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Extended Abstract for Enumerating Pattern
Avoidance for Affine Permutations

Andrew Crites†

Department of Mathematics, University of Washington, Box 354350, Seattle, Washington, 98195-4350

Abstract. In this paper we study pattern avoidance for affine permutations. In particular, we show that for a given
pattern p, there are only finitely many affine permutations in S̃n that avoid p if and only if p avoids the pattern 321.
We then count the number of affine permutations that avoid a given pattern p for each p in S3, as well as give some
conjectures for the patterns in S4. This paper is just an outline; the full version will appear elsewhere.

Résumé. Dans cet œuvre, on étudie comment les permutations affines évitent les motifs. Spécifiquement, on peut dire
que pour le motif p, il existe un nombre limité de permutations affines dans S̃n qui évite p si et seulement si p évite
le motif 321. Après, on compte le nombre de permutations affines qui évitent le motif p pour chaque p de S3. Puis,
on donne des conjectures pour les motifs de S4. Ceci n’est qu’un aperçu; la version complète apparaı̂tra ailleurs.
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1 Introduction
Given a property Q, it is a natural question to ask if there is a simple characterization of all permutations
with property Q. For example, in Lakshmibai and Sandhya (1990) the permutations corresponding to
smooth Schubert varieties are exactly the permutations that avoid the two patterns 3412 and 4231. In
Tenner (2007) it was shown that the permutations with Boolean order ideals are exactly the ones that
avoid the two patterns 321 and 3412. A searchable database listing which classes of permutations avoid
certain patterns can be found at Tenner (2009).

Since we know pattern avoidance can be used to describe useful classes of permutations, we might ask
if we can enumerate the permutations avoiding a given pattern or set of patterns. For example, in Marcus
and Tardos (2004) it was shown that if Sn(p) is the number of permutations in the symmetric group, Sn,
that avoid the pattern p, then there is some constant c such that Sn(p) ≤ cn. Thus the rate of growth
of pattern avoiding permutations is bounded. This result was known as the Stanley-Wilf conjecture, now
called the Marcus-Tardos Theorem.

We can express elements of the affine symmetric group, S̃n, as an infinite sequence of integers, and it is
still natural to ask if there exists a subsequence with a given relative order. Thus we can extend the notion
of pattern avoidance to these affine permutations and we can try to count how many ω ∈ S̃n avoid a given
pattern.
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For p ∈ Sm, let

fpn = #
{
ω ∈ S̃n : ω avoids p

}
(1)

and consider the generating function

fp(t) =

∞∑
n=2

fpnt
n. (2)

For a given pattern p there could be infinitely many ω ∈ S̃n that avoid p. In this case, the generating
function in (2) is not even defined. As a first step towards understanding fp(t), we will prove the following
theorem.

Theorem 1 Let p ∈ Sm. For any n ≥ 2 there exist only finitely many ω ∈ S̃n that avoid p if and only if p
avoids the pattern 321.

It is worth noting that 321-avoiding permutations and 321-avoiding affine permutations appear as an
interesting class of permutations in their own right. In (Billey et al., 1993, Theorem 2.1) it was shown
that a permutation is fully commutative if and only if it is 321-avoiding. This means that every reduced
expression for ω may be obtained from any other reduced expression using only relations of the form
sisj = sjsi with |i− j| > 1. Moreover, a proof that this result can be extended to affine permutations as
well appears in (Green, 2002, Theorem 2.7). For a detailed discussion of fully commutative elements in
other Coxeter groups, see Stembridge (1996).

Even in the case where there might be infinitely many ω ∈ S̃n that avoid a pattern p, we can always
construct the following generating function. Let

gpm,n = #
{
ω ∈ S̃n : ω avoids p and `(ω) = m

}
. (3)

Then set

gp(x, y) =

∞∑
n=2

∞∑
m=0

gpm,nx
myn. (4)

Since there are only finitely many elements in S̃n of a given length, we always have gpm,n < ∞. The
generating function g321(x, y) is computed in (Hanusa and Jones, 2009, Theorem 3.2).

The outline of this abstract is as follows. In Section 2 we will review the definition of the affine
symmetric group and list several of its useful properties. In Section 3 we will outline the proof of Theorem
1. Finally, in Section 4 we will give some basic results and conjectures for fp(t) for the patterns in S3 and
S4. The full text of this paper has been submitted for publication and is currently available on the math
arXiv:1002.1933.

2 Background
For n ≥ 2, let S̃n denote of the set of all bijections ω : Z → Z with ω(i + n) = ω(i) + n for all i ∈ Z
and

n∑
i=1

ω(i) =

(
n+ 1

2

)
. (5)
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S̃n is called the affine symmetric group, and the elements of S̃n are called affine permutations. This
definition of affine permutations first appeared in (Lusztig, 1983, §3.6) and was then developed in Shi
(1986). Note that S̃n also occurs as the affine Weyl group of type Ãn−1.

We can view an affine permutation in its one-line notation as the infinite string of integers

· · ·ω−1ω0ω1 · · ·ωnωn+1 · · · ,

where, for simplicity of notation, we write ωi = ω(i). An affine permutation is completely determined
by its action on [n] := {1, . . . , n}. Thus we only need to record the base window [ω1, . . . , ωn] to capture
all of the information about ω. Sometimes, however, it will be useful to write down a larger section of the
one-line notation.

Given i 6≡ j mod n, let tij denote the affine transposition that interchanges i +mn and j +mn for
all m ∈ Z and leaves all k not congruent to i or j fixed. Since tij = ti+n,j+n in S̃n, it suffices to assume
1 ≤ i ≤ n and i < j. Note that if we restrict to the affine permutations with {ω1, . . . , ωn} = [n], then we
get a subgroup of S̃n isomorphic to Sn, the group of permutations of [n]. Hence if 1 ≤ i < j ≤ n, the
above notion of transposition is the same as for the symmetric group.

Given a permutation p ∈ Sk and an affine permutation ω ∈ S̃n, we say that ω contains the pattern
p if there is a subsequence of integers i1 < · · · < ik such that the subword ωi1 · · ·ωik of ω has the
same relative order as the elements of p. Otherwise, we say that ω avoids p. For example, if ω =
[8, 1, 3, 5, 4, 0] ∈ S̃6, then 8,1,5,0 is an occurrence of the pattern 4231 in ω, so that ω contains p. However,
ω avoids the pattern 3412. A pattern can also come from terms outside of the base window [ω1, . . . , ωn].
In the previous example, ω also has 2,8,6 as an occurrence of the pattern 132. Choosing a subword
ωi1 · · ·ωik with the same relative order as p will be referred to as placing p in ω.

2.1 Coxeter Groups

For a general reference on the basics of Coxeter groups, see Björner and Brenti (2005) or Humphreys
(1990). Let S = {s1, . . . , sn} be a finite set, and let F denote the free group consisting of all words of
finite length whose letters come from S. Here the group operation is concatenation of words, so that the
empty word is the identity element. Let M = (mij)

n
i,j=1 be any symmetric n × n matrix whose entries

come from Z>0∪{∞} with 1’s on the diagonal andmij > 1 if i 6= j. Then letN be the normal subgroup
of F generated by the relations

R = {(sisj)mij = 1}ni,j=1 .

If mij = ∞, then there is no relationship between si and sj . The Coxeter group corresponding to S and
M is the quotient group W = F/N .

Any w ∈W can be written as a product of elements from S in infinitely many ways. Every such word
will be called an expression for w. Any expression of minimal length will be called a reduced expression,
and the number of letters in such an expression will be denoted `(w), the length of w. Call any element
of S a simple reflection and any element conjugate to a simple reflection, a reflection.

We graphically encode the relations in a Coxeter group via its Coxeter graph. This is the labeled graph
whose vertices are the elements of S. We place an edge between two vertices si and sj if mij > 2 and
we label the edge mij whenever mij > 3. The Coxeter graphs of all the finite Coxeter groups have been
classified. See, for example, (Humphreys, 1990, §2).
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In (Björner and Brenti, 2005, §8.3) it was shown that S̃n is the Coxeter group with generating set
S = {s0, s1, . . . , sn−1}, and relations

R =


s2i = 1,

(sisj)
2
= 1, if |i− j| ≥ 2,

(sisi+1)
3
= 1, for 0 ≤ i ≤ n− 1,

where all of the subscripts are taken mod n. Thus the Coxeter graph for S̃n is an n-cycle, where every
edge is unlabeled.

s0

s1 s2
· · ·

sn−2 sn−1

Fig. 1: Coxeter graph for S̃n.

If J ( S is a proper subset of S, then we call the subgroup of W generated by just the elements of
J a parabolic subgroup. Denote this subgroup by WJ . In the case of the affine symmetric group we
have the following characterization of parabolic subgroups, which follows easily from the fact that when
J = S\{si}, (S̃n)J = Stab([i, i+ n− 1]) (Björner and Brenti, 2005, Proposition 8.3.4).

Proposition 2 Let J = S\{si}. Then ω ∈ S̃n is in the parabolic subgroup (S̃n)J if and only if there
exists some integer i ≤ j ≤ i+ n− 1 such that ωj ≤ ωk < ωj + n for all i ≤ k ≤ i+ n− 1.

2.2 Length Function for S̃n

For ω ∈ S̃n, let `(ω) denote the length of ω when S̃n is viewed as a Coxeter group. Recall that for a
non-affine permutation π ∈ Sn we can define an inversion as a pair (i, j) such that i < j and πi > πj . For
an affine permutation, if ωi > ωj for some i < j, then we also have ωi+kn > ωj+kn for all k ∈ Z. Hence
any affine permutation with a single inversion has infinitely many inversions. Thus we standardize each
inversion as follows. Define an affine inversion as a pair (i, j) such that 1 ≤ i ≤ n, i < j, and ωi > ωj . If
we let InvS̃n

(ω) denote the set of all affine inversions in ω, then `(ω) = #InvS̃n
(ω), (Björner and Brenti,

2005, Proposition 8.3.1).
We also have the following characterization of the length of an affine permutation, which will be useful

later.

Theorem 3 (Shi, 1986, Lemma 4.2.2) Let ω ∈ S̃n. Then

`(ω) =
∑

1≤i<j≤n

∣∣∣∣⌊ωj − ωi

n

⌋∣∣∣∣ = inv(ω1, . . . , ωn) +
∑

1≤i<j≤n

⌊
|ωj − ωi|

n

⌋
, (6)

where inv(ω1, . . . , ωn) = #{1 ≤ i < j ≤ n : ωi > ωj}.
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For 1 ≤ i ≤ n define Invi(ω) = #{j ∈ N : i < j, ωi > ωj}. Now let Inv(ω) = (Inv1(ω), . . . , Invn(ω)),
which will be called the affine inversion table of ω. In (Björner and Brenti, 1996, Theorem 4.6) it was
shown that there is a bijection between S̃n and elements of Zn

≥0 containing at least one zero entry.

3 Outline of Proof of Theorem 1
The Proof of Theorem 1 is broken up into two parts. First, if p ∈ Sm contains the pattern 321, then we
exhibit an infinite family of affine permutations, all of which avoid 321 and hence avoid p. Second, if p
avoids the pattern 321, then we show that there exists a constant L, depending on p, such that if `(ω) > L,
then ω must contain p as follows. Using the length formula in Theorem 3, if `(ω) is large, then there must
be two indices 1 ≤ i < j ≤ n with |ωi − ωj | large. Once |ωi − ωj | is large enough, we then show how
to use translates ωi+rn and ωj+sn of ωi and ωj to construct an occurrence of p in ω. Hence if ω avoids p,
`(ω) must be bounded above, so that there can be only a finite number of such ω.

The algorithm for constructing an occurrence of p gives the length bound `(ω) ≤ (m`+1 + 2)
(
n
2

)
,

where p ∈ Sm, ω ∈ S̃n and ` is the length of the sequence of left-to-right maxima in p. In general, this
upper bound is much larger than needed. For example, let p = 3412 ∈ S4. Then our algorithm gives that
if ω ∈ S̃n avoids p, then `(ω) ≤ 66

(
n
2

)
. However, we can actually prove a tighter bound `(ω) ≤ 3

(
n
2

)
for this particular pattern. Thus it would be nice to find an algorithm that gives a tighter upper bound on
length.

4 Generating Functions for Patterns in S3 and S4

Let fpn and fp(t) be as in (1) and (2) in Section 1. Then by Theorem 1 we have f321n = ∞ for all n.
However, for all of the other patterns p ∈ S3 we can still compute fp(t).

Theorem 4 Let fp(t) be as above. Then

f123(t) = 0, (7)

f132(t) = f213(t) =

∞∑
n=2

tn, (8)

f231(t) = f312(t) =

∞∑
n=2

(
2n− 1

n

)
tn. (9)

The only tricky part in the proof of Theorem 4 is Equation 9. The proof involves using the affine
inversion table of an affine permutation and some identities amongst the Catalan numbers.

We now look at pattern avoidance for patterns in S4. There are 24 patterns to consider, although for all
but three patterns, fp(t) is easy to compute. First let

P = {1432, 2431, 3214, 3241, 3421, 4132, 4213, 4231, 4312, 4321}.

By Theorem 1, if p ∈ P , then fpn =∞, so fp(t) is not defined.
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Theorem 5 We have

f1234(t) = 0, (10)

f1243(t) = f1324(t) = f2134(t) = f2143(t) =

∞∑
n=2

tn, (11)

f1342(t) = f1423(t) = f2314(t) = f3124(t) =

∞∑
n=2

(
2n− 1

n

)
tn. (12)

Based on some initial calculations, we also have the following conjectures for the remaining three
patterns in S4.

Conjecture 1 The following equalities hold:

f3142n =

n−1∑
k=0

(n− k)
n

(
n− 1 + k

k

)
2k (13)

f3412n = f4123n =
1

3

n∑
k=0

(
n

k

)2(
2k

k

)
. (14)

Note that (13) is sequence A064062 and (14) is sequence A087457 in Sloane (2009). It is also worth
comparing (14) to the number of 3412-avoiding, non-affine permutations given in (Gessel, 1990, §7) as

u3(n) = 2

n∑
k=0

(
n

k

)2(
2k

k

)
3k2 + 2k + 1− n− 2kn

(k + 1)2(k + 2)(n− k + 1)
. (15)
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