n! matchings, n! posets (extended abstract)
Anders Claesson, Svante Linusson

To cite this version:
$n!$ matchings, $n!$ posets (extended abstract)

Anders Claesson† and Svante Linusson‡

1The Mathematics Institute, School of Computer Science, Reykjavik University, Menntavegi 1, IS-101 Reykjavik, Iceland
2Department of Mathematics, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Abstract. We show that there are $n!$ matchings on $2n$ points without, so called, left (neighbor) nestings. We also define a set of naturally labeled $(2+2)$-free posets, and show that there are $n!$ such posets on n elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. They gave bijections between four classes of combinatorial objects: matchings with no neighbor nestings (due to Stoimenow), unlabeled $(2+2)$-free posets, permutations avoiding a specific pattern, and so called ascent sequences. We believe that certain statistics on our matchings and posets could generalize the work of Bousquet-Mélou et al. and we make a conjecture to that effect. We also identify natural subsets of matchings and posets that are equinumerous to the class of unlabeled $(2+2)$-free posets.

We give bijections that show the equivalence of (neighbor) restrictions on nesting arcs with (neighbor) restrictions on crossing arcs. These bijections are thought to be of independent interest. One of the bijections maps via certain upper-triangular integer matrices that have recently been studied by Dukes and Parviainen [Electron. J. Combin. 17 (2010) #R53]

Nous donnons des bijections qui démontrent l’équivalence entre les restrictions sur les emboîtements (d’arcs voisins) et les restrictions sur les croisements (d’arcs voisins). Nous pensons que ces bijections présentent un intérêt propre. L’une de ces bijections passe par certaines matrices triangulaires supérieures à coefficients entiers qui ont été récemment étudiées par Dukes et Parviainen [Electron. J. Combin. 17 (2010) #R53]

Keywords: matching, poset, inversion table, permutation, ascent sequence, nesting, crossing

†Claesson was supported by grant no. 090038011 from the Icelandic Research Fund.
‡Linusson is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation.

1365–8050 © 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
1 Introduction

A matching of the integers \(\{1, 2, \ldots, 2n\}\) is a partition of that set into blocks of size 2. An example of a matching is
\[
M = \{(1, 3), (2, 7), (4, 6), (5, 8)\}.
\]

In the diagram below there is an arc connecting \(i\) with \(j\) precisely when \((i, j) \in M\).

A nesting of \(M\) is a pair of arcs \((i, \ell)\) and \((j, k)\) with \(i < j < k < \ell\):

We call such a nesting a left-nesting if \(j = i + 1\). Similarly, we call it a right-nesting if \(\ell = k + 1\). The example matching has one nesting, formed by the two arcs \((2, 7)\) and \((4, 6)\). It is a right-nesting.

To give upper bounds on the dimension of the space of Vassiliev’s knot invariants of a given degree, Stoimenow [14] was led to introduce what he calls regular linearized chord diagrams. In the terminology of this paper, Stoimenow’s diagrams are matchings with no neighbor nestings, that is, matchings with neither left-nestings, nor right-nestings. Following Stoimenow’s paper, Zagier [16] derived the following beautiful generating function enumerating such matchings with respect to size:

\[
\sum_{n \geq 0} \prod_{i=1}^{n} (1 - (1 - t)^i).
\]

Recently, Bousquet-Mélou et al. [2] gave bijections between matchings on \([2n]\) with no neighbor nestings and three other classes of combinatorial objects, thus proving that they are equinumerous. The other classes were unlabeled \((2 + 2)\)-free posets (or interval orders) on \(n\) nodes; permutations on \([n]\) avoiding the pattern \(\mathcal{P}_{12}\); and ascent sequences of length \(n\). Let \(f_n\) be the cardinality of any, and thus all, of the above classes—it is the coefficient in front of \(t^n\) in Zagier’s generating function. We call \(f_n\) the \(n\)th Fishburn number; the first few numbers are 1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240. Fishburn [7, 8, 9] did pioneering work on interval orders; for instance, he showed the basic theorem that a poset is an interval order if and only if it is \((2 + 2)\)-free.

The pattern avoiding permutations and the ascent sequences were both defined by Bousquet-Mélou et al. We shall recall those definitions there. In a permutation \(\pi = a_1 \ldots a_n\), an occurrence of the pattern \(\mathcal{P}_{12}\) is a 3 letter subsequence \(a_i a_{i+1} a_j\) of \(\pi\) such that \(a_j + 1 = a_i < a_{i+1}\). As an example, the permutation \(\pi = 351426\) contains one such occurrence, namely 352. If \(\pi\) contains no such occurrence we say that \(\pi\) avoids the pattern. An integer sequence \((x_1, \ldots, x_n)\) is an ascent sequences if

\[
x_1 = 0 \quad \text{and} \quad 0 \leq x_i \leq 1 + \text{asc}(x_1, \ldots, x_{i-1}),
\]

for \(2 \leq i \leq n\). Here, \(\text{asc}(x_1, \ldots, x_k)\) denotes the number of ascents in \((x_1, \ldots, x_k)\), and an ascent is a \(j \in [k-1]\) such that \(x_j < x_{j+1}\). Bousquet-Mélou et al. [2] derived a closed expression for the generating
function enumerating ascent sequences with respect to length and number of ascents; hence they gave a new proof of Zagier’s result, or rather a refinement of it.

Recall that Stoimenow’s diagrams are matchings with no neighbor nestings. The discovery that led to the present paper is that there are exactly \(n!\) matchings on \([2n]\) with no left-nestings (Theorem 1). As an example, these are the 6 such matchings on \(\{1, \ldots, 6\}\):

Can we also “lift” ascent sequences and unlabeled \((2 + 2)\)-free posets to the level of all permutations? That is, can we define “certain sequences” and “certain posets”, both of cardinality \(n!\), that are supersets of ascent sequences and unlabeled \((2 + 2)\)-free posets, respectively? For ascent sequences this is easy, and inversion tables is a natural choice. The poset case is more challenging. However, we show (Definition 2 and Theorem 5) that there are exactly \(n!\) naturally labeled posets \(P\) on \([n]\) such that \(i < P k\) whenever \(i < j < P k\) for some \(j \in [n]\); we call them factorial posets. Here is a list of the 6 factorial posets on \(\{1, 2, 3\}\):

It is not hard to see (Proposition 4) that factorial posets are \((2 + 2)\)-free. Moreover, we give an additional restriction on the labeling of factorial posets under which the labeling is unique (Proposition 6), and thus the subset of factorial posets meeting that restriction is trivially in bijection with unlabeled \((2 + 2)\)-free posets.

The bijections we give to prove that inversion tables, factorial posets and matchings with no left-nesting are equinumerous do however not specialize to give back the results from [2]. This remains an interesting challenge. In Section 5 we prove that we could have studied matchings with restrictions on crossings instead of on nestings and present bijections to verify this.

Let \(p = \frac{2n}{n}\). As mentioned before, Bousquet-Mélou et al. [2] gave a bijection between matchings with no neighbor nestings and \(p\)-avoiding permutations. We conjecture (Conjecture 19) a generalization of that result. Namely, we conjecture that the distribution of right-nestings over matchings on \([2n]\) with no left-nestings coincides with the distribution of \(p\) over permutations on \([n]\).

In a recent paper, Dukes and Parviainen [6] study upper triangular matrices with non-negative integer entries such that each row and column has at least one nonzero entry and the total sum of the entries is \(n\). They provide a recursive encoding of those matrices as ascent sequences. We have found a direct bijection (Theorem 8) from the same matrices to matchings with no neighbor nestings. In addition, we show (Proposition 11) that the subset of the matrices whose entries are 0 or 1 are in bijection with matchings with no left-nestings and no right-crossings.

2 Matchings with no left-nestings

Let \(M_n\) be the set of matchings on \([2n]\), and let \(M \in M_n\). If \(i < j\) and \(\alpha = (i, j)\) is an arc of \(M\) we call \(i\) the opener of \(\alpha\), and we call \(j\) the closer of \(\alpha\). In what follows it will be convenient to order the arcs
with respect to closer. In particular, “the last arc” refers to the arc with closer $2n$. In the introduction we defined what left- and right-nestings are, and by $\ln e(M)$ and $\rnn e(M)$ we shall denote the number of left- and right-nestings, respectively. Let
\begin{equation*}
N_n = \{ M \in \mathcal{M}_n : \ln e(M) = 0 \}
\end{equation*}
and $\mathcal{N} = \bigcup_{n \geq 0} N_n$. Define \mathcal{I}_n as the Cartesian product $\mathcal{I}_n = [0, 0] \times [0, 1] \times \cdots \times [0, n - 1]$, where $[i, j] = \{ i, i + 1, \ldots, j \}$. In other words, \mathcal{I}_n is the set of inversion tables of length n. Also, let $\mathcal{J} = \bigcup_{n \geq 0} \mathcal{J}_n$.

Theorem 1 Matchings of $[2n]$ with no left-nestings are in bijection with inversion tables of length n, and thus $|N_n| = n!$.

Proof: Using recursion we define a bijection $f : \mathcal{J} \to \mathcal{N}$. Let $f(e) = \emptyset$, that is, let the empty inversion table map to the empty matching. Let $w = (a_1, \ldots, a_n)$ be any inversion table in \mathcal{I}_n with $n > 0$. Let $w' = (a_1, \ldots, a_{n-1})$ and let $M' = f(w')$. Now create a matching M in N_n by inserting a new last arc in M' whose opener is immediately to the left of the (a_{n+1})st closer of M' if $a_n < n - 1$ and immediately to the left of its own closer if $a_n = n - 1$. Set $f(w) = M$. Note that the opener of the last arc has to be immediately to the left of some closer, otherwise a left-nesting would be created. Also note that removing the last arc from a matching in N_n cannot create a left-nesting. From a simple induction argument it thus follows that the described map is a bijection.

It is also easy to give a direct, non-recursive, description of the inverse of f. Indeed, $f^{-1}(M) = (a_1, \ldots, a_n)$ where a_i is the number of closers to the left of the opener of the ith arc; here, as before, arcs are ordered by closer. \hfill \Box

As an example, let $w = (a_1, a_2, a_3, a_4) = (0, 1, 0, 1)$. To construct the matching corresponding to that inversion table we insert the arcs one at the time, so that—as in the proof—the opener of the new last arc is immediately to the left of the $(a_i + 1)$st closer:

Here the star marks the opener of the new arc. Reading the number to the right of the star we get $(1, 2, 1, 2)$ and subtracting one from each coordinate we recover the inversion table $(0, 1, 0, 1)$.

3 Factorial posets

A poset P of cardinality n is said to be labeled if its elements are identified with the integers $1, \ldots, n$. A poset P is **naturally labeled** if $i < j$ in P implies $i < j$ in the usual order.

Definition 2 We call a naturally labeled poset P on $[n]$ such that, for $i, j, k \in [n],$
\begin{equation*}
i < j <_P k \implies i <_P k \quad a\text{ factorial poset, and by } \mathcal{F}_n \text{ we denote the set of factorial posets on } [n]. \quad \text{Similarly, we call a naturally labeled poset } P \text{ on } [n] \text{ such that, for } i, j, k \in [n],
\end{equation*}
\begin{equation*}
i > j >_P k \implies i >_P k
\end{equation*}
a **dually factorial poset.**
There are 6 factorial posets on \{1, 2, 3\}, and we listed them on page \[\text{Page 1}\]. It is easy to check that of those posets, exactly one is not dually factorial: With \(P = \{ 2 \circ 1 \circ 3 \}\) we have \(3 > 2 >_P 1\), but \(3 \not<_P 1\).

Definition 3 The predecessor set of \(j \in P\) is \(\text{Pred}(j) = \{ i : i <_P j \}\), and we denote by \(\text{pred}(j) = \# \text{Pred}(j)\) the number of predecessors of \(j\). Similarly we define \(\text{Succ}(j) = \{ i : i >_P j \}\) as the successor set of \(j\) and \(\text{succ}(j) = \# \text{Succ}(j)\) as the number of successors of \(j\).

Note that \(P\) is factorial if, and only if, for all \(k \in P\), there is a \(j \in [0, n - 1]\), such that \(\text{Pred}(k) = [1, j]\). It is well known—see for example Bogart [1]—that a poset is \((2 + 2)\)-free if, and only if, the collection \{ \(\text{Pred}(k) : k \in P\) \} of predecessor sets can be linearly ordered by inclusion; hence the following proposition.

Proposition 4 Factorial posets are \((2 + 2)\)-free.

Theorem 5 Factorial posets on \([n]\) are in bijection with inversion tables of length \(n\), and thus \(|\mathcal{F}_n| = n!\).

Proof: Define \(g : \mathcal{F}_n \to \mathcal{I}_n\) by \(g(P) = (a_1, \ldots, a_n)\) where \(a_k = \text{pred}(k)\). To see that \(g\) is a bijection we describe its inverse. Given an inversion table \(w = (a_1, \ldots, a_n)\) in \(\mathcal{I}_n\) we construct a factorial poset \(P = P(w)\) by postulating that \(i <_P k\) precisely when \(1 \leq i \leq a_k\). That this definition is consistent is easily seen by building \(P\) recursively.

We now have two bijections, \(f\) from inversion tables to matchings with no left-nestings, and \(g\) from factorial posets to inversion tables. Let \(h = f \circ g\) be their composition:

\[
\begin{array}{c}
\mathcal{F}_n \\
\downarrow \quad g \\
\mathcal{I}_n \\
\downarrow \quad f \\
\mathcal{N}_n
\end{array}
\]

Let \(P \in \mathcal{F}_n\). From the proofs of Theorems 5 and 1 it is immediate that to build \(M = h(P)\) we insert the arcs one at the time so that, in the \(i\)th step, the opener of the new last arc is immediately to the left of the \((\text{pred}(i) + 1)\)st closer.

Next we describe the inverse map, \(h^{-1}\). Take \(M \in \mathcal{N}_n\), and let \(\alpha_1, \ldots, \alpha_n\) be its arcs ordered by closer. Then \(i < j\) in \(P = h^{-1}(M)\) if and only if the closer of \(\alpha_i\) is to the left of the opener of \(\alpha_j\).

An interval order is a poset with the property that each element \(x\) can be assigned an interval \(I(x)\) of real numbers so that \(x < y\) in the poset if and only if every point in \(I(x)\) is less than every point in \(I(y)\). Such an assignment is called an interval representation of the poset. In 1970, Fishburn [8] showed that a poset is \((2 + 2)\)-free precisely when it has an interval representation. Let us for a moment identify the arcs of a matching with intervals of the real line. Then the function \(h\), above, gives an interval representation of each factorial poset.

4 A unique labeling

Let \(M \in \mathcal{N}_n\) and let \(\alpha_1, \ldots, \alpha_n\) be its arcs ordered by closer. Let \(P = h^{-1}(M)\). Assume that \(1 \leq i < j \leq n\) in the usual order. Note that if \(\alpha_i\) and \(\alpha_j\) form a nesting, then we cannot have \(\text{pred}(i) = \text{pred}(j)\) since then it would be a left-nesting which can never occur by the definition of \(g^{-1}\). Thus \(\alpha_i\) and \(\alpha_j\) form a nesting precisely when \(\text{pred}(i) > \text{pred}(j)\). If, in addition, \(j = i + 1\) and \(\text{succ}(i) = \text{succ}(j)\) then \(\alpha_i\) and
\(\alpha_j \) form a right-nesting. Thus \(M \) is non-neighbor-nesting precisely when for each \(i \in [n-1] \) we have \(\text{pred}(i) \leq \text{pred}(i+1) \) or \(\text{succ}(i) > \text{succ}(i+1) \). By applying the bijection of Bousquet-Mélou et al. \[2\] from non-neighbor-nesting matchings to unlabeled \((2+2)\)-free posets we get the following result.

Proposition 6 Factorial posets on \([n]\) such that for each \(i \in [n-1] \) we have

\[
\text{pred}(i) \leq \text{pred}(i+1) \quad \text{or} \quad \text{succ}(i) > \text{succ}(i+1)
\]

are in bijection with unlabeled \((2+2)\)-free posets on \(n \) nodes; hence there are exactly \(\frac{n!}{n} \) such posets.

An alternative way to see the above result is that given an unlabeled \((2+2)\)-free poset \(P \) there is exactly one way to label \(P \) so that the resulting poset is factorial and satisfies (1). The key observation to such a labeling is that if \(P \) is factorial and (1) holds then the pairs \((\text{succ}(1), \text{pred}(1)), \ldots, (\text{succ}(n), \text{pred}(n))\)

are ordered weakly decreasing with respect to the first coordinate, and on equal first coordinate weakly increasing with respect to the second coordinate. We, however, omit the details of this argument.

5 Crossings versus nestings

A *crossing* of a matching \(M \) is a pair of arcs \((i,k)\) and \((j,\ell)\) with \(i < j < k < \ell \), and we can define left- and right-crossings analogously to how it was defined for nesting arcs. With \(A \) and \(B \) as in the table below there are bijections between

\[
\{ M \in \mathcal{M}_n : M \text{ is non } A \} \text{ and } \{ M \in \mathcal{M}_n : M \text{ is non } B \}.
\]

A	B
nesting | crossing
neighbor nesting | neighbor crossing
left-nesting | left-crossing

The first case is well known: for bijections between non-nesting matchings and non-crossing matchings see for instance \[4, 5, 10\]. We give bijections for the two remaining cases in this section. There exist a more complicated bijection \[3\] that can explain all three levels at once; see comment at the end of this section.

The second case is the most challenging, so let us look at the third case first. The proof of Theorem \[1\] gives a bijection \(f \) from inversion tables to non-left-nesting matchings. That bijection can be modified to give a bijection \(f_{nc} \) from inversion tables to non-left-crossing matchings (Theorem \[7\]), and so \(f_{nc} \circ f^{-1} \) is a bijection from non-left-nesting to non-left-crossing matchings.

Theorem 7 Matchings of \([2n]\) with no left-crossing are in bijection with inversion tables of length \(n \); hence there are exactly \(n! \) such matchings.

Proof: As in the proof of Theorem \[1\] we define a bijection \(f_{nc} \) recursively. The difference is that this time the opener of the new last arc is immediately to the right of the \(a_n \)th closer if \(a_n > 0 \), or to the extreme left if \(a_n = 0 \).

For the second case, we shall give a bijection via matrices of a certain kind. Let \(\mathcal{T}_n \) be the set of upper triangular matrices with non-negative integer entries, such that no row or column has only zeros and the total sum of the entries is \(n \). These matrices have recently been studied by Dukes and Parviainen \[6\]...
they gave a recursive encoding of the matrices in \(T_n \) as ascent sequences, and thus they showed that \(|T_n| = f_n \). This fact seems to have been first observed by Vladeta Jovovic [11]. We shall give a surjection \(\psi \) from the set of matchings of \([2n]\) to \(T_n \). Further, we shall show that if \(\psi \) is restricted to non-neighbor-nesting matchings, or non-neighbor-crossing matchings, then \(\psi \) is a bijection.

Before we describe \(\psi \) we need a few definitions. Let \(M \) be a matching and let \(O(M) \) and \(C(M) \) be the set of openers and closers of \(M \), respectively. Write

\[
O(M) = O_1 \cup \cdots \cup O_k \quad \text{and} \quad C(M) = C_1 \cup \cdots \cup C_\ell,
\]

as disjoint unions of maximal intervals. Clearly, \(k = \ell \); we denote this number \(\text{int}(M) \). As an example, for \(M = \{(1, 2), (3, 5), (4, 6)\} \) we have \(O(M) = [1, 1] \cup [3, 4] \), \(C(M) = [2, 2] \cup [5, 6] \) and \(\text{int}(M) = 2 \).

We are now in a position to define the promised map from matchings to matrices. Assume that \(M \) is a matching and that its intervals of openers and closers are ordered in the natural order. Let

\[
\psi(M) = T
\]

where \(T = (t_{ij}) \) is an \(\text{int}(M) \times \text{int}(M) \) matrix and

\[
t_{ij} = |M \cap O_i \times C_j|.
\]

In other words, \(t_{ij} \) is the number of arcs whose opener is in \(O_i \) and closer in \(C_j \). For instance, the preimage of \((1 \ 1 \ 0 \ 1) \) under \(\psi \) consists of the following 4 matchings:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

Note that of these matchings exactly one has no neighbor nestings and exactly one has no neighbor crossings. We shall see that this is no coincidence. (For brevity the proofs of the following results have been excluded from this extended abstract.)

Theorem 8 When restricted to matchings of \([2n]\) with no neighbor nestings \(\psi \) is a bijection onto \(T_n \).

Theorem 9 When restricted to matchings of \([2n]\) with no neighbor crossings \(\psi \) is a bijection onto \(T_n \).

We have now explained the hierarchy of nesting and crossing conditions that we set out to explain in the beginning of this section. As we pointed out, the bijections for the more general cases do not specialize to give bijections between the smaller sets. Indeed, if we specialize the map \(\psi \) to matchings with no nestings we get the subset of matrices \((t_{ij})\) \(\in T_n \) such that for all \(i, j, x, y > 0 \), at least one of \(t_{i,j} \) and \(t_{i-x,j+y} \) must be zero. The non-zero entries in such a matrix will form a “path” with the entries as vertices, which can be seen to be equivalent to a Motzkin path. Thus, the matrices just described are in bijection with Motzkin paths with positive integer weights on the vertices of the path such that the sum of the weights is \(n \). If we on the other hand specialize \(\psi \) to matchings with no crossings we get the somewhat odd constraint that for all \(i < i + x \leq j < j + y \) at least one of \(t_{i,j} \) and \(t_{i+x,j+y} \) must be zero.

Corollary 10 The two subsets of \(T_n \) mentioned above are enumerated by the Catalan numbers.

Before we close this section we give one more result that is almost for free given the map \(\psi \). Let \(T_n^{01} \subset T_n \) be the set of zero-one matrices in \(T_n \). For instance,

\[
T_3^{01} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}.
\]
Dukes and Parviainen [6, §4] showed that the matrices in γ_0^1 correspond to those ascent sequences that have no two equal consecutive entries. We offer the following proposition.

Proposition 11 When restricted to matchings of $[2n]$ with no left-nestings and no right-crossings ψ is a bijection onto γ_0^1.

An important remark is that there exist a recent bijection by Chen et.al. [3], via certain walks in the Youngs lattice called vacillating tableaux, that uniformly shows all three cases above. For readers familiar with this bijection let us briefly describe why this is the case.

Let M be a matching of $[2n]$ in which j and $j + 1$ are two consecutive closers. In the notation of [3], let $\phi(M) = (\lambda^0, \ldots, \lambda^{4n})$ be the vacillating tableau corresponding to M. The assumption that j and $j + 1$ are closers means that $\lambda^{2j+2} \subseteq \lambda^{2j}$ and $\lambda^{2j} \subseteq \lambda^{2j-2}$. Let r_j be the row where λ^{2j+2} has fewer elements than λ^{2j} and let r_{j-1} be the row where λ^{2j} has fewer elements than λ^{2j-2}. The arcs ending in j and $j + 1$ form a right-nesting if and only if $r_{j-1} \leq r_j$, and thus they form a right-crossing if and only if $r_{j-1} > r_j$.

Now, consider the involution M^* obtained by conjugating each partition in $\phi(M)$ and then applying ϕ^{-1}. A moment of thought gives that the arcs ending in j and $j + 1$ form a right-nesting in M^* if and only if they form a right-crossing in M^*.

Similarly, if i and $i + 1$ are two consecutive openers of M, then $\lambda^{2i-1} \subseteq \lambda^{2i}$ and $\lambda^{2i} \subseteq \lambda^{2i+2}$. This time let r_i be the row in which λ^{2i+2} is greater than λ^{2i-2}. Then the arcs with openers i and $i + 1$ form a left-crossing if and only if $r_i < r_{i+1}$. Hence i and $i + 1$ form a left-nesting in M if and only if they form a left-crossing in M^*.

This shows that the bijection in [3] may be used to explain all three levels discussed here at once. It also shows that using the above restrictions we get two different subsets of all vacillating tableaux enumerated by $n!$ and one subset, satisfying both restrictions, that is enumerated by the Fishburn numbers.

6 Ascent and descent correcting sequences

It is easy to see that condition (1) in Proposition 6 is equivalent to

$$i >_P k \text{ and } i + 1 \not<_P k \implies i = \text{pred}(\ell) \text{ for some } \ell \in P.$$ \hspace{1cm} (2)

Let a **descent correcting sequence** be an inversion table (a_1, \ldots, a_n) such that

$$a_i > a_{i+1} \implies a_\ell = i \text{ for some } \ell > i.$$

That is, if there is a descent at position i then this has to be “corrected” by the value i occurring later in the sequence. Condition (2) translates directly to the condition for a descent correcting sequence, and thus we have the following Proposition (in which f_n is the nth Fishburn number).

Proposition 12 There are exactly f_n descent correcting sequences of length n.

We may similarly use the map f_{nc} from matchings with no left-crossings to inversion tables. We then get that the sequences corresponding to matchings with no neighbor crossings are the inversion tables (a_1, \ldots, a_n) such that

$$a_i < a_{i+1} \neq i + 1 \implies a_\ell = i \text{ for some } \ell > i.$$

We call them **ascent correcting sequences**. Using Theorem 9 we arrive at the following result.

Proposition 13 There are exactly f_n ascent correcting sequences of length n.

644

Anders Claesson and Svante Linusson
7 Posets that are both factorial and dually factorial

Note that being dually factorial entails the condition in Proposition 6. So, under h, matchings corresponding to dually factorial posets have no right-nestings. In fact, they do not have any nestings at all. To see this, assume that $M \in \mathcal{N}_n$ and let $\alpha_1, \ldots, \alpha_n$ are its arcs ordered by closer. Also, assume that $1 \leq i < j \leq n$. Recall that the arcs α_i and α_j form a nesting precisely when $\text{pred}(i) > \text{pred}(j)$, which is equivalent to there being a $k <_P i$ such that $k \not<_P j$; this cannot happen in a dually factorial poset. It is easy to see that this argument works both ways, so $M = h(P)$ is non-nesting if and only if P is dually factorial. It is well known that non-nesting matchings are counted by the Catalan numbers. See for instance Stanley [13, Ex. 6.19uu]. One way to associate a given non-nesting matching with a Dyck path is to map its openers to up-steps and its closers to down-steps.

Proposition 14 Exactly $C_n = \binom{2n}{n}/(n + 1)$ posets on $[n]$ are both factorial and dually factorial.

Let us mention an alternative proof. To the right is the smallest example of a factorial poset that is not dually factorial but satisfies the condition of Proposition 6. As stated by Proposition 4 factorial posets are $(2 + 2)$-free; those that, in addition, are dually factorial are $(3 + 1)$-free. However, we omit the details of this argument.

Proposition 15 If P is a factorial poset satisfying (1) from Proposition 6 then P is dually factorial if and only if P is $(3 + 1)$-free.

Since posets that are both factorial and dually factorial have a unique labeling we can regard them as unlabeled. Further, unlabeled posets that are both $(2 + 2)$- and $(3 + 1)$-free (also called semiorders) are known to be enumerated by the Catalan numbers; see [13, Ex. 6.19ddd] and [15].

8 Statistics and equidistributions

One question we shall consider in this section is what statistics are respected by the bijections f, g and h. For reference, we list the size 3 matchings, inversion tables, permutations and posets that correspond to each other under those bijections:

<table>
<thead>
<tr>
<th>1 2 3 4 5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>3 2 1</td>
</tr>
<tr>
<td>1 2 3</td>
</tr>
<tr>
<td>1 2 3</td>
</tr>
</tbody>
</table>

There are several well known ways of translating between permutations and inversion tables. Here we have chosen the following way: Given $\pi \in \mathcal{S}_n$, we build the corresponding inversion table w from right to left. The right most letter of w is $\pi^{-1}(n) - 1$. The remaining letters of w are obtained by repeating this procedure on the length $n - 1$ permutation that results from π by deleting n.

We shall now define the relevant statistics, and we start with statistics on posets. The ordinal sum \([12] \S 3.2\) of two posets \(P\) and \(Q\) is the poset \(P \oplus Q\) on the union \(P \cup Q\) such that \(x \leq y\) in \(P \oplus Q\) if \(x \leq_P y\) or \(x \leq_Q y\), or \(x \in P\) and \(y \in Q\). Let us say that \(P\) has \(k\) components, and write \(\text{comp}(P) = k\), if \(P\) is the ordinal sum of \(k\), but not \(k + 1\), nonempty posets. The number of minimal elements of a poset \(P\) is denoted \(\text{min}(P)\). The number of levels of \(P\)—in other words, the number of distinct predecessor sets in \(P\)—is denoted \(\text{lev}(P)\). A pair of elements \(x\) and \(y\) in \(P\) are said to be incomparable if \(x \not\leq_P y\) and \(y \not\leq_P x\). The number of incomparable pairs in \(P\) we denote by \(\text{ip}(P)\).

Let \(\pi\) be a permutation. An ascent in \(\pi\) is a letter followed by a larger letter; a descent in \(\pi\) is a letter followed by a smaller letter. The number of ascents and descents are denoted \(\text{asc}(\pi)\) and \(\text{des}(\pi)\), respectively. An inversion is a pair \(i < j\) such that \(\pi(i) > \pi(j)\). The number of inversions is denoted \(\text{inv}(\pi)\). A left-to-right minimum of \(\pi\) is a letter with no smaller letter to the left of it; the number of left-to-right minima is denoted \(\text{lmin}(\pi)\). The statistics right-to-left minima \(\text{rmin}(\pi)\), left-to-right maxima \(\text{lmax}(\pi)\), and right-to-left maxima \(\text{rmax}(\pi)\) are defined similarly. For permutations \(\pi\) and \(\sigma\), let \(\pi \oplus \sigma = \pi \sigma'\), where \(\sigma'\) is obtained from \(\sigma\) by adding \(|\pi|\) to each of its letters, and juxtaposition denotes concatenation. We say that \(\pi\) has \(k\) components, and write \(\text{comp}(\pi) = k\), if \(\pi\) is the sum of \(k\), but not \(k + 1\), nonempty permutations. Let \(\text{dent}(\pi)\) denote the number of distinct entries of the inversion table associated with \(\pi\).

For \(M\) a matching on \([2m]\) and \(N\) a matching on \([2n]\), let \(M \oplus N = M \cup N'\), where \(N'\) is the matching on \([2m + 1, 2m + 2n]\) obtained from \(N\) by adding \(2m\) to all of its openers and closers. Let us say that \(M\) has \(k\) components, and write \(\text{comp}(M) = k\), if \(M\) is the sum of \(k\), but not \(k + 1\), nonempty matchings. Let \(\min(M) = j - 1\) where \(j\) is the smallest closer of \(M\); for a factorial poset, \(j\) is the closer of the arc with opener 1. Let \(\text{last}(M)\) be the number of closers that are smaller than the opener of the last arc. Recall from Section \([5]\) that \(\text{int}(M)\) denotes the number of intervals in the list of openers of \(M\). Let us assume that \(k\) is the closer of some arc of \(M\), and let \(\alpha = (i, j)\) be another arc of \(M\). If \(i < k < j\) we say that \(k\) is embraced by \(\alpha\), and by \(\text{emb}(M)\) we denote the number of pairs \((k, \alpha)\) in \(M\) such that the closer \(k\) is embraced by \(\alpha\).

Proposition 16 Let \(f\) and \(g\) be as in the proofs of Theorems \([7]\) and \([8]\). Let \(P\) be a factorial poset on \([n]\). Let \(w = g(P)\) and \(M = f(w)\) be the corresponding inversion table and matching, respectively. Let \(\pi\) be the permutation corresponding to \(w\). Then

\[
\begin{align*}
(\text{comp}(P), \text{min}(P), \text{pred}(n), \text{lev}(P), \text{ip}(P)) &= \\
(\text{comp}(\pi), \text{lmin}(\pi), \pi^{-1}(n) - 1, \text{dent}(\pi), \text{inv}(\pi)) &= \\
(\text{comp}(M), \text{min}(M), \text{last}(M), \text{int}(M), \text{emb}(M)) &=
\end{align*}
\]

Proof: For brevity the proof of this theorem has been excluded from this extended abstract.

Let us note a few direct consequences of the above proposition.

Corollary 17 The statistic \(\text{ip}\) is Mahonian on \(\mathcal{F}_n\). That is, it has the same distribution as \(\text{inv}\) on \(S_n\). Also, the statistic \(\text{emb}\) is Mahonian on \(N_n\).

Corollary 18 The statistic \(\text{lev}\) is Eulerian on the set \(\mathcal{F}_n\). That is, it has the same distribution as \(\text{des}\) on \(S_n\). Also, the statistic \(\text{int}\) is Eulerian on \(N_n\).

Proof: It suffices to show that the statistic \(\text{dent}\) is Eulerian. The following proof is due to Emeric Deutsch (personal communication, May 2009). Let \(d(n, k)\) be the number of inversion tables of length \(n\) with \(k\)
distinct entries. Clearly, \(d(n, 0) = 0 \) for \(n > 0 \) and \(d(n, k) = 0 \) for \(k > n \). We shall show that, for
0 < k \leq n, d(n, k) = kd(n - 1, k) + (n - k + 1)d(n - 1, k - 1) \) (the Eulerian recursion). Inversion
tables of length \(n \) with \(k \) distinct entries fall into two disjoint classes: Those whose last entry is equal to
at least one of the preceding \(n - 1 \) entries; there are \(kd(n - 1, k) \) such inversion tables. Those whose last
entry is different from the preceding \(n - 1 \) entries; there are \((n - (k - 1))d(n - 1, k - 1) \) such inversion
tables.

Recall that \(\text{ln}(M) \) and \(\text{rne}(M) \) denote the number of left- and right-nestings, respectively. Let \(\text{lcr}(M) \)
and \(\text{rcr}(M) \) denote the number of left- and right-crossings, respectively. The bijections \(f : \mathcal{I}_n \to \mathcal{N}_n \) and
\(g : \mathcal{E}_n \to \mathcal{I}_n \) that we have presented do not specialize to the bijections presented by Bousquet-Mélou et
al. [2]. If one were to find bijections that do specialize in the desired way, then one could also hope to
prove the following conjecture (checked by computer for \(n \leq 7 \)). Here we view \(p \) as a function
counting the occurrences of the pattern \(p \).

Conjecture 19 These three triples of statistics are equidistributed.

\[
\begin{align*}
(\text{rne}, \text{comp}, \text{min}) & \quad \text{on } \mathcal{I}_n, \\
(p, \text{comp}, \text{lmin}) & \quad \text{on } \mathcal{S}_n, \\
(\text{rne}, \text{comp}, \text{min}) & \quad \text{on } \mathcal{N}_n.
\end{align*}
\]

9 Two additional conjectures and a generalization

Conjecture 20 Assume that \(i < j < k < \ell \). Let us say that the arcs \((i, \ell)\) and \((j, k)\) are \(m \)-left-nesting if
\(j - i \leq m \). Note that a 1-left-nesting is the same as a left-nesting. This conjecture claims that among all
the matchings on \([2n]\) there are exactly \(f_n \) that have no 2-left-nestings.

Conjecture 21 The distribution of \(\text{ln}(M) \) over the set of all matchings on \([2n]\) is given by the "Second-order
Eulerian triangle", entry A008517 in OEIS [17].

Conjectures 20 and 21 have been checked by computer for \(n \leq 7 \).

Problem 22 Consider the following generalization of factorial posets. Let \(P \) and \(Q \) be labeled posets on
\([n]\) such that \(i < P j \implies i < Q j \). If, in addition,

\[i < Q j < P k \implies i < P k \]

then we say that \(P \) is \(Q \)-factorial. Note that \(n \)-factorial coincides with factorial, where \(n \) is the \(n \)-chain.
Note also that \(Q \) itself is always a \(Q \)-factorial poset and it is the only one if \(Q \) is an antichain. Is this
generalization useful? How many \(Q \)-factorial posets are there?

Note added in proof: Paul Levande has found proofs for Conjectures 20 and 21.

Acknowledgment

Thanks to Mark Dukes for helpful suggestions on the presentation.
References

