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Abstract. Based on constant term evaluation, we present a new method to compute a closed form of the summation∑n−1
k=0

∏r
j=1 Fj(ajn+bjk+cj), where {Fj(k)} are C-finite sequences and aj and aj+bj are nonnegative integers.

Our algorithm is much faster than that of Greene and Wilf.

Résumé. En s’appuyant sur l’évaluation de termes constants, nous présentons une nouvelle méthode pour calculer
une forme close de la somme

∑n−1
k=0

∏r
j=1 Fj(ajn+ bjk+ cj), où les {Fj(k)} sont des suites C-finies, et où les aj

et les aj + bj sont des entiers positifs ou nuls. Notre algorithme est beaucoup plus rapide que celui de Greene et Wilf.
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1 Introduction
A sequence {F (k)}k≥0 is C-finite (see [Zei90]) if there exist constants c1, . . . , cd such that

F (k) = c1F (k − 1) + c2F (k − 2) + · · ·+ cdF (k − d), ∀ k ≥ d.

Correspondingly, the integer d is called the order of the recurrence. Greene and Wilf [GW07] provided a
method to compute a closed form of the summation

n−1∑
k=0

r∏
j=1

Fj(ajn+ bjk + cj),

where {Fj(k)} are C-finite sequences and aj , bj are integers satisfying aj ≥ 0 and aj + bj ≥ 0. They
proved that the sum must be a linear combination of the terms

r∏
j=1

Fj((aj + bj)n+ ij) and φi1,...,ij (n)

r∏
j=1

Fj(ajn+ ij), (0 ≤ ij < dj)

where dj is the order of the recurrence of {Fj(k)} and φi1,...,ir (n) is a polynomial in n with given degree
bound. Then the explicit formula of the sum can be computed by the method of undetermined coefficients.
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In this paper, we provide another approach which is based on MacMahon’s partition analysis [Mac16]
and the Omega calculations [APR01, Xin04]. We first introduce an extra variable z and consider the
summation

S(z) =

n−1∑
k=0

zk
r∏
j=1

Fj(ajn+ bjk + cj).

Then we rewrite S(z) as the constant term (with respect to x1, . . . , xr) of the Laurent series

f1(x1)f2(x2) · · · fr(xr)
n−1∑
k=0

zk
r∏
j=1

x
−ajn−bjk−cj
j ,

where

fj(xj) =

∞∑
k=0

Fj(k)xkj

is the generating function. Using partial fraction decomposition, we can derive an explicit formula for
S(z) in terms of

∏r
j=1 Fj((aj + bj)n + ij) and

∏r
j=1 Fj(ajn + ij), where 0 ≤ ij < dj . Finally, the

substitution of z = 1 leads to a closed form of the original summation.

2 Basic tools by partial fraction decomposition
LetK be a field. Fix a polynomialD(x) ∈ K[x]. For any polynomialP (x) ∈ K[x], we use rem(P (x), D(x), x)
(or rem(P (x), D(x)) for short) to denote the remainder of P (x) when divided by D(x). This notation is
extended for rational function R(x) = P (x)/Q(x) when Q(x) is coprime to D(x):

rem(R(x), D(x)) := rem(P (x)β(x), D(x)), if α(x)D(x) + β(x)Q(x) = 1. (1)

In algebraic language, the remainder is the standard representative in the quotient ring K[x]/〈D(x)〉.
It is convenient for us to use the following notation:{

P (x)/Q(x)

D(x)

}
=

rem(P (x)/Q(x), D(x))

D(x)
. (2)

Equivalently, if we have the following partial fraction decomposition:

P (x)

Q(x)D(x)
= p(x) +

r1(x)

D(x)
+
r2(x)

Q(x)
,

where p(x), r1(x), r2(x) are polynomials with deg r1(x) < degD(x), then we claim that r1(x) =
rem(P (x)/Q(x), D(x)) and hence {

P (x)/Q(x)

D(x)

}
=
r1(x)

D(x)
.

Note that we do not need deg r2(x) < degQ(x).
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The following properties are transparent:

P1(x) ≡ P2(x) (mod D(x))⇒
{
R(x)P1(x)

D(x)

}
=

{
R(x)P2(x)

D(x)

}
; (3)

α(x)D(x) + β(x)Q(x) = 1⇒
{
P (x)/Q(x)

D(x)

}
=

{
P (x)β(x)

D(x)

}
; (4){

aR1(x) + bR2(x)

D(x)

}
=a

{
R1(x)

D(x)

}
+ b

{
R2(x)

D(x)

}
, ∀a, b ∈ K. (5)

The crucial lemma in our calculation is as follows.

Lemma 1 Let R(x), D(x) be as above and assume D(0) 6= 0. Then for any Laurent polynomial L(x)
with degL(x) ≤ 0, we have

CT
x
L(x)

{
R(x)

D(x)

}
= CT

x

{
L(x)R(x)

D(x)

}
, (6)

where CT
x
g(x) means to take constant term of the Laurent series g(x) in x.

Proof: By linearity, we may assume L(x) = x−k for some k ≥ 0.
Assume r(x) = rem(R(x), D(x)). Since D(0) 6= 0, we have the following partial fraction decompo-

sition:

r(x)

xkD(x)
=
p(x)

xk
+
r1(x)

D(x)
,

where deg p(x) < k and deg r1(x) < degD(x). Then taking constant term in x gives

CT
x

r(x)

xkD(x)
= CT

x

r1(x)

D(x)
= CT

x

{
x−kr(x)

D(x)

}
= CT

x

{
x−kR(x)

D(x)

}
.

This is just (6) when L(x) = x−k. 2

Let Z and N denote the set of integers and nonnegative integers respectively. Suppose that {F (k)}k∈N
is a C-finite sequence such that

F (k) = c1F (k − 1) + c2F (k − 2) + · · ·+ cdF (k − d) (7)

holds for any integer k ≥ d. Then its generating function is of the form

f(x) =

∞∑
k=0

F (k)xk =
p(x)

1− c1x− c2x2 − · · · − cdxd
,

where p(x) is a polynomial in x of degree less than d. We will say that {F (k)}k≥N is a C-finite sequence
with generating function p(x)/q(x), where q(x) = 1− c1x− c2x2 − · · · − cdxd.

It is well-known [Sta86, Section 4.2] that we can uniquely extend the domain of F (k) to k ∈ Z by
requiring that (7) holds for any k ∈ Z. The k-th term of the extended sequence can be given by the
following lemma.
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Lemma 2 Let {F (k)}k∈N be a C-finite sequence with generating function p(x)/q(x) and {F (k)}k∈Z be
its extension. Then

F (k) = CT
x

{
x−kp(x)

q(x)

}
=

{
x−kp(x)

q(x)

} ∣∣∣
x=0

∀ k ∈ Z. (8)

Proof: Since q(0) = 1, the second equality holds trivially. Let

G(k) = CT
x

{
x−kp(x)

q(x)

}
.

Then for k ≥ 0, applying Lemma 1 gives

G(k) = CT
x
x−k

{
p(x)

q(x)

}
= CT

x
x−k

p(x)

q(x)
= [xk]f(x) = F (k),

where [xk]f(x) means to take the coefficient of xk in f(x).
Therefore, by the uniqueness of the extension, it suffices to show that G(k) also satisfy the recursion

(7) for all k ∈ Z. We compute as follows:

G(k)− c1G(k − 1)− · · · − cdG(k − d)

= CT
x

{
x−kp(x)

q(x)

}
− c1

{
x−k+1p(x)

q(x)

}
− · · · − cd

{
x−k+dp(x)

q(x)

}
= CT

x

{
x−kp(x)q(x)

q(x)

}
= 0.

This completes the proof. 2

3 Constant term evaluation
Let {Fj(k)}k∈Z beC-finite sequences with generating functions fj(x) = pj(x)/qj(x) for j = 1, 2, . . . , r.
We denote the degree of the denominators by dj = deg qj(x). To evaluate the sum

S =

n−1∑
k=0

r∏
j=1

Fj(ajn+ bjk + cj),

we evaluate the more general sum Sr(z) instead, where Sm(z) is defined by

Sm(z) =

n−1∑
k=0

zk
m∏
j=1

Fj(ajn+ bjk + cj), 0 ≤ m ≤ r. (9)
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The advantage is that Sm(z) can be evaluated recursively. Since aj ≥ 0 and aj + bj ≥ 0, we have
ajn+ bjk ≥ 0 for any n ≥ 0 and 0 ≤ k < n. By Lemmas 1 and 2, we have

Sm(z) =

n−1∑
k=0

zk
m−1∏
j=1

Fj(ajn+ bjk + cj) CT
x

{
x−amn−bmk−cmpm(x)

qm(x)

}

=

n−1∑
k=0

zk
m−1∏
j=1

Fj(ajn+ bjk + cj) CT
x
x−amnx−bmk

{
x−cmpm(x)

qm(x)

}

= CT
x
x−amn

{
x−cmpm(x)

qm(x)

} n−1∑
k=0

(zx−bm)k
m−1∏
j=1

Fj(ajn+ bjk + cj).

Therefore, we obtain the recursion

Sm(z) = CT
x
x−amn

{
pm(x)x−cm

qm(x)

}
Sm−1(zx−bm). (10)

The initial condition is S0(z) = 1 + z + · · ·+ zn−1 = 1−zn
1−z .

Let Lm and L′m be the linear operators acting on Laurent polynomials in x1, . . . , xm by

Lm

(∏m
j=1 x

αj

j

)
=
∏m
j=1 Fj(ajn− αj),

L′m

(∏m
j=1 x

αj

j

)
=
∏m
j=1 Fj((aj + bj)n− αj).

(11)

Then Sm(z) have simple rational function representations.

Theorem 3 For any 0 ≤ m ≤ r, there exist a polynomial Pm(z) with coefficients being Laurent polyno-
mials in x1, . . . , xm and a non-zero polynomial Qm(z) ∈ K[z] such that

Sm(z) =
Lm(Pm(z))− znL′m(Pm(z))

Qm(z)
, (12)

where Lm, L′m are defined by (11).

Proof: We prove the theorem by induction on m.
Setting P0(z) = 1 and Q0(z) = 1 − z, we see that the assertion holds for m = 0. Suppose that

the assertion holds for m − 1. We can compute Pm(z) and Qm(z) as follows. For brevity, we write
R(z) = Pm−1(z)/Qm−1(z).

By definition Sm−1(z) is a polynomial in z of degree less than n. If bm ≥ 0, then −amn ≤ 0; If
bm ≤ 0, then −amn − bm(n − 1) ≤ 0. Thus x−amnSm−1(zx−bm) is always a Laurant polynomial of
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degree no more than 0. Therefore, by Lemma 1 and the recursion (10), we have

Sm(z) = CT
x

{
pm(x)x−cm

qm(x)

}
x−amnSm−1(zx−bm)

= CT
x

{
pm(x)x−cmx−amnSm−1(zx−bm)

qm(x)

}
= CT

x

{
pm(x)x−cmx−amn

(
Lm−1(R(zx−bm))− znx−bmnL′m−1(R(zx−bm))

)
qm(x)

}
= Lm−1 CT

x
x−amnG(x, z)− znL′m−1 CT

x
x−(am+bm)nG(x, z),

where G(x, z) is given by

G(x, z) =

{
pm(x)x−cmR(zx−bm)

qm(x)

}
.

Now set
u(x, z)

w(z)
= rem(xdm−1−cmR(zx−bm), qm(x), x), (13)

where u(x, z) is a polynomial in x, z and w(z) is a polynomial in z. Then

G(x, z) =

{
pm(x)x−dm+1 · xdm−1−cmR(zx−bm)

qm(x)

}
=

{
pm(x)x−dm+1u(x, z)/w(z)

qm(x)

}
=

1

w(z)

{
pm(x) · x−dm+1u(x, z)

qm(x)

}
.

Since x−dm+1u(x, z) is a Laurent polynomial of degree in x less than or equal to 0, we obtain

Sm(z) = Lm−1 CT
x

x−dm+1u(x, z)

xamn

{
pm(x)

qm(x)

}
− znL′m−1 CT

x

x−dm+1u(x, z)

x(am+bm)n

{
pm(x)

qm(x)

}
= Lm−1 CT

x

x−dm+1u(x, z)

xamn
fm(x)− znL′m−1 CT

x

x−dm+1u(x, z)

x(am+bm)n
fm(x).

Now set
Pm(z) = x−dm+1

m u(xm, z), Qm(z) = w(z). (14)

It is then easy to check that Sm(z) has the desired form. This completes the induction. 2

Remark 1. Form the above proof we see that the degree of xm in Pm(z) is between −dm + 1 and 0.
Therefore the coefficients of the numerator of S(z) are linear combinations of the form

r∏
j=1

Fj(ajn+ ij),

r∏
j=1

Fj((aj + bj)n+ ij),
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where 0 ≤ ij ≤ dj − 1.
Remark 2. Let {F (k)} be a sequence with generating function p(x)/q(x). We call the sequence {F (k)}
with generating function 1/q(x) its primitive sequence. It is more convenient to represent S(z) in terms
of the primitive sequences {F j(k)} instead of the sequences {Fj(k)} themselves. The existence of a such
representation is obvious since Fj(k) is a linear combination of F j(k). In this way, the coefficients of the
numerator of S(z) will be linear combinations of the form

r∏
j=1

F j(ajn− ij),
r∏
j=1

F j((aj + bj)n− ij),

where 0 ≤ ij ≤ dj − 1. Then we can take advantage of the fact F̄j(−ij) = 0, 1 ≤ ij ≤ dj − 1 if aj = 0
or aj + bj = 0. The computation is similar and in a natural way. In fact, if we define

Pm(z)

Qm(z)
= rem

(
pm(x)x−cm

Pm−1(zx−bm)

Qm−1(zx−bm)
, qm(x), x

)
,

then we have

Sm(z) =
Lm(Pm(z))− znL′m(Pm(z))

Qm(z)
,

where
Lm

(∏m
j=1 x

αj

j

)
=
∏m
j=1 F j(ajn− αj),

L
′
m

(∏m
j=1 x

αj

j

)
=
∏m
j=1 F j((aj + bj)n− αj).

4 Evaluation of Sr(z) at z = 1
In this section, we consider the evaluation of Sr(z) at z = 1, which is equals to the sum

S =

n−1∑
k=0

r∏
j=1

Fj(ajn+ bjk + cj). (15)

The evaluation of Sr(z) at z = 1 can be obtained by the following lemma.

Lemma 4 Let f(z) =
∑
i fiz

i, g(z) =
∑
i giz

i and h(z) =
∑
i hiz

i be polynomials in z. Suppose that

S(z) =
f(z)− zng(z)

h(z)

is a polynomial in z and
h(z) =

∑
i≥e

h̃i(z − 1)i, h̃e 6= 0. (16)

Then

S(1) =
1

h̃e

∑
i

(
fi

(
i

e

)
− gi

(
n+ i

e

))
.
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Proof: By expanding f(z)− zng(z) at the point z = 1, we obtain

f(z)− zng(z) =
∑
i

fi(z − 1 + 1)i − gi(z − 1 + 1)n+i =
∑
j

(z − 1)jAj ,

where

Aj =
∑
i

(
fi

(
i

j

)
− gi

(
n+ i

j

))
.

Since S(z) is a polynomial in z and h̃e 6= 0, we have Aj = 0 for any j < e and and S(1) = Ae/h̃e, as
desired. 2

Remark. Alternatively, we can write

S(z) = zn
z−nf(z)− g(z)

h(z)
.

A similar argument yields

S(1) =
1

h̃e

∑
i

(
fi

(
i− n
e

)
− gi

(
i

e

))
,

The algorithm CFsum for finding a closed form of the sum (15).

Input: The generating functions pj(x)/qj(x) of Fj(k) and the parameters (aj , bj , cj)

Output: A closed formula for S =
∑n−1
k=0

∏r
j=1 Fj(ajn+ bjk + cj).

1. Initially set P (z) = 1 and Q(z) = 1− z.

2. For j = 1, 2, . . . , r do

Set R(z) = P (z)/Q(z).

Let
u(x, z)

w(z)
= rem(pj(x)x−cjR(zx−bj ), qj(x), x).

Set P (z) = u(xj , z) and Q(z) = w(z).

3. Set A = B = P .

4. For j = 1, 2, . . . , r do

A =

dj−1∑
i=0

F j(ajn+ dj − i)[xij ]A, B =

dj−1∑
i=0

F j((aj + bj)n+ dj − i)[xij ]B,

where [xi]f(x) denotes the coefficient of xi in f(x) and {F j(k)} is the primitive sequence corre-
sponding to {Fj(k)}.

5. Let e be the lowest degree of z in Q(z + 1) and h = [ze]Q(z + 1).
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6. Finally, return

S =
1

h

∑
i

((
i

e

)
[zi]A−

(
n+ i

e

)
[zi]B

)
.

Our algorithm suggested a new way to look at the degree bound for the coefficients φi1,...,ir (n). One
bound is just the multiplicity of 1 as a root of Qr(z). To study the e described in (16), it is better to use
the alternative representation of S(z) = Sr(z):

S(z) = CT
x1,...,xr

(
1

xa11 · · ·x
ar
r

)n 1− ( z

x
b1
1 ···x

br
r

)n

1− z

x
b1
1 ···x

br
r

r∏
j=1

{
pj(xj)x

−cj
j

qj(xj)

}
.

Suppose that αj is a root of qj(x) with multiplicity νj(αj). By partial fraction decomposition, S(z) can
be written as a linear combination of the terms

S(z;α, s) = CT
x1,...,xr

(
1

xa11 · · ·x
ar
r

)n 1− ( z

x
b1
1 ···x

br
r

)n

1− z

x
b1
1 ···x

br
r

r∏
j=1

1

(1− xj/αj)sj
,

where sj ≤ νj(αj). From the discussion on Omega operator [Xin04], we see that the denominator of
S(z;α, s) is given by (

1− z

αb11 · · ·α
br
r

)s1+s2+···+sr−r+1

Therefore, by summing over all α, s and take common denominator, we see that

e ≤ max{ν1 + · · ·+ νr − r + 1 : αb11 · · ·αbrr = 1 and qj(αj) = 0}.

5 Examples
We have implement the algorithm CFSum in Maple, which can be download from
http://www.combinatorics.net.cn/homepage/xin/maple/CFsum.txt .
Example 1. Let

f(n) =

n−1∑
k=0

F (k)2F (2n− k),

where {F (k)} is the Fibonacci sequence defined by

F (0) = 0, F (1) = 1, F (k) = F (k − 1) + F (k − 2), ∀ k ≥ 2.

We see that the generating function for {F (k)} is x/(1 − x − x2). Using the package, we immediately
derive that

f(n) =
1

2
(−F (2n) + F (2n− 1) + F (n)3 + F (n)F (n− 1)2 − F (n− 1)F (n)2),
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where {F (k)} is the primitive sequence of {F (k)}. In fact, F (k) = F (k + 1) and hence

f(n) =
1

2
(−F (2n+ 1) + F (2n) + F (n+ 1)3 + F (n+ 1)F (n)2 − F (n)F (n+ 1)2).

Example 2. Let

S(z) =

n−1∑
k=0

F (k)4zk,

where {F (k)} is the Fibonacci sequence defined as in Example 1. Using the package, we find that

S(z) =

4∑
i=0

fi(z)z
nF (n− 1)iF (n)4−i − z(z + 1)(z2 − 5z + 1)

(z − 1)(z2 + 3z + 1)(z2 − 7z + 1)

=

4∑
i=0

fi(z)z
nF (n)iF (n+ 1)4−i − z(z + 1)(z2 − 5z + 1)

(z − 1)(z2 + 3z + 1)(z2 − 7z + 1)
,

where

f0(z) = z(z + 1)(z2 − 5z + 1), f1(z) = −4z2(z2 − 3z − 1), f2(z) = 6z2(z2 − z + 1),

and
f3(z) = −4z2(z2 + 3z − 1), f4(z) = z4 + 11z3 − 14z2 − 5z + 1.

6 D-finite sequence involved
The readers are referred to [Sta99, Chapter 6.4] for definitions of D-finite generating functions and P-
recursive sequence. Let {G(k)}k∈N be a P-recursive sequence with D-finite generating function g(x). We
wish to find a similar representation of the sum

S =

n−1∑
k=0

r+1∏
j=1

Fj(k)

with Fj as before except for Fr+1(k) = G(k) being P-recursive. We shall only consider the case cr = 0
for brevity.

Define Sm(z) as in (9). The recursion (10) still holds for m ≤ r, and a similar calculation yields

Sr+1(z) = CT
x
x−ar+1ng(x)Sr(zx

−br+1).

By Theorem 3, we can write

Sr(z) =
Lr(Pr(z))− znL̃r(Pr(z))

Qr(z)
. (17)
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Since Sr(z) is a polynomial in z of degree less than n, degPr(z) < degQr(z) and Qr(0) 6= 0.
Now put (17) into the recursion and set z = 1, we obtain

Sr+1(1) = CT
x
x−ar+1ng(x)

Lr(Pr(x
−br+1))− x−nbr+1L̃r(Pr(x

−br+1))

Qr(x−br+1)

This expression can be written as

Sr+1(1) = CT
x
x−ar+1nḡ(x)Lr(P̄ (x))− x−n(ar+1+br+1)L̃r(P̄ (x))ḡ(x),

where ḡ(x) = g(x)Q̄(x)−1, with
Pr(x

−br+1)

Qr(x−br+1)
=
P̄ (x)

Q̄(x)

being in its standard representation.
Now if we let Ḡ(k) = [xk]ḡ(x). Then we have a representation of Sr+1(1) by a linear combination of

terms of the form
r+1∏
j=1

F̄j(ujn+ vj),

where F̄j(k) is the primitive sequence of Fj(k) as before, except that F̄r+1(k) = Ḡ(k).
It is clear that ḡ(x) is also D-finite and hence Ḡ(k) is P-recursive. It can be shown that if G(k) satisfy

a P-recursion of order e then we can find for Ḡ(k) a P-recursion of order e+ deg Q̄(x).
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