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Abstract. We provide formulas for the Weyl-Kac denominator and superdenominator of a basic classical Lie super-
algebra for a distinguished set of positive roots.

Résumé. Nous donnons les formules pour les dénominateurs et super-dénominateurs de Weyl-Kac d’une super-
algèbre de Lie basique classique pour un ensemble distingué de racines positives.
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1 Introduction
The Weyl denominator identity ∏

α∈∆+

(1− e−α) =
∑
w∈W

sgn(w) ew(ρ)−ρ (1.1)

is one of the most intriguing combinatorial identities in the character ring of a complex finite dimensional
simple Lie algebra. It admits far reaching generalizations to the Kac-Moody setting, where it provides a
proof for the Macdonald’s identities (including, as easiest cases, the Jacobi triple and quintuple product
identities). Its role in representation theory is well-understood, since the inverse of the l.h.s of (1.1) is the
character of the Verma module M(0) with highest weight 0.

The goal of the present paper is to provide an expression of the character M(0) in the case of a basic
classical Lie superalgebra; the analog of the l.h.s of (1.1) is the Weyl-Kac denominator [6]

R =

∏
α∈∆+

0
(1− e−α)∏

α∈∆+
1

(1 + e−α)
. (1.2)

Here and in the remaining part of the Introduction we refer the reader to Section 2 for undefined notation.
Generalizations of formulas for R to affine superalgebras and their connection with number theory and
the theory of special functions are thoroughly discussed in [7]. The striking differences which make the
super case very different from the purely even one are the following. First, it is no more true that the sets
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of positive roots are conjugate under the Weyl group (to get transitivity on the set of set of positive rootss
one has to consider Serganova’s odd reflections, which however play no role in this paper). In particular,
the denominator identity looks very different according to the chosen set of positive roots. Moreover the
restriction of the supersymmetric nondegenerate invariant bilinear form to the real span of roots may be
indefinite, hence isotropic sets of roots appear naturally. Indeed, one defines the defect d of g (notation
def g) as the dimension of a maximal isotropic subspace of

∑
α∈∆

Rα. It is shown in [7] that d equals the

cardinality of a maximal isotropic subset of ∆+ (a subset S ⊂ ∆+ is isotropic if it is formed by linearly
independent pairwise orthogonal isotropic roots).

Definition 1.1 We call a set of positive roots distinguished if the corresponding set of simple roots has
exactly one odd root.

Distinguished sets of positive roots exist for any basic classical Lie superalgebra; they are implicitly
classified in [5]. The main result of the paper is the following theorem.

Theorem 1.1 Let g = g0⊕g1 be a basic classical Lie superalgebra of defect d, where g = A(d−1, d−1)
is replaced by gl(d, d). Then, for any distinguished set of positive roots, we have

eρR =
1

C

∑
w∈W

sgn(w)w
eρ

(1 + e−γ1)(1− e−γ1−γ2) · · · (1 + (−1)n+1e−γ1−γ2−...−γd)
, (1.3)

eρŘ =
1

C

∑
w∈W

sgn′(w)w
eρ

(1− e−γ1)(1− e−γ1−γ2) · · · (1− e−γ1−γ2−...−γd)
(1.4)

where W is the Weyl group of g, {γ1, . . . , γd} is an explicitly defined maximal isotropic subset of ∆+ and
C is the following constant:

C =



1 if g = A(n,m),

2min{m,n} if g = B(m,n),

2n if g = D(m,n), m > n,

2m−1 if g = D(m,n), n ≥ m,
2 if g = D(2, 1, α), F (4), G(3).

(1.5)

A suitable modification of the previous statement holds for g of type A(d−1, d−1) too: see Remark 3.1.
The elements γi are defined in (3.11), (4.9) for types A, B, respectively.

Theorem 1.1 has been proved by Kac and Wakimoto in the defect 1 case [7] (see Theorem 3.1 below),
so we are reduced to discuss the cases in which the defect of g is greater than 1. Hence we have to deal
with superalgebras of type A(m,n), B(m,n), D(m,n). Our approach to these cases is based on the
analysis of the g0-module structure of the oscillator representation of the Weyl algebra W (g1) of g1. This
is done in Sections (3) and (4) relying on methods coming from the theory of Lie groups. More precisely
we use Howe theory of dual pairs, and results of Kashiwara-Vergne and Li-Paul-Than-Zhu which provide
explictly the Theta correspondence. The key result in this respect is Theorem 4.1. Proofs are only outlined
and sometimes skipped (mainly in the case of purely representation-theoretical results). We work out in
some detail the case A(m,n), where a simpler treatment using Cauchy formulas in place of Howe duality
is available: see Section 3.1. We also explain our general approach in typeB(m,n), providing a complete
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proof when m ≥ n and presenting an example to give the flavour of the general case when m < n. Type
D is not treated here at all. Finally, in Section 5 we reformulate our main Theorem in a form which leads
to a general conjecture for the expression of R, Ř for any set of positive roots, involving certain maximal
isotropic subsets S of positive roots. A purely combinatorial proof of this conjecture for some special
choices of S will appear in a forthcoming publication, publication, where we actually derive the theta
correspondence of [8] and [9] from the denominator identity.

2 Setup
In this Subsection we collect some notation and definitions which will be constantly used throughout the
paper. Let g be a basic classical Lie superalgebra. This means that g = g0 ⊕ g1 is a finite dimensional
simple Lie superalgebra such that g0 is a reductive Lie algebra and that g admits a nondegenerate invariant
supersymmetric bilinear form (·, ·) [5].

Recall that for a Lie superalgebra g the Casimir operator is defined as Ωg =
∑
i x

ixi if {xi} is a
basis of g and {xi} its dual basis w.r.t. (·, ·) (see [5, pag. 85]).Then Ωg acts on g as 2gIg, where g is
a constant. Choose a Cartan subalgebra h ⊂ g0, and let ∆,∆0,∆1 be the set of roots, even roots, odd
roots, respectively. Let W ⊂ GL(h∗) be the group generated by the reflections w.r.t. even roots. Choose
a set of positive roots ∆+ ⊂ ∆ and set ∆+

i = ∆i ∩ ∆+, i = 0, 1. Set also, as usual, for i = 0, 1,

ρi = 1
2

∑
α∈∆+

i
α, ρ = ρ0 − ρ1. Assume that g 6= 0. Then set ∆]

0 = {α ∈ ∆0 | g · (α, α) > 0} and let

W ] be the subgroup of W generated by the reflections in roots from ∆]
0. We refer to [7, Remark 1.1, b)]

for the definition of W ] when g = 0. Set

∆0 = {α ∈ ∆0 | 1
2α /∈ ∆}, ∆1 = {α ∈ ∆1 | (α, α) = 0}. (2.1)

Finally, for w ∈W , set

sgn(w) = (−1)`(w), sgn′(w) = (−1)m (2.2)

where ` is the usual length function on W and m is the number of reflections from ∆
+

0 occurring in an
expression of w.

Beyond the Weyl denominator R defined in (1.2) it will be very important for us the Weyl-Kac super-
denominator, defined as

Ř =

∏
α∈∆+

0
(1− e−α)∏

α∈∆+
1

(1− e−α)
. (2.3)

As a notational convention, we denote by LX(µ) the irreducible highest weight module of highest
weight µ for a Lie algebra of type X .

3 Denominator formulas for distinguished set of positive roots
Kac and Wakimoto provided an expression for R, Ř for certain systems of positive roots.
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Theorem 3.1 Let g be a classical Lie superalgebras and let ∆+ be any set of positive roots such that a
maximal isotropic subset S of ∆+ is contained in the set of simple roots Π corresponding to ∆+. Then

eρR =
∑
w∈W ]

sgn(w)w
eρ∏

β∈S(1 + e−β)
, (3.1)

eρŘ =
∑
w∈W ]

sgn′(w)w
eρ∏

β∈S(1− e−β)
. (3.2)

This result has been stated in [7], and fully proved if |S| = 1 by using representation theoretical methods.
A complete combinatorial proof has recently been obtained by Gorelik [3]. Note that a distinguished set
of positive roots verifies the hypothesis of Theorem 3.1 if and only if def g = 1 (i.e., |S| = 1).

The choice of a set of positive roots ∆+determines a polarization g1 = g+
1 +g−1 , where g±1 =

⊕
α∈∆±1

gα.

Hence we can consider the Weyl algebra W (g1) of (g1, ( , )|g1
) and construct the W (g1)-module

M∆+

(g1) = W (g1)/W (g1)g+
1 , (3.3)

with action by left multiplication. The module M∆+

(g1) is also a sp(g1, ( , ))–module with T ∈
sp(g1, ( , )) acting by left multiplication by

θ(T ) = −1

2

dim g1∑
i=1

T (xi)x
i, (3.4)

where {xi} is any basis of g1 and {xi} is its dual basis w.r.t. ( , ). It is easy to check that, in W (g1),
relation

[θ(T ), x] = T (x) (3.5)

holds for any x ∈ g1. This implies that we have a h-module isomorphism

M∆+

(g1) ∼= S(g−1 )⊗ C−ρ1 (3.6)

where ρ1 is the half sum of positive odd roots and S(g−1 ) is the symmetric algebra of g−1 . Hence its
h-character is given by

chM∆+

(g1) =
e−ρ1∏

α∈∆+
1

(1− e−α)
. (3.7)

The key of our approach to the denominator formula is the following observation: since ad(g0) ⊂
sp(g1, ( , )), we obtain an action of g0 on M∆+

(g1). Upon multiplication by eρ0
∏
α∈∆+

0
(1 − e−α) the

r.h.s. of (3.7) becomes eρŘ and equating it with the g0-character of M∆+

(g1) one obtains our formula.
Our approach to the calculation of the g0-character of M∆+

(g1) is outlined in Section 4. Next we deal
the special case of type I Lie superalgebras (cf. [5]).
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3.1 Type I superalgebras
The key of our approach is the following fact, which is easily proved.

Lemma 3.2 Let g be a type I basic classical Lie superalgebra and let ∆+ be a distinguished set of positive
roots. Then g+

1 and g−1 are g0-modules.

Corollary 3.3 For type I superalgebras, we have

M∆+

(g1) ∼= S(g−1 )⊗ C−ρ1 (3.8)

as g0-modules.

The previous corollary reduces the problem of computing the g0-character of M∆+

(g1) to the calculation
of the g0-character of S(g−1 ). This latter character is well-known: for a uniform approach one might e.g.
refer to the work of Schmid [10].

We start discussing the denominator formula in typeA(m,n),m 6= n. Introduce the following notation:
h is the set of diagonal matrices in gl(m + 1|n + 1) with zero supertrace, {εi} is the standard basis of
(Cm+n+2)∗ and δi = εm+i+1, 1 ≤ i ≤ n+ 1.

It follows from the analysis made in [5, 2.5.4] that in this case there are two distinguished sets of positive
roots up to W -action: if we fix ∆+

0 = {εi − εj | 1 ≤ i < j ≤ m+ 1} ∪ {δi − δj | 1 ≤ i < j ≤ n+ 1},
and we set ∆+

1 = {εi − δj | 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1}, then the only distinguished sets of positive
roots containing ∆+

0 are ∆+
0 ∪∆+

1 and ∆+
0 ∪ −∆+

1 . The arguments which follow clearly hold for both
systems, hence we deal only with ∆+

0 ∪∆+
1 which we denote by ∆+

A (or just by ∆+). Its corresponding
set of simple roots is Π = {ε1 − ε2, ε2 − ε3, . . . , εm+1 − δ1, δ1 − δ2, . . . , δn − δn+1}.

By Corollary 3.3 we have to calculate the g0-character of S(g−1 ). Note that, according to our identifica-
tions, the action of g0 on g−1 is the natural action of {(A,B) ∈ gl(n+1)×gl(m+1) | tr(A)+tr(B) = 0}
on (Cn+1)∗ ⊗ Cm+1. Assume m > n. Cauchy formulas in our setting give

ch(S(g−1 )) = ch(S((Cn+1)∗ ⊗ Cm+1)) =
∑
λ

LAm(τ(λ))LAn(λ) (3.9)

where for λ1 ≥ λ2 ≥ . . . ≥ λn+1

λ =

n+1∑
i=1

λiδi, τ(λ) = −w0(

n+1∑
i=1

λiεi). (3.10)

and w0 is the longest element in the symmetric group W (Am). Set

γ1 = εm+1 − δ1, γ2 = εm − δ2, . . . . . . , γn+1 = εm−n+1 − δn+1. (3.11)

Then (3.8) and (3.9) imply

S(g−1 )⊗ C−ρ1 =
⊕

s1≥s2≥...≥sn+1

LAm×An(−ρ1 − s1γ1 − . . .− sn+1γn+1). (3.12)
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Denote by λs1,...,sn+1
the g0-dominant weight appearing in the r.h.s. of the above expression. Taking the

g0-supercharacter of both sides of (3.12) and using the Weyl character formula, we have

e−ρ1∏
β∈∆+

1

(1 + e−β)
=

∑
s1≥s2≥...≥sn+1

(−1)s1+s2+...+sn+1chLAm×An(λs1,...,sn+1
) = (3.13)

∑
s1≥s2≥...≥sn+1

(−1)s1+s2+...+sn+1

∑
w∈W

sgn(w)
ew(λs1,...,sn+1

+ρ0)

eρ0
∏

β∈∆+
0

(1− e−α)
.

Then, multiplying the first and last member of the equalities in (3.13) by eρ0
∏
β∈∆+

0
(1− e−β), we obtain

eρR =
∑

s1≥s2≥...≥sn+1

(−1)s1+s2+...+sn+1

∑
w∈W

sgn(w)ew(ρ−s1γ1−...−sn+1γn+1).

Hence we have proven formula (3.14) below, which is an instance of (1.3). Deriving the companion
formula (3.15) is even easier: start from

e−ρ1∏
β∈∆+

1

(1− e−β)
=

∑
s1≥s2≥...≥sn+1

chLAm×An(λs1,...,sn+1
)

and proceed as above. So we have proved the following proposition.

Proposition 3.4 Let g be a Lie superalgebra of type A(m,n),m > n. Then for a distinguished set of
positive roots we have:

eρR =
∑
w∈W

sgn(w)w
eρ

(1 + e−γ1)(1− e−γ1−γ2) · · · (1 + (−1)n+1e−γ1−γ2−...−γn+1)
, (3.14)

eρŘ =
∑
w∈W

sgn(w)w
eρ

(1− e−γ1)(1− e−γ1−γ2) · · · (1− e−γ1−γ2−...−γn+1)
. (3.15)

Remark 3.1 The above formulas hold clearly in gl(n+ 1, n+ 1), but do not restrict to sl(n+ 1, n+ 1),
since the last factor in the r.h.s. of (3.15) has a pole. Note that this factor is W -invariant, hence can be
taken out of the sum. Since the left hand side restricts to sl(n+ 1, n+ 1), the sum∑

w∈W
sgn(w)w

eρ

(1− e−γ1)(1− e−γ1−γ2) · · · (1− e−γ1−γ2−...−γn)

is divisible by 1 − e−γ1−γ2−...−γn+1 . After simplifying, we may restrict to the Cartan subalgebra of
A(n, n) getting a superdenominator formula in this type too.

Remark 3.2 The above reasoning works also in type C. There are two distinguished sets of positive roots
(cf. [5, 2.5.4]), one being the opposite of the other. Using Corollary 3.3 and a theorem of Schmid [10] in
place of Cauchy formulas we get (1.3) and (1.4) in this case.
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4 The g0-character of M∆+

(g1) via compact dual pairs
We start discussing the possible distinguished root systems up to W -equivalence for type II Lie superal-
gebras of defect greater than 1, following [5].

In type B(m,n) there is a unique distinguished set of positive roots ∆+
B , which, with notation as in [5],

can be described as follows. We have, for 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n,

∆+
0 = {εi ± εj , εi, δk ± δl, 2δk}, ∆+

1 = {δk ± εi, δk}, (4.1)

∆
+

0 = {εi ± εj , εi, δk ± δl}, ∆
+

1 = {δk ± εi}, (4.2)
Π = {δ1 − δ2, . . . , δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm}, (4.3)
2ρ1 = (2m+ 1)(δ1 + . . .+ δn). (4.4)

Note that ±{εi ± εj , εi} is a root system of type Bm (which will be denoted by ∆(Bm)), that ±{δk ±
δl, 2δk} is a root system of type Cn (which will be denoted by ∆(Cn)) and that ±{δk − δl | 1 ≤ k 6= l ≤
n} is a root system of type An−1 (which will be denoted by ∆(An−1)).

In type D(m,n) there are three distinguished sets of positive roots ∆+
D1,∆

+
D2,∆

+
D2′ . The correspond-

ing sets of simple roots are

Π1 = {δ1 − δ2, . . . , δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm},
Π2 = {ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn},
Π′2 = {ε1 − ε2, . . . , εm−1 + εm,−εm − δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn}.

Theorem 4.1 The character ofM∆+

(g1) as a g0-module is afforded by the Theta correspondence for the
compact dual pairs (G1, G2) as in the following table

∆+ (G1, G2)

∆+
B (O(2m+ 1), Sp(2n,R))

∆+
A (U(m), U(n))

∆+
D1 (O(2m), Sp(2n,R))

∆+
D2 (Sp(m), O∗(2n))

∆+
D2′ (Sp(m), O∗(2n))

(4.5)

For a quick review of the Theta correspondence see e.g. [1]. The explicit Theta correspondence is provided
in [8] for the first, second and third dual pairs and in [9] for the fourth and fifth.

4.1 B(m,n),m ≥ n.
Theorem 7.2 of [8] and (3.7) give

chM∆+

(g1) =
e−ρ1∏

β∈∆+
1

(1− e−β)
= (4.6)∑

a1≥a2≥...≥an≥0

chLCn(−(an +m+ 1
2 )δ1 − . . .− (a1 +m+ 1

2 )δn) chLBm(a1ε1 + . . .+ anεn).



804 Victor Kac and Pierluigi Möseneder Frajria and Paolo Papi

By [4, Theorem 9.2 a)], LCn(−(an + m + 1
2 )δ1 − . . . − (a1 + m + 1

2 )δn) is an irreducible parabolic
Verma module w.r.t. ∆(An−1). To prove irreducibility we have to show that if λ = −(an +m+ 1

2 )δ1 −
. . .− (a1 +m+ 1

2 )δn then

(λ+ ρCn , ψ) /∈ Z>0 ∀ψ ∈ ∆+(Cn) \∆+(An−1).

Since λ+ ρCn = (n− an−m− 1
2 )δ1 + (n− an−1−m− 3

2 )δ2 + . . .+ (−a1−m− 1
2 )δn, the condition

m ≥ n implies that all coefficients of the δi, δi + δj are not positive integers and the claim follows.
Therefore the character is given by

chLCn(−(an +m+ 1
2 )δ1 − . . .− (a1 +m+ 1

2 )δn)

=
chLAn−1(−(an +m+ 1

2 )δ1 − . . .− (a1 +m+ 1
2 )δn)∏

1≤k, l≤n
(1− e−(δk+δl))

=

∑
w∈W (An−1) sgn(w)weρ

An−1−(an+m+
1
2 )δ1−...−(a1+m+

1
2 )δn∏

1≤k, l≤n
(1− e−(δk+δl)) ·

∏
1≤k<l≤n

(1− e−(δk−δl))
(4.7)

where the second equality has been obtained using the Weyl character formula. Again Weyl formula
allows us to make explicit the character of LBm(a1ε1 + . . .+ anεn):

chLBm(a1ε1 + . . .+ anεn) =

∑
w∈W (Bm) sgn(w)weρ

Bm+a1ε1+...+anεn∏
1≤i<j≤m

(1− e−(εi−εj))(1− e−(εi+εj))
m∏
i=1

(1− e−εi)
. (4.8)

Set now
γ1 = δn − ε1, γ2 = δn−1 − ε2, . . . , γn = δ1 − εn. (4.9)

Combining (4.6), (4.7),(4.8),(4.4) we obtain

Proposition 4.2 If γ1, . . . , γn are defined by (4.9), we have

eρR =
∑

w∈W (An−1)×W (Bm)

sgn(w)w
eρ

(1 + e−γ1)(1− e−(γ1+γ2)) · · · (1 + (−1)n+1e−(γ1+...+γn))
, (4.10)

eρŘ =
∑

w∈W (An−1)×W (Bm)

sgn(w)w
eρ

(1− e−γ1)(1− e−(γ1+γ2)) · · · (1− e−(γ1+...+γn))
. (4.11)

Remark 4.1 We want to prove that (4.11) coincides with (1.4). Recall that eρŘ is such that w(eρŘ) =
sgn′(w)eρŘ. Take g ∈ Γ = W (Cn)/W (An−1), i.e., a sign change on the δi, and compute:∑

g∈Γ

sgn′(g)g(eρŘ) = 2neρŘ.

On the other hand, note that ΓW (An−1) = W (Cn), therefore if we apply
∑
g∈Γ sgn

′(g)g we get the
(suitably signed) summation over the full Weyl group W , and (4.11) becomes (1.4).
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4.2 B(2, 4).
This is a defect 2 case. By Kashiwara-Vergne theorem,

M∆+

(g1) =
∑

a1≥a2≥0

L(− 5
2δ1 −

5
2δ2 − ( 5

2 + a2)δ3 − ( 5
2 + a1)δ4)⊗ L(a1ε1 + a2ε2)+ (4.12)

∑
a1≥a2≥1

L(− 5
2δ1 −

7
2δ2 − ( 5

2 + a2)δ3 − ( 5
2 + a1)δ3)⊗ L(a1ε1 + a2ε2)

A computation with Kazhdan-Lusztig polynomials shows that we can write the sp(8,C)-modules appear-
ing in terms of the ∆(A3)-parabolic Verma modules whose highest weights shifted by ρC4 are

3
2δ1 + 1

2δ2 − ( 1
2 + a2)δ3 − ( 3

2 + a1)δ4, − 1
2δ1 −

3
2δ2 − ( 1

2 + a2)δ3 − ( 3
2 + a1)δ4, (4.13)

3
2δ1 −

1
2δ2 − ( 1

2 + a2)δ3 − ( 3
2 + a1)δ4,

1
2δ1 −

3
2δ2 − ( 1

2 + a2)δ3 − ( 3
2 + a1)δ4.

Hence we have

eρŘ =
∑

w∈W (A3)

∑
u∈A

∑
v∈W (B2)

sgn(w)sgn(v)w uv
eρ

(1− e−δ3+ε1)(1− e−δ3−δ4+ε1+ε2)
(4.14)

where A is a set of coset representatives related to the list (4.13). Now argue as in Remark 4.1. Take
g ∈ Γ = W (C4)/W (A3). On the one hand

∑
g∈Γ sgn

′(g)g(eρŘ) = 16eρŘ. On the other hand, note
that ΓW (A3) = ΓW (A3)A = W (C4), therefore if we apply

∑
g∈Γ sgn

′(g)g to the r.h.s. of (4.14) we
get four times the r.h.s. of (4.14). So

eρŘ =
1

4

∑
w∈W

sgn′(w)w
eρ

(1− e−δ3+ε1)(1− e−δ3−δ4+ε1+ε2)

proving (1.4) in this case. In the general case, the calculation of the KL-polynomials is replaced by the
use of a result of Enright on the u-homology of unitary highest weight modules (cf. [2]).

5 Final remarks
We would like to rephrase our main theorem in a form which seems most suitable for a generalization.
We need to single out a special maximal isotropic subset S of positive roots. Fix a distinguished set of
positive roots ∆+. Construct S = S1∪ . . .∪Sm = {γ1, . . . , γd}, d = def g, as follows: S1 is an isotropic
subset having maximal cardinality in the set of simple roots, and inductively Si is such a subset in the set
of indecomposable roots of S⊥i−1 \ Si−1. Define

γ≤i = {β ∈ S, β ≤ γi}, 〈γi〉 =
∑
β∈γ≤i

β, sgn(γi) = (−1)|γ
≤
i |+1 (5.1)

where as usual α ≤ β if β−α is a sum of positive roots. This procedure determines uniquely S once ∆+

is fixed (up to a mild exception in type D) and gives rise to the set {γ1, . . . , γd} of Theorem 1.1.
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Theorem 5.1 Let g = g0⊕g1 be a basic classical Lie superalgebra of defect d, where g = A(d−1, d−1)
is replaced by gl(d, d). Then, for any distinguished set of positive roots, if S is as above, we have

eρR =
1

C

∑
w∈W

sgn(w)w
eρ∏d

i=1(1 + sgn(γi)e−〈γi〉)
, (5.2)

eρŘ =
1

C

∑
w∈W

sgn′(w)w
eρ∏d

i=1(1− e−〈γi〉)
, (5.3)

where C is defined in (1.5).

We would like to remark that the above statement holds true in the hypothesis of Kac-Wakimoto-Gorelik
theorem (in which case e−〈γi〉 = e−γi and C = |W/W ]|).

Denote by Q, Q0 the lattices generated by all roots and even roots, respectively. Set

ε(η) =

{
1 if η ∈ Q0

−1 if η ∈ Q \Q0

, ||γ|| =
∑
β∈γ≤

ε(γ − β)β.

Note that for the γi appearing in (5.2), (5.3) the equality 〈γi〉 = ||γi|| holds. We modify the construction
of S as follows: S1 is an isotropic subset having maximal cardinality in a maximal subdiagram of type
A of odd cardinality having only odd simple roots, and inductively Si is such a subset in the set of
indecomposable roots of S⊥i−1 \ Si−1. This time the choice of S is not unique.

Conjecture 5.2 Let g be a basic classical Lie superalgebra of defect d, where g = A(d − 1, d − 1) is
replaced by gl(d, d), and ∆+ any set of positive roots. Let S be any maximal isotropic subset of ∆+ built
up as above. Then

eρR =
1

K

∑
w∈W

sgn(w)w
eρ∏d

i=1(1 + sgn(γi)e−||γi||)
,

eρŘ =
1

K

∑
w∈W

sgn′(w)w
eρ∏d

i=1(1− e−||γi||)
,

where

K =
C d!∏

γ∈S

ht(γ)+1
2

,

C is defined in (1.5) and ht(γ) denotes the height of the root γ w.r.t. to the simple roots corresponding
to ∆+. Moreover, there exists a choice of S for which ||γi|| is a linear combination with non negative
coefficients of positive roots for any i = 1, . . . , d.
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