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Affine structures and a tableau model for E6

crystals
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Abstract.

We provide the unique affine crystal structure for type E
(1)
6 Kirillov–Reshetikhin crystals corresponding to the mul-

tiples of fundamental weights sΛ1, sΛ2, and sΛ6 for all s ≥ 1 (in Bourbaki’s labeling of the Dynkin nodes, where 2
is the adjoint node). Our methods introduce a generalized tableaux model for classical highest weight crystals of type
E and use the order three automorphism of the affine E

(1)
6 Dynkin diagram. In addition, we provide a conjecture for

the affine crystal structure of type E
(1)
7 Kirillov–Reshetikhin crystals corresponding to the adjoint node.

Résumé.

Nous donnons l’unique structure cristalline affine pour les cristaux de Kirillov–Reshetikhin de type E
(1)
6 correspon-

dant aux multiples des poids fondamentaux sΛ1, sΛ2 et sΛ6 pour tout s ≥ 1 (dans l’étiquetage de Bourbaki des
noeuds de Dynkin, où 2 est le noeud adjoint). Pour ceci, nous introduisons un modèle de tableaux généralisés pour
les cristaux classiques du plus haut poids de type E et nous employons l’automorphisme d’ordre trois du diagramme
de Dynkin du type E

(1)
6 . En outre, nous fournissons une conjecture pour la structure affine pour les cristaux de

Kirillov–Reshetikhin de type E
(1)
7 correspondant au noeud adjoint.

Keywords: Affine crystals, Kirillov–Reshetikhin crystals, type E6

This document is an extended abstract of Jones and Schilling (2009). Please see the full paper for
complete proofs.

1 Introduction
Let g be an affine Kac–Moody algebra and U ′q(g) be the associated quantized affine algebra. Kirillov–
Reshetikhin modules are finite dimensional U ′q(g)-modules labeled by a node r of the Dynkin diagram
together with a nonnegative integer s. It is expected that each Kirillov–Reshetikhin module has a crystal
basis.
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In this paper, we provide the unique affine crystal structure for the Kirillov–Reshetikhin crystals Br,s

of type E(1)
6 for the Dynkin nodes r = 1, 2, and 6 in the Bourbaki labeling, where node 2 corresponds

to the adjoint node (see Figure 1). In addition, we provide a conjecture for the affine crystal structure for
type E(1)

7 Kirillov–Reshetikhin crystals of level s corresponding to the adjoint node.
Our construction of the affine crystals uses the classical decomposition given by Chari (2001) together

with a promotion operator. Combinatorial models of all Kirillov–Reshetikhin crystals of nonexceptional
types were constructed using promotion and similarity methods in Schilling (2008); Okado and Schilling
(2008); Fourier et al. (2009) and perfectness was proven in Fourier et al. (2010). Affine crystals of type
E

(1)
6 and E(1)

7 of level 1 corresponding to minuscule coweights (r = 1, 6) have also been studied in
Magyar (2006) using the Littelmann path model. Hernandez and Nakajima (2006) gave a construction of
the Kirillov–Reshetihkin crystals Br,1 for all r for type E(1)

6 and most nodes r in type E(1)
7 .

For nonexceptional types, the classical crystals appearing in the decomposition can be described using
Kashiwara–Nakashima tableaux Kashiwara and Nakashima (1994). We provide a similar construction
for general types (see Theorem 2.6). This involves the explicit construction of the highest weight crystals
B(Λi) corresponding to fundamental weights Λi using the Lenart–Postnikov Lenart and Postnikov (2008)
model and the notion of pairwise weakly increasing columns (see Definition 2.1).

This paper is structured as follows. In Section 2, the fundamental crystals B(Λ1) and B(Λ6) are
constructed explicitly for type E6 and it is shown that all other highest weight crystals B(λ) of type E6

can be constructed from these. In Section 2.4, a generalized tableaux model is given for B(λ) for general
types. These results are used to construct the affine crystals in Section 3. Our main results are stated in
Theorem 3.10 and Conjecture 3.11.

2 A tableau model for finite-dimensional highest weight crystals
In this section, we describe a model for the classical highest weight crystals in type E. In Section 2.1, we
introduce our notation and give the axiomatic definition of a crystal. The tensor product rule for crystals
is reviewed in Section 2.2. In Section 2.3, we give an explicit construction of the highest weight crystals
associated to the fundamental weights in types E6 and E7. In Section 2.4, we give a generalized tableaux
model to realize all of the highest weight crystals in these types. The generalized tableaux are type-
independent, and can be viewed as an extension of the Kashiwara–Nakashima tableaux Kashiwara and
Nakashima (1994) to type E. For a general introduction to crystals we refer to Hong and Kang (2002).

2.1 Axiomatic definition of crystals
Denote by g a symmetrizable Kac-Moody algebra, P the weight lattice, I the index set for the vertices
of the Dynkin diagram of g, {αi ∈ P | i ∈ I} the simple roots, and {α∨i ∈ P ∗ | i ∈ I} the simple
coroots. Let Uq(g) be the quantized universal enveloping algebra of g. A Uq(g)-crystal Kashiwara (1995)
is a nonempty set B equipped with maps wt : B → P and ei, fi : B → B ∪ {0} for all i ∈ I , satisfying

fi(b) = b′ ⇔ ei(b
′) = b if b, b′ ∈ B

wt(fi(b)) = wt(b)− αi if fi(b) ∈ B
〈α∨i ,wt(b)〉 = ϕi(b)− εi(b).
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Here, we have

εi(b) = max{n ≥ 0 | eni (b) 6= 0}
ϕi(b) = max{n ≥ 0 | fni (b) 6= 0}

for b ∈ B, and we denote 〈α∨i ,wt(b)〉 by wti(b). A Uq(g)-crystal B can be viewed as a directed edge-
colored graph called the crystal graph whose vertices are the elements of B, with a directed edge from b
to b′ labeled i ∈ I , if and only if fi(b) = b′. Given i ∈ I and b ∈ B, the i-string through b consists of the
nodes {fmi (b) : 0 ≤ m ≤ ϕi(b)} ∪ {emi (b) : 0 < m ≤ εi(b)}.

Let {Λi | i ∈ I} be the fundamental weights of g. For every b ∈ B define ϕ(b) =
∑
i∈I ϕi(b)Λi and

ε(b) =
∑
i∈I εi(b)Λi. An element b ∈ B is called highest weight if ei(b) = 0 for all i ∈ I . We say that

B is a highest weight crystal of highest weight λ if it has a unique highest weight element of weight λ.
For a dominant weight λ, we let B(λ) denote the unique highest-weight crystal with highest weight λ.

An isomorphism of crystals is a bijection Ψ : B∪{0} → B′∪{0} such that Ψ(0) = 0, ε(Ψ(b)) = ε(b),
ϕ(Ψ(b)) = ϕ(b), fiΨ(b) = Ψ(fi(b)), and Ψ(ei(c)) = eiΨ(c) for all b, c ∈ B, Ψ(b),Ψ(c) ∈ B′ where
fi(b) = c.

When λ̃ is a weight in an affine type, we call

〈λ̃, c〉 =
∑
i∈I

a∨i 〈λ̃, α∨i 〉 (1)

the level of λ̃, where c is the canonical central element and λ̃ =
∑
i∈I λiΛi is the affine weight. In our

work, we will often compute the 0-weight λ0Λ0 at level 0 for a node b in a classical crystal from the
classical weight λ =

∑
i∈I\{0} λiΛi = wt(b) by setting 〈λ0Λ0 + λ, c〉 = 0 and solving for λ0.

When g is a finite-dimensional Lie algebra, every integrable Uq(g)-module decomposes as a direct sum
of highest weight modules. On the level of crystals, this implies that every crystal graph B corresponding
to an integrable module is a union of connected components, and each connected component is the crystal
graph of a highest weight module. We denote this by B =

⊕
B(λ) for some set of dominant weights λ,

and we call these B(λ) the components of the crystal.
Suppose that g is a symmetrizable Kac–Moody algebra and let U ′q(g) be the corresponding quantum

algebra without derivation. The goal of this work is to study crystals Br,s that correspond to certain finite
dimensional U ′q(g)-modules known as Kirillov–Reshetikhin modules. Here, r is a node of the Dynkin
diagram and s is a nonnegative integer. The existence of the crystals Br,s that we study follows from
results in (Kang et al., 1992, Proposition 3.4.4) for r = 1, 6 and (Kang et al., 1992, Proposition 3.4.5) for
r = 2, while the classical decomposition of these crystals is given in Chari (2001).

2.2 Tensor products of crystals
Let B1, B2, . . . , BL be Uq(g)-crystals. The Cartesian product B1 ×B2 × · · · ×BL has the structure of a
Uq(g)-crystal using the so-called signature rule. The resulting crystal is denotedB = B1⊗B2⊗· · ·⊗BL
and its elements (b1, . . . , bL) are written b1 ⊗ · · · ⊗ bL where bj ∈ Bj . The reader is warned that our
convention is opposite to that of Kashiwara Kashiwara (1995). Fix i ∈ I and b = b1⊗ · · · ⊗ bL ∈ B. The
i-signature of b is the word consisting of the symbols + and − given by

− · · ·−︸ ︷︷ ︸
ϕi(b1) times

+ · · ·+︸ ︷︷ ︸
εi(b1) times

· · · − · · · −︸ ︷︷ ︸
ϕi(bL) times

+ · · ·+︸ ︷︷ ︸
εi(bL) times

.
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The reduced i-signature of b is the subword of the i-signature of b, given by the repeated removal of
adjacent symbols +− (in that order); it has the form

− · · ·−︸ ︷︷ ︸
ϕi times

+ · · ·+︸ ︷︷ ︸
εi times

.

If ϕi = 0 then fi(b) = 0; otherwise

fi(b1 ⊗ · · · ⊗ bL) = b1 ⊗ · · · ⊗ bj−1 ⊗ fi(bj)⊗ · · · ⊗ bL

where the rightmost symbol − in the reduced i-signature of b comes from bj . Similarly, if εi = 0 then
ei(b) = 0; otherwise

ei(b1 ⊗ · · · ⊗ bL) = b1 ⊗ · · · ⊗ bj−1 ⊗ ei(bj)⊗ · · · ⊗ bL

where the leftmost symbol + in the reduced i-signature of b comes from bj . It is not hard to verify that
this defines the structure of a Uq(g)-crystal with ϕi(b) = ϕi and εi(b) = εi in the above notation, and
weight function

wt(b1 ⊗ · · · ⊗ bL) =

L∑
j=1

wt(bj).

2.3 Fundamental crystals for type E6 and E7

Let I = {1, 2, 3, 4, 5, 6} denote the classical index set for E6. We number the nodes of the affine Dynkin
diagram as in Figure 1.

•0

•2

•1 •3 •4 •5 •6

•2

•0 •1 •3 •4 •5 •6 •7

Fig. 1: Affine E
(1)
6 and E

(1)
7 Dynkin diagrams

Classical highest-weight crystals B(λ) for E6 can be realized by the Lenart–Postnikov alcove path
model described in Lenart and Postnikov (2008). We implemented this model in Sage and have recorded
the crystal B(Λ1) in Figure 2. This crystal has 27 nodes.

To describe our labeling of the nodes, observe that all of the i-strings in B(Λ1) have length 1 for each
i ∈ I . Therefore, the crystal admits a transitive action of the Weyl group. Also, it is straightforward
to verify that all of the nodes in B(Λ1) are determined by weight. For our work in Section 3, we also
compute the 0-weight at level 0 of a node b in any classical crystal from the classical weight as described
in Remark 3.4.

Thus, we label the nodes of B(Λ1) by weight, which is equivalent to recording which i-arrows come
in and out of b. The i-arrows into b are recorded with an overline to indicate that they contribute negative
weight, while the i-arrows out of b contribute positive weight.
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By the symmetry of the Dynkin diagram, we have that B(Λ6) also has 27 nodes and is dual to B(Λ1)
in the sense that its crystal graph is obtained from B(Λ1) by reversing all of the arrows. Reversing the
arrows requires us to label the nodes of B(Λ6) by the weight that is the negative of the weight of the
corresponding node in B(Λ1). Moreover, observe that B(Λ1) contains no pair of nodes with weights µ,
−µ, respectively. Hence, we can unambiguously label any node of B(Λ1) ∪B(Λ6) by weight.

0̄1
1 // 0̄1̄3

3 // 0̄3̄4
4 // 0̄4̄25

5 //

2

��

0̄5̄26
6 //

2

��

0̄6̄2

2

��
2̄5

5 // 2̄5̄46
6 //

4

��

2̄6̄4

4

��
4̄36

6 //

3

��

4̄6̄35
5 //

3

��

5̄3

3

��
3̄16

6 //

1

��

3̄6̄15
5 //

1

��

3̄5̄14
4 //

1

��

4̄12
2 //

1

��

2̄10

1

��
1̄6

6 // 1̄6̄5
5 // 1̄5̄4

4 // 1̄4̄23
2 //

3

��

1̄2̄30

3

��
3̄2

2 // 2̄3̄40

4

��
4̄50

5

��
5̄60

6

��
6̄0

Fig. 2: Crystal graph for B(Λ1) of type E6

It is straightforward to show using characters that every classical highest-weight representation B(Λi)
for i ∈ I can be realized as a component of some tensor product of B(Λ1) and B(Λ6) factors. On the
level of crystals, the tensor products B(Λ1)⊗k, B(Λ6)⊗k and B(Λ6) ⊗ B(Λ1) are defined for all k by
the tensor product rule of Section 2.2. Therefore, we can realize the other classical fundamental crystals
B(Λi) as shown in Table 1. There are additional realizations for these crystals obtained by dualizing.

There is a similar construction for the fundamental crystals for type E7. The highest weight crystal
B(Λ7) has 56 nodes and these nodes all have distinct weights. Also, ϕi(b) ≤ 1 and εi(b) ≤ 1 for
all i ∈ {1, 2, . . . , 7} and b ∈ B(Λ7). Using character calculations, we can show that every classical
highest-weight representation B(Λi) appears in some tensor product of B(Λ7) factors.
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Tab. 1: Fundamental realizations for E6

Generator in Dimension

B(Λ2) 21̄0̄⊗ 0̄1 B(Λ6)⊗B(Λ1) 78
B(Λ3) 0̄1̄3⊗ 0̄1 B(Λ1)⊗2 351
B(Λ4) 0̄3̄4⊗ 0̄1̄3⊗ 0̄1 B(Λ1)⊗3 2925
B(Λ5) 56̄0̄⊗ 60̄ B(Λ6)⊗2 351

2.4 Generalized tableaux
In this section, we describe how to realize the crystal B(Λi1 + Λi2 + · · ·+ Λik) inside the tensor product
B(Λi1)⊗B(Λi2)⊗· · ·⊗B(Λik), where the Λi are all fundamental, or more generally dominant weights.
Our arguments use only abstract crystal properties, so the results in this section apply to any finite type.

If b is the unique highest weight node in B(λ) and c is the unique highest weight node in B(µ), then
B(λ+ µ) is generated by b⊗ c ∈ B(λ)⊗B(µ). Iterating this procedure provides a recursive description
of any highest-weight crystal embedded in a tensor product of crystals. Our goal is to give a non-recursive
description of the nodes of B(Λi1 + Λi2 + · · ·+ Λik) for any collection of fundamental weights Λi.

For an ordered set of dominant weights (µ1, µ2, . . . , µk) and for each permutation w in the symmetric
group Sk, define

Bw(µ1, . . . , µk) = B(µw(1))⊗B(µw(2))⊗ · · · ⊗B(µw(k))

so Be(µ1, . . . , µk) is B(µ1)⊗ · · · ⊗B(µk) where e ∈ Sk is the identity.

Definition 2.1 Let (µ1, µ2, . . . , µk) be dominant weights. Then, we say that

b1 ⊗ b2 ⊗ · · · ⊗ bk ∈ B(µ1)⊗B(µ2)⊗ · · · ⊗B(µk)

is pairwise weakly increasing if

bj ⊗ bj+1 ∈ B(µj + µj+1) ⊂ B(µj)⊗B(µj+1)

for each 1 ≤ j < k.

Next, we fix an isomorphism of crystals

Φ(µ1,...,µk)
w : Bw(µ1, . . . , µk)→ Be(µ1, . . . , µk)

for each w ∈ Sk. Observe that each choice of Φ
(µ1,...,µk)
w corresponds to a choice for the image of each

of the highest-weight nodes in Bw(µ1, . . . , µk).
Let b∗j denote the unique highest weight node of the jth factor B(µj). Since we are fixing the dominant

weights (µ1, . . . , µk), we will sometimes drop the notation (µ1, . . . , µk) from Bw and Φw.

Definition 2.2 Let w be a permutation and choose j to be the maximal integer such that w that fixes
{1, 2, . . . , j}. We say that Φ

(µ1,...,µk)
w is a lazy isomorphism if the image of every highest weight node of

the form
b1 ⊗ b2 ⊗ · · · ⊗ bj ⊗ b∗j+1 ⊗ · · · ⊗ b∗k
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under Φ
(µ1,...,µk)
w is equal to

b1 ⊗ b2 ⊗ · · · ⊗ bj ⊗ b∗w−1(j+1) ⊗ · · · ⊗ b
∗
w−1(k) .

We want to choose our isomorphisms Φ
(µ1,...,µk)
w to be lazy, but our results do not otherwise depend

upon the choice of Φ
(µ1,...,µk)
w .

Definition 2.3 Let T be any subset of Sk, and {Φ(µ1,...,µk)
w }w∈T be a collection of lazy isomorphisms.

We define I(µ1,...,µk)(T ) to be⋂
w∈T

Φ(µ1,...,µk)
w ({pairwise weakly increasing nodes of Bw(µ1, . . . , µk) }) ⊂ Be(µ1, . . . , µk).

Proposition 2.4 Let T be any subset of Sk. Then, whenever b ∈ I(µ1,...,µk)(T ) we have ei(b), fi(b) ∈
I(µ1,...,µk)(T ).

Corollary 2.5 For any subset T of Sk, we have that I(µ1,...,µk)(T ) is a direct sum of highest weight
crystals

⊕
λB(λ) for some collection of weights λ.

Proof: Proposition 2.4 implies that whenever b ∈ I(µ1,...,µk)(T ), the entire connected component of the
crystal graph containing b is in I(µ1,...,µk)(T ). 2

Theorem 2.6 Fix a sequence (µ1, . . . , µk) of dominant weights. Then,

I(µ1,...,µk)(Sk) ∼= B(µ1 + µ2 + . . .+ µk).

Proof: Let b∗j be the unique highest weight node of Bj with highest weight µj for each j = 1, . . . , k.
Then b∗ = b∗1 ⊗ b∗2 ⊗ · · · ⊗ b∗k generates B(µ1 + . . .+ µk) and this node lies in I(µ1,...,µk)(Sk).

The proof proceeds to show that b∗ is the only highest weight node of I(µ1,...,µk)(Sk) using calculations
involving the tensor product rule. 2

Remark 2.7 The condition that there is a unique highest weight element that we used in the proof of
Theorem 2.6 is equivalent to the hypothesis of (Kashiwara and Nakashima, 1994, Proposition 2.2.1) from
which the desired conclusion also follows.

Remark 2.8 Because we only require a constant amount of data to check the pairwise weakly increasing
condition for each pair of tensor factors, Theorem 2.6 and its refinements will allow us to formulate
arguments that apply to all highest-weight crystals simultaneously, regardless of the number of tensor
factors.

When we are considering a specific highest-weight crystal, it may be computationally easier to generate
B(µ1 + · · ·+ µk) by simply applying fi operations to the highest-weight node in all possible ways.

We say that any node of I(µ1,...,µk)(Sk) is weakly increasing. It turns out that we can often take T
to be much smaller than Sk by starting with T = {e} and adding permutations to T until I(µ1,...,µk)(T )
contains a unique highest weight node. In particular, the next result shows that we can take T = {e} when
we are considering a linear combination of two distinct fundamental weights.
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Lemma 2.9 Let Λi1 and Λi2 be distinct fundamental weights, and k1, k2 ∈ Z≥0 with k = k1 + k2. Then,
the nodes of

B(k1Λi1 + k2Λi2) ⊂ B(Λi1)⊗k1 ⊗B(Λi2)⊗k2

are precisely the pairwise weakly increasing tensor products b1⊗b2⊗· · ·⊗bk ofB(Λi1)⊗k1⊗B(Λi2)⊗k2 .

All of the crystals in our work have classical decompositions that have been given by Chari (2001).
These crystals satisfy the requirement of Lemma 2.9 that at most two fundamental weights appear. On the
other hand, there exist examples showing that no ordering of the factors in B(Λ2) ⊗ B(Λ1) ⊗ B(Λ6) in
typeE6 admits an analogous weakly increasing condition that is defined using only pairwise comparisons.

We now restrict to type E6. Lemma 2.9 implies that we have a non-recursive description of all B(kΛi)
determined by the finite information in B(2Λi). In the case of particular fundamental representations, we
can be more specific about how to test for the weakly increasing condition.

Proposition 2.10 We have that b1 ⊗ b2 ∈ B(2Λ1) ⊂ B(Λ1)⊗2 if and only if b2 can be reached from b1
by a sequence of fi operations in B(Λ1).

Proof: This is a finite computation on B(2Λ1). 2

The crystal graph for B(Λ1) of Figure 2 can be viewed as a poset. Then Proposition 2.10 implies in
particular that incomparable pairs in B(Λ1) are not weakly increasing.

There are 78 nodes in B(Λ2). We construct B(Λ2) as the highest weight crystal graph generated by
21̄0̄ ⊗ 0̄1 inside B(Λ6) ⊗ B(Λ1). Note that we only need to use the nodes in the “top half” of Figure 2
and their duals. There are 2430 nodes in B(2Λ2).

Proposition 2.11 We have that

(b1 ⊗ c1)⊗ (b2 ⊗ c2) ∈ B(2Λ2) ⊂ (B(Λ6)⊗B(Λ1))⊗2

if and only if

(1) b2 can be reached from b1 by fi operations inB(Λ6), and c2 can be reached from c1 by fi operations
in B(Λ1), and

(2) Whenever c1 is dual to b2, we have that there is a path of fi operations from (b1 ⊗ c1) to (b2 ⊗ c2)
of length at least 1 (so in particular, the elements are not equal) in B(Λ2).

Proof: This is a finite computation on B(2Λ2). 2

3 Affine structures
In this section, we study the affine crystals of type E(1)

6 . We introduce the method of promotion to obtain
a combinatorial affine crystal structure in Section 3.1 and the notion of composition graphs in Section 3.2.
It is shown in Theorem 3.7 that order three twisted isomorphisms yield regular affine crystals. This is
used to construct Br,s of type E(1)

6 for the minuscule nodes r = 1, 6 and the adjoint node r = 2. We
summarize these results in Section 3.3 along with a conjecture for B1,s of type E(1)

7 .
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3.1 Combinatorial affine crystals and twisted isomorphisms
The following concept is fundamental to this work.

Definition 3.1 Let C̃ be an affine Dynkin diagram and C the associated finite Dynkin diagram (obtained
by removing node 0) with index set I . Let ṗ be an automorphism of C̃, and B be a classical crystal of
type C. We say that ṗ induces a twisted isomorphism of crystals if there exists a bijection of crystals
p : B ∪ {0} → B′ ∪ {0} satisfying

p(b) = 0 if and only if b = 0, and (2)

p ◦ fi(b) = fṗ(i) ◦ p(b) and p ◦ ei(b) = eṗ(i) ◦ p(b) (3)

for all i ∈ I \ {ṗ−1(0)} and all b ∈ B.
We frequently abuse notation and denote B′ by p(B) even though the isomorphism p : B → p(B) may

not be unique.
If we are given two classical crystalsB andB′, and there exists a Dynkin diagram automorphism ṗ that

induces a twisted isomorphism between B and B′, then we say that B and B′ are twisted-isomorphic.

Definition 3.2 Let B be a directed graph with edges labeled by I . Then B is called regular if for any
2-subset J ⊂ I , we have that the restriction of B to its J-arrows is a classical rank two crystal.

Definition 3.3 Let B be a classical crystal with index set I . Suppose B̃ is a labeled directed graph on the
same nodes as B and with the same I-arrows, but with an additional set of 0-arrows. If B̃ is regular with
respect to I ∪ {0}, then we say that B̃ is a combinatorial affine structure for B.

Remark 3.4 Although we do not assume that B̃ is a crystal graph for a U ′q(g)-module, Kashiwara
(2002, 2005) has shown that the crystals of such modules must be regular and have weights at level
0. Therefore, we compute the 0-weight λ0Λ0 of the nodes b in a classical crystal from the classical weight
λ =

∑
i∈I λiΛi = wt(b) using the formula given in Equation (1) (recall that I in this section is the index

set of the Dynkin diagram without 0).

Remark 3.5 Here are some consequences of Definitions 3.1 and 3.3.

(1) Any crystal p(B) induced by ṗ is just a classical crystal that is isomorphic to B up to relabeling. In
particular, any graph automorphism ṗ induces at least one twisted isomorphism p: If we view B as
an edge-labeled directed graph, the image of p is given on the same nodes as B by relabeling all of
the arrows according to ṗ. On the other hand, it is important to emphasize that there is no canonical
labeling for the nodes of p(B). Also, some crystal graphs may have additional symmetry which lead
to multiple twisted isomorphisms of crystals associated with a single graph automorphism ṗ.

(2) For b ∈ B, we have ϕ(p(b)) =
∑
i∈I ϕṗ−1(i)(b)Λi and ε(p(b)) =

∑
i∈I εṗ−1(i)(b)Λi. In addition,

we can compute the 0-weight of any node in B by Remark 3.4. Therefore, ṗ permutes all of the
affine weights, in the sense that

wti(b) = wtṗ(i)(p(b)) for all b ∈ B and i ∈ I ∪ {0} .
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(3) Since the node ṗ(0) becomes the affine node in p(B), it is sometimes possible to define a combina-
torial affine structure for B “by promotion.” Namely, we define f0 on B to be p−1 ◦ fṗ(0) ◦ p. Note
that in order for this to succeed, we must take the additional step of identifying the image p(B) with
a canonically labeled classical crystal so that we can infer the fṗ(0) edges.

Example 3.6 The E6 Dynkin diagram automorphism of order two that interchanges nodes 1 and 6 in-
duces the dual map between B(Λ1) and B(Λ6).

The Dynkin diagram of E(1)
6 has an automorphism of order three that we can use to construct combi-

natorial affine structures by promotion.

Theorem 3.7 Let B be a classical E6 crystal. Suppose there exists a bijection p : B → B that is a
twisted isomorphism satisfying p ◦ f1 = f6 ◦ p, and suppose that p has order three. Then, there exists a
combinatorial affine structure on B. This structure is given by defining f0 to be p2 ◦ f1 ◦ p.

Proof: If we apply p on the left and right of pf1 = f6p, we obtain ppf1p = pf6pp. Since p has order
three, this is

p−1f1p = pf6p
−1. (4)

Because p is a bijection on B, we may define 0-arrows on B by the map p−1f1p. By the hypotheses, p
must be induced by the unique Dynkin diagram automorphism ṗ of order three that sends node 0 to 1.

To verify that this affine structure satisfies Definition 3.3, we need to check that restricting B to {0, i}-
arrows is a crystal for all i ∈ I . Each of these restrictions corresponds to a rank 2 classical crystal, and
Stembridge has given local rules in Stembridge (2003) that characterize such classical crystals in simply
laced types. These rules depend only on calculations involving ϕi(b) and εi(b) at each node b ∈ B, and
these quantities are preserved by twisted isomorphism.

Hence, we obtain a combinatorial affine structure for B. 2

From now on, we use the notation p to denote a twisted isomorphism induced by ṗ sending

0 7→ 1 7→ 6 7→ 0, 2 7→ 3 7→ 5 7→ 2, 4 7→ 4.

Also, we let ṗ act on the affine weight lattice as in Remark 3.5(2).

3.2 Composition graphs
Let I = {1, 2, . . . , 6} be the index set for the Dynkin diagram of E6, and Ĩ = I ∪ {0} be the index set
of E(1)

6 . Suppose J ⊂ I . Consider a classical crystal B of the form
⊕
B(kΛ) where Λ is a fundamental

weight and we sum over some collection of nonnegative integers k. Let HJ(B) denote the (I \ J)-
highest weight nodes of B. We will study affine crystals with B as underlying classical crystal. For a
given such affine crystal, let HJ;0(B) be the (Ĩ \ J)-highest weight nodes. Using the level 0 hypothesis
of Remark 3.4, we can prove properties of HJ;0(B) for any given affine crystal with B as underlying
classical crystal.

Our general strategy to define a twisted isomorphism p on a classical crystal B is to first define p
on HJ(B), and then extend this definition to the rest of B using Equation (3). To accomplish this, we
introduce the following model for the nodes in HJ(B) and HJ;0(B).
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Definition 3.8 Fix J ⊂ I and form directed graphs GJ and GJ;0 as follows.
We construct the vertices of GJ and GJ;0 iteratively, beginning with all of the (I \ J)-highest weight

nodes of B(Λ). Then, we add all of the vertices b ∈ B(Λ) such that

{i ∈ I : εi(b) > 0} ⊂ J ∪ {i ∈ I : there exists b′ ∈ GJ with b ⊗ b′ pairwise
weakly increasing and ϕi(b′) > 0 }

to GJ . Moreover, if b also satisfies the property that there exists b′ ∈ GJ;0 with b ⊗ b′ pairwise weakly
increasing and wt0(b′) > 0 whenever wt0(b) < 0, then we add b to GJ;0. We repeat this construction
until no new vertices are added. This process eventually terminates since B(Λ) is finite.

The edges of GJ and GJ;0 are determined by the pairwise weakly increasing condition described in
Definition 2.1. Note that some nodes may have loops. We call GJ and GJ;0 the complete composition
graph for J and J ; 0, respectively.

Lemma 3.9 Every element of HJ(B) and HJ;0(B) is a pairwise weakly increasing tensor product of
vertices that form a directed path in GJ , respectively GJ;0, where the element in B(0) ⊂ HJ(B) is
identified with the empty tensor product.

3.3 Further results
Using composition graphs and the tableau model, we are able to prove the following result which gives
an affine structure for the Kirillov–Reshetikhin crystal B2,s.

Theorem 3.10 There exists a unique twisted isomorphism p :
⊕s

k=0B(kΛ2)→
⊕s

k=0B(kΛ2) of order
three. This isomorphism sends an I \ {6}-highest weight node b from component k to the unique I \ {1}-
highest weight node b′ in component (s−k)+(wt2(b)+wt3(b)+wt5(b)) satisfying wtṗ(i)(b

′) = wti(b)
for each i ∈ {2, 3, 5}.

We also obtain analogous results for B1,s and B6,s. Furthermore, we provide a conjecture for the
adjoint crystal B1,s in type E(1)

7 .

Conjecture 3.11 Define p :
⊕s

k=0B(kΛ1) →
⊕s

k=0B(kΛ1) on the I \ {7}-highest weight nodes by
sending b ∈ B(kΛ1) to the unique I \ {7}-highest weight node b′ in component (s − k) + (wt1(b) +
wt2(b) + wt6(b)) satisfying wtṗ(i)(b

′) = wti(b) for each i ∈ {1, 2, 6}.
Let f0 = p ◦ f7 ◦ p. Then f0 commutes with f7 so we obtain a combinatorial affine structure on⊕s
k=0B(kΛ1), which is isomorphic to B1,s of type E(1)

7 .

We have verified this conjecture for s ≤ 2.
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