) sorts vertices by degrees, and then essentially follows
approach (1) - it picks the k top vertices, hoping to capture exactly K. The spectral algorithm of |Alon
et al.| (1998) sorts vertices by their value in an eigenvector of the adjacency matrix of GG, and then follows
approach (3). The approaches used in this manuscript are closer to (6). After the vertices are sorted (by
degree in LDR, or by a more complicated order in TPMR), the vertices deemed least likely to be in K are
removed. We are not guaranteed to remove only vertices not in /. Hence when the removal phase ends,
the vertices that we remain with form only part of K, and this puts us in the situation of approach (2). In
fact, the situation is better than (2) in that we have several vertices from K and not just 1, and this makes
finding the rest of K easy.

Our experimental results helped guide us in the design of algorithms. They suggested that approach (6)
is more effective in finding hidden cliques than approach (3). They also suggested that once approach (6)
is used, there is no significant advantage of sorting vertices by eigenvalues (as in|Alon et al.[(1998)) rather
than by degree (as in Kucera| (1995)).

3 The Low Degree Removal algorithm

We present here a simple algorithm for finding cliques. We call it the Low Degree Removal (LDR)
algorithm. It’s input is a graph G with vertices indexed 1 to n, and it works in two phases.

The removal phase.
1. Setr =0and Gy = G.
2. If G, is a clique, stop and return G,

3. Else, remove from G, the vertex of lowest degree (breaking ties in favor of vertex with lower index).
Call the remaining graph G, ;1.

4. Increment r and return to step 2.

Note that r counts the number of vertices that were removed from G in order to obtain G,.. The output
G, of the removal phase is necessarily a clique (of at least two vertices if G has an edge). The purpose of
the second phase is to expand this clique greedily using the remaining vertices from G.
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The inclusion phase.

1. For simplicity, rename those vertices of G that are not in the output GG, of the removal phase as
Up,...,v1. Sett = r and K to be the set of vertices of G,..

2. If v; is connected (in G) to all vertices of K, then K;_1 = K; U ;. Else K;_1 = K.
3. Decrement .

4. If t = 0 stop and return K. Else, return to step 2.

The output of the inclusion phase (and hence of LDR) is necessarily a clique.

It is pretty simple to implement LDR as a linear time algorithm (linear in n2, the size of the adjacency
matrix of (G). We assume an adjacency matrix representation of G. For each vertex, its degree can be
determined in time O(n) by scanning the corresponding row in the matrix. Hence we can create a vector
of all vertex degrees. Finding the minimum degree can then be done in time O(n). When removing the
vertex of minimum degree, updating the degrees of all other vertices takes time O(n) (subtracting one
from each neighbor of the removed vertex). Since less than n vertices are removed, the whole removal
phase takes time O(n?), which is the size of the input matrix. Likewise, it is easy to see that the inclusion
phase can be performed in time O(n?).

3.1 Intuition

This section presents some intuition regarding the performance of the algorithm LDR.

The key part of algorithm LDR is the removal phase. Once one has a good intuition for the probable
outcome of the removal phase, one may design alternatives to the inclusion phase. The inclusion phase
described for LDR works if all vertices that remain in G, after the removal phase belong to K, and more-
over, no vertex not in K is a neighbor of all vertices of GG,.. However, if instead the likely outcome would
have been judged to be different but still correlated with K, then one could imagine other continuations
to the LDR algorithm (similar to approach (4) in Section [2).

In G’ (random graph with no planted clique) the distribution of degrees is essentially the normal distri-
bution with mean /2 and standard deviation /n/2. Hence the fraction of vertices of degree greater than
n/2 + a/n (for some a > 0, or smaller than n/2 — a/n) is e=2a”)and the maximum deviation from
the average is O(y/nlogn). The tail of the normal distribution is such that the highest degree vertex is
likely to be unique, and likewise for the second highest degree vertex.

If the removal phase is run on G’ one may expect that vertices will be removed roughly in order of their
initial degree, with some random fluctuations. As an example for these fluctuations, if the two highest
degree vertices do not share an edge, then necessarily the output will not include at least one of them, and
will include at least one vertex of lower degree. By the time half the vertices have been removed, one
expects the distribution of degrees to no longer resemble the bell shaped normal distribution. Instead, it is
likely that the distribution of degrees will be skewed more heavily towards the larger degrees than towards
the lower degrees. For example, the deviation of the highest degree vertex from the median degree will be
larger than the deviation of the lowest degree vertex.

Consider now what happens in the graph G that includes the planted clique K. All vertices of K receive
a boost in their degree, increasing it by roughly k/2. If k > c¢v/nlogn (for large enough ¢ > 0) then they
become the vertices of highest degree. In this case, the intuition that the removal phase roughly respects
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the initial order of degrees implies that at the end of the removal phase, we are likely to remain with K.
However, if k& < c/nlogn (for small enough ¢ > 0), then the nature of the tail of the normal distribution
is such that the vertex of highest degree in G is likely not to be from K (and similarly, only very few of
the vertices in the high end of the degree spectrum of G belong to K). If indeed the removal phase would
respect the original order of degrees, the final G, would not contain vertices of K. However, as we shall
see, it is likely that all vertices of G, are from K even when k = c¢\/n for a sufficiently large constant c.
How can we explain this?

Assume that £ = /n. Assume also for simplicity that initially the removal phase follows the initial
degree order perfectly. That is, that the first n/2 vertices to be removed are those of lowest initial degree.
Then a large fraction of the vertices of K, say 84%, still remain (because the boost of k/2 received in
the degree is one standard deviation of the normal distribution, and roughly 34% of the vertices of K
are up to one standard deviation below the median degree). At that point the size of G decreased to
n' = n/2, whereas the size of K decreased to k' ~ 0.84k > k//2. Now if the remaining graph at
this stage would be a random graph on n’ vertices (G, 1 /2) with a random planted clique of size &’ then
we would have reached improved parameters compared to the original parameters of the input (we would
have k' = cn’ for some ¢ > 1), and we could continue the argument recursively (this time considering the
next n' /2 vertices that are removed). In the recursive process the relative rate at which the vertices of K
are removed would be sufficiently smaller than the rate at which other vertices are removed to ensure that
eventually only vertices of K remain.

The problem is of course that the intermediate graphs that remain (e.g., with n/2 vertices) are no longer
random graphs (in the uniform sense). Instead, as we observed earlier, their degree distribution is skewed
towards the higher degrees. Moreover, the degrees of vertices of K that survive might be skewed towards
the lower degrees (as a fair fraction of them survived by getting a boost in degree that made them barely
cross the original median degree). Hence for the recursive argument to work, one needs to show that the
gain in the leading constant from 1 to c is sufficiently large to outweigh the skewness in the distribution
of degrees. Something along these lines can indeed be done — see Section[3.2]

One may ask whether the LDR algorithm can detect planted cliques of size o(y/n). This appears
unlikely to us. In the appendix (Section[A)) we provide an informal argument to justify our intuition.

3.2 Analysis

Here we prove Theorem [T} We shall use the following notation.

n, = n — r denotes the number of vertices in G,..

K, denotes the set of vertices from K in GG,., and k,. denotes their number.

F’,. denotes the set of other vertices in G,., and f,, = n,. — k,. denotes their number. We use F' to denote
Fo.

All probabilities are taken over the choice of G (the algorithm LDR is deterministic). The term with high
probability denotes probability that tends to 1 as n grows. We shall use standard probabilistic inequalities
(Markov, Chernoff, etc.) without stating them.

Proposition 2 Let cy be some sufficiently large constant. Then with high probability, for every vertex
v € G, its degree into K in G’ is at most k/2 + co\/k logn.

Proof: Standard combination of Chernoff bound and union bound. O
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Lemma 3 Let c; be some sufficiently large constant. Then (with high probability) at every step r in which
fr > \/n, the vertex of lowest degree in G, has degree at most n,. /2 + c1+/n.

Proof: An equivalent method for generating GG is by choosing the set K first, making it into a clique,
and then every remaining pair of vertices are connected by an edge independently with probability 1/2.
Consider the situation after choosing K. For arbitrary values f,. in the range /n < f. <n — k and k,. in
the range 0 < k, < k, pick an arbitrary set of f,. vertices from I and an arbitrary set of &, vertices from
K. Now, the expected number of endpoints of edges touching F. is exactly f,.(n, — 1)/2, the standard
deviation is O(y/f,n,), and the probability of deviating from the expectation by more than a+/n+\/f,-n,
is at most 272" (when a > 0 is a sufficiently large constant). To compute the average degree in F)., one
needs to divide the number of endpoints by f,., and hence with probability at least 1 — 272", there is some
vertex in F). of degree at most "”T_l + ay/ny/ne/ fr < nr/2 + ay/(c+ 1)n (we use here the fact that
fr > +/n and k,. < ¢/n). Taking a union bound over all permissible values of f,. and k., and then over
all possible sets F;. and K, (regardless of whether they actually appear in the algorithm LDR), the above
holds simultaneously for all such choices, with probability at least 1 — 27", Setting ¢; > a+/c + 1 the
lemma is proved. a

For the next lemma we shall use the following definitions. Consider an arbitrary vertex v € K. Let
x, be a random variable indicating whether in step 7 of the removal phase, the vertex removed was from
F.. Let y; be the random variable indicating whether in the first step  at which Z;:I x; = 1, the vertex
removed (that must be from F,. since x,, = 1 at this point) is a neighbor of v in G’ (and hence in G).
Let 7, denote the step in which v itself was removed (or the last step of the removal phase if v was not
removed). Let s;(v) = Z;—:l y; — 1/2 denote the surplus of neighbors of v removed compared to non-
neighbors up to the point at which ¢ vertices from F' where removed (defined only for values of ¢ for which
Lemma 4 Let co > 0 be some sufficiently large constant. Consider an arbitrary vertex v € K. Then its
maximum surplus satisfies:

Pr[ max s;(v) > cav/n] <1/100
i<y ;11 Tj

In other words, the surplus for v is unlikely to ever exceed O(/n).

Proof: Switch the order in which the random events that generate GG are revealed to LDR. First, pick all
edges of G’ at random except those edges connected to v. Then pick K to include v, and complete it into
a clique. Now generate a tentative run of the removal phase, without yet knowing which vertices of F' are
neighbors of v, and not allowing v to be removed during the tentative run. For the tentative run, one will
need to know whether v is a neighbor of vertices (of F') that are candidates for removal. Only at the point
in which the need arises, we will decide at random whether the candidate vertex u is a neighbor of v or
not. At that point we say that (u,v) is exposed (either as being an edge or not). Hence the tentative run
proceeds as follows.

1. If G, is a clique, stop.

2. If G, is not a clique, pick the vertex u 7 v that in the current GG, has lowest degree (counting edges
to v only in cases that they were already exposed, and breaking ties in favor of the vertex of lower
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index). Now, in order to make the tentative run consistent with the true run, there are several cases
to consider:

(a) If (u,v) was previously exposed (one such case is when u € K and then we know that (u, v)
is an edge), remove u.

(b) If (u,v) was not previously exposed, expose it. If after that u remains of lowest degree (in
particular, this must happen when (u,v) is not an edge), remove u. Otherwise, return to
step (1).

When the tentative run stops, all edges to v have been exposed. Hence now one is in a position to
perform a true run of the removal phase. If v is not removed in the true run, then the true run is identical
to the tentative run. (This is a consequence of using a fixed rule for breaking ties, in particular, the rule of
breaking them in favor of the vertex of lower index.) If v is removed in the true run, then the true run and
the tentative run are identical up to the point in which v is removed. Beyond that point, we no longer care
about either of these two runs.

Now, consider the development of surplus of v with respect to the tentative run, up to step r, (up to
that point the tentative run and true run are identical, and the lemma is not concerned with the surplus
after point r,). Vertices in K do not contribute to the surplus (by definition). As for vertices u € F', up
to step r we exposed the status of (u,v) for many candidates, but not all of them have been removed.
Note however that each exposed (u,v) has probability exactly 1/2 of being an edge (independent of all
other events) and all those exposed and not removed have (u, v) as an edge. It follows that the process
of building up surplus is stochastically dominated by a random sequence of +1. Moreover, the length
of this sequence is at most n. By standard bounds (that follow from the Optional Stopping Theorem for
Martingales), the probability that a random sequence ever builds up a surplus of co+/n (for sufficient large
ca > 0) is at most 1/100. O

Corollary 5 With probability at least 9/10, there are at most k/10 vertices from K that ever reach a
surplus of ca~/n during the removal phase of algorithm LDR.

Proof: Follows from the results of Lemma] and the use of Markov’s inequality. O

We note that Corollary [5] with its simple proof that only uses Markov’s inequality, is the reason why in
Theorem [I| the probability is a fixed constant (rather than asymptotically 0 or 1). Possibly, the statement
of Corollary [5|can be strengthened.

We can now prove Theorem T}

Proof: Follow the (probable) evolution of the removal phase until step 7 satisfying fz = y/n. (Observe
that the removal phase cannot possibly end before f. = \/n unless G’ has a clique of size \/n, which
is highly unlikely.) Let us analyze now the value of k;, by upper bounding the number of vertices from
K that are not in K. Recall that k = ¢/n for some sufficiently large constant ¢ (larger than all other
constants appearing in the proof, to be chosen later). In our proof we shall assume that all events that
happen with high probability actually happen. (This assumption can be made as we shall only consider a
constant number of such events.)

Let L be the set of vertices from K that in G’ have degree not more than n/2 — c3v/n (where cj is
a sufficiently large constant). The expected number of such vertices is at most k£/100, and hence with
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probability at least 9/10 there are at most k/10 such vertices. We do not assume that any of the vertices
of L get to reach K.

By Proposition every vertex of K gained at least k/2 — cgv/k logn in its degree when K was made
into a clique. For sufficiently large n we have that k/2 > ¢o+/k log n, and for simplicity of notation (and
with only negligible effect on the bounds) we shall assume that the increase in degree is k/2. Hence all
vertices of K \ L have degree at least n/2 + (¢/2 — ¢3)y/n in G. Let S be the set of vertices of K that
suffered a surplus of ¢a4/n or more in the removal phase. By Corollary |5, with probability at least 9/10
we have that |S| < k/10. We do not assume that any of the vertices of .S get to reach K.

For all vertices of K \ (L U S), their initial degree in G was at least n/2 + (¢/2 — c3)+/n, their surplus
is at most c24/n, and hence at every step r their degree in G, is at least n,. /2 + (¢/2 — ca — c3 — ¢/5)/n
(where the term (¢/5)/n = k/5 = k/10+ k/10 is an upper bound on the effect of L and S not reaching
Gy). If this degree is at least n,. /2 + c¢1+/n, then these vertices cannot be removed. (At every step r, the
vertex removed has degree at most n,-/2 + ¢14/n, by Lemma ) If follows that if 3¢/10 > ¢1 + ¢3 + ¢35
then k; > 4k/5. Recall that Lemmarequired that c; > a+/c + 1. Hence if c is large enough so as to
satisfy 3¢ > 10(av/c + 1 4 ¢o + ¢3) all required relations between the various parameters can be made
to hold.

Let us now analyze what happens in the removal phase after step 7. At this point, all vertices of K, have
degree at least 4k /5. All vertices of F,. have degree at most f,. + k/2 + cov/klogn (by Proposition ,
which is smaller than 4k/5 (when c¢ is sufficiently large, using also the fact that f,. < \/n). Hence no
vertex of K will be removed, and all vertices of F; will be removed. This establishes that the removal
phase ends with at least 4k /5 vertices from K and no vertex from F'.

As to the inclusion phase, the fact that k,. > 4k /5 together with Proposition implies that no vertex of
F will be included. On the other hand, all vertices of K \ K, will be included, and hence the output of
LDR will be the hidden clique K.

The probability that the assumptions of the analysis fail to hold is at most 1/10 + 1/10 + o(1) < 1/3.
O

We note that the proof of Theorem [I|works almost without change also if the removal phase in LDR is
changed so that instead of removing a vertex of lowest degree, one removes a vertex of degree not larger
than the average, or not larger than n,./2 + c¢1/n.

4 Some other algorithms

A variation of the LDR algorithm is LDRM (RM can stand for “remove many”) which is similar to LDR,
except that the number of vertices removed at each step is not 1, but rather a p = 1/10 fraction of the
remaining vertices. This principle of removing a constant fraction of the vertices in each step is useful
in algorithms (such as TPMR below) in which updating the sorted order of vertices after a removal is
computationally expensive, and hence we do not wish to do this (n) times. For LDR, updating the
sorted order is not expensive, but nevertheless we ran also the version LDRM so as to see to what extent
this modification affects the size of cliques that one can find. Our empirical finding is that the size of
cliques is not as small as in LDR, but the qualitative behavior or LDR and LDRM appears similar.

An algorithm that was quantitatively better than LDR (though again, qualitatively similar) is the Trun-
cated Power Method Removal (TPMR) algorithm. It is based on the well known power method for finding
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the eigenvector which corresponds to the second largest eigenvalue. [3_7] If sufficiently many iterations are
performed the (approximate version of the) eigenvector is indeed reached. However, we perform only L
iterations, were L is a small number. Hence in a sense the vector that we reach is a blend between the
eigenvector and our starting vector, which is the vector of degrees. The rational for using a blend between
these vectors is that we view them as almost independent sources of information about the planted clique
K, and hence the combination of the two is more informative than each one of them alone. We ran TPMR
with the following values for the parameters: L = 6, w = 0.5 and p = 1/10. Lower values of p make the
algorithm slower, though it manages to find somewhat smaller planted cliques. Like LDR, the algorithm
TPMR works in two phases.

The removal phase.

1. Setr =0and Gy = G.
2. If G, is a clique, stop and return G,..
3. Else

() Initialize vector. Set | = 0 and set V! to be a vector of |G| entries, each entry is initialized
with the degree of the corresponding vertex in G...

(b) Multiply by adjacency matrix. Calculate VPM = A, V!, where A, is the adjacency matrix of
G,.

(c) Compute average entry. Calculate VPM = Zﬁ;l VMG,

(d) Normalize vector to be orthogonal to (approximate) largest eigenvector. Calculate VNPM =
(VP — VM) /]G

(e) Do not jump — move slowly. V1 = wVNM 4 (1 — )V

(f) Repeat. Increment [. If | < L — 1 return to step (b).

4. Sort VL' ~1 in descending order and remove from G, the vertices corresponding to the last p-fraction
of entries in the sorted V,L'~1. Call the remaining graph G, 1.

5. Increment r and return to step (2).

The inclusion phase. Same as the inclusion phase of LDR.
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A Does LDR find cliques of size o(y/n)?

Here we provide informal justification (though this is not a proof) that LDR is unlikely to find hidden
cliques of size o(y/n).

Assume that £ = €y/n, where ¢ > 0 is a sufficiently small constant. Initially, give the degree of
every vertex of K a boost of 2k and not just k/2. Now consider the first n/2 steps of the removal
phase. We still expect them to remove roughly the n/2 vertices of lowest degree. The extra large boost
in degree received by vertices of K allows us to assume that half the boost of a vertex is lost in the first
n/2 steps (similar to the assumption that roughly half the degree of a vertex is lost), and hence with
respect to the boosted degree, the rate of loss in degree of vertices in K and not in K is similar. If € is
sufficiently small, the boost in degree helped only a small O(¢) fraction of vertices of K cross the median
degree. Hence when n’ = n/2 vertices remain in G,., the number of vertices that remain from K is
k' < (1/2 + O(e))k < k/v/2. Hence now k' = €'n’ with ¢ < ¢, and in a recursive application of this
argument no vertex of KX will remain in the final G,.. Of course, the simplistic recursive argument is not
correct due to the skewness in degrees. However, the discussion below indicates that the skewness should
decrease rather than increase the likeliness of vertices of K to survive.

When k = €,/n, remove all vertices whose degree is smaller than the average degree by /n/e or more
(perhaps with some leading constant). The fraction of vertices of K removed is less than half the fraction
of other vertices removed. Hence hypothetically (if skewness had no effect), repeating such a process
until n/2 vertices remain will leave at least 3k /4 vertices from K. However, we argued above that only
(1/2 + O(e))k vertices from K are likely to remain, implying (if the argument above was correct) that
the effect of the skewness works against vertices of K (at least in the initial steps of the removal phase).

B Some experimental results

Plotting the experimental results for LDRM and TMPR as in Figures|[I|and [2] (with vertical axis as success
probability and horizontal axis as size of hidden clique parameterized as a power of n) suggests that
LDRM and TMPR may be able to find hidden cliques of size nd withé < 1 /2. However, we have no
theoretical analysis to support this extrapolation and suspect that it is not correct. Plotting the experimental
results as in Figures [3] and 4} with size of hidden clique parameterized by leading constant in front of
v/, suggest that this leading constant is smaller than 1 and slowly decreasing as n grows. Hence the
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Success rate for the LDRM algorithm
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Fig. 1: The success rate for the LDRM algorithm is plotted (for graph sizes from 2500 to 80000) versus the clique
size k which is given as a power of n, i.e., Kk = n”. Each result is averaged over 400 independent runs.

experiments support the possibility that the algorithms can find hidden cliques of size o(+/n), though we
suspect that eventually the leading constant converges to some value above 1/2.

The random number generator. The results for Figures [I] 2 [3| and [4] were all obtained on a unix
machine with the standard C++ random number generator which produces a number between 0 and 23'.
We have compared some of our results with a different random number generator by feeding our algorithm
with random matrices produced by a FORTRAN program using the well known Numerical Recipes ran2,
which is a multiplicative congruential algorithm which also includes random shuffling of the generated
sequence with a cycle of 2°°. We got similar results which indicate that the results are not sensitive to the
used random number generator, see Table E}

Sorting vertices. In our experiments, we tried sorting vertices by their degrees, by certain eigenvectors,
and by various blending of these approaches, such as TPMR. We made some comparisons checking the
correlations of these sorted orders with membership in the planted clique. Table 2] presents some of our
empirical results.
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Success rate for the TPMR algorithm
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Fig. 2: The success rate for the TPMR algorithm is plotted (for graph sizes from 2500 to 40000) versus the clique
size k which is given as a power of n, i.e., k = n”. Each result is averaged over 1600 independent runs.

% success
n k C++ | FORTRAN

2500 | 44 | 0.489 0.479
2500 | 45 | 0.549 0.574
2500 | 47 | 0.736 0.726
2500 | 51 | 0.932 0.924
5000 | 60 | 0.488 0.487
5000 | 61 | 0.531 0.548
10000 | 83 | 0.491 0.548
10000 | 84 | 0.568 0.570

Tab. 1: Comparison between different random number generators for various clique sizes and graph sizes. Each
result is averaged over 1000 independent runs.
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Success rate for the LDRM algorithm

T T T
0.9+
0.8
0.7+
@
® 06-
"
"
@
(3]
S 05
w
L]
0.4+
0.3 —e— 2500
-8~ 5000
10000
0.2 20000 [
—— 40000
== 80000
01 | | | | | I
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 14

k=xn®

Fig. 3: The success rate for the LDRM algorithm is plotted (for graph sizes from 2500 to 80000) versus the clique
size k which is given as a fraction of n°°, i.e., k = zn®5. Each result is averaged over 400 independent runs.

n k | Degree | TPMR | EV
1600 | 33 | 30.80 | 31.81 | 28.93
3600 | 49 | 45.81 | 47.39 | 4291
6400 | 64 | 59.36 | 61.66 | 55.27
10000 | 79 - 75.99 | 66.34

Tab. 2: One removal step algorithm which compares for various graph sizes n and clique sizes k three vectors: the
vector of degree, the vector resulting from one step of the TPMR algorithm and the eigenvector which corresponds to
the second largest eigenvalue of the 0/1 version of the adjacency matrix of each graph. Each entry in the Degree and
TPMR columns is averaged over 1000 cases and in the EV column over 100. Each number describes the averaged
number of clique indices left after removing half of the vertices with smaller entries in the sorted vectors. Using the
vector of degrees is better than using the eigenvector, and the TPMR vector is even better.
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Success rate for the TPMR algorithm
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Fig. 4: The success rate for the TPMR algorithm is plotted (for graph sizes from 2500 to 40000) versus the clique
size k which is given as a fraction of n°®, i.e., k = xn®5. Each result is averaged over 1600 independent runs.
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