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Abstract. Let In be the (big) diagonal ideal of (C2)n. Haiman proved that the q, t-Catalan number is the Hilbert
series of the graded vector space Mn =

⊕
d1,d2

(Mn)d1,d2 spanned by a minimal set of generators for In. We
give simple upper bounds on dim (Mn)d1,d2 in terms of partition numbers, and find all bi-degrees (d1, d2) such that
dim (Mn)d1,d2 achieve the upper bounds. For such bi-degrees, we also find explicit bases for (Mn)d1,d2 .

Résumé. Soit In l’idéal de la (grande) diagonale de (C2)n. Haiman a démontré que le q, t-nombre de Catalan
est la série de Hilbert de l’espace vectoriel gradué Mn =

⊕
d1,d2

(Mn)d1,d2 engendré par un ensemble minimal
de générateurs de In. Nous obtenons des bornes supérieures simples pour dim (Mn)d1,d2 en termes de nombres de
partitions, ainsi que tous les bi-degrés (d1, d2) pour lesquels ces bornes supérieures sont atteintes. Pour ces bi–degrés,
nous trouvons aussi des bases explicites de (Mn)d1,d2 .
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1 introduction
1.1 Background
The goal of this paper is to study the q, t-Catalan numbers and the (thick) diagonal ideal in (C2)n, and
discuss some technique that we have developed recently.

Let n be a positive integer. Consider the set of n-tuples {(xi, yi)}1≤i≤n in the plane C2. They form
an affine space (C2)n with coordinate ring C[x, y] = C[x1, y1, ..., xn, yn]. There is a natural symmetric
group Sn acting on C[x, y] by permuting the coordinates in x, y simultaneously. With this group action, a
polynomial f ∈ C[x, y] is called alternating if

σ(f) = sgn(σ)f for all σ ∈ Sn.

Define C[x, y]ε to be the vector space of alternating polynomials in C[x, y].
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There is a more combinatorial way to describe C[x, y]ε. Denote by N the set of nonnegative integers.
Let Dn be the set of n-tuples D = {(α1, β1), ..., (αn, βn)} ⊂ N× N. For D ∈ Dn, define

∆(D) := det

x
α1
1 yβ1

1 xα2
1 yβ2

1 ... xαn
1 yβn

1
...

...
. . .

...
xα1
n yβ1

n xα2
n yβ2

n ... xαn
n yβn

n


Then {∆(D)}D∈Dn

forms a basis for the C-vector space C[x, y]ε.
It is easy to see that any alternating polynomial vanishes on the thick diagonal of (C2)n. (By thick

diagonal we mean the set of n-tuples of points in C2 where at least two points coincide.) A theorem of
Haiman asserts that the converse is also true: any polynomial that vanishes on the diagonal of (C2)n can
be generated by alternating polynomials, i.e.⋂

1≤i<j≤n

(xi − xj , yi − yj) = ideal generated by ∆(D)’s.

We call the above ideal the diagonal ideal and denote it by In. the number of minimal generators of
In, which is the same as the dimension of the vector space Mn = In/(x,y)In, is equal to the n-th
Catalan number. The spaceMn is doubly graded as⊕d1,d2(Mn)d1,d2 . The q, t-Catalan number, originally
introduced by A.M.Garsia and M.Haiman in [4], can be defined as

Cn(q, t) =
∑
d1,d2

td1qd2 dim(Mn)d1,d2 .

The q, t-Catalan number Cn(q, t) also has a combinatorial interpretation using Dyck paths. To be more
precise, take the n × n square whose southwest corner is (0, 0) and northeast corner is (n, n). Let Dn
be the collection of Dyck paths, i.e. lattice paths from (0, 0) to (n, n) that proceed by NORTH or EAST
steps and never go below the diagonal. For any Dyck path Π, let ai(Π) be the number of squares in the
i-th row that lie in the region bounded by Π and the diagonal. A.M.Garsia and J.Haglund ([2], [3]) among
others showed that

Cn(q, t) =
∑

Π∈Dn

qarea(Π)tdinv(Π),

where

dinv(Π) := |{(i, j) | i < j and ai(Π) = aj(Π)}| + |{(i, j) | i < j and ai(Π) + 1 = aj(Π)}|.

Haiman posed a question asking for a rule that associate to each Dyck path Π an element D(Π) ∈ Dn

such that degx ∆(D(Π)) = area(Π), degy ∆(D(Π)) = dinv(Π), and that the set {∆(D(Π))} generates
In. The last condition is equivalent to requiring the images {∆(D(Π))} form a basis of Mn). It is natural
to ask the following more general question:

Question 1.1 Given a bi-degree (d1, d2), is there a combinatorially significant construction of the basis
for each (Mn)d1,d2?
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1.2 Main results
This paper initiates the approach to the study of Mn by comparing it with Mn′ for a large integer n′. On
the one hand, there is a natural map Mn → Mn′ for any n′ > n. On the other hand, for n′ sufficiently
large, the basis of (Mn′)d′1,d2 becomes “stable” if we fix d2 and fix

k =

(
n

2

)
− d1 − d2 =

(
n′

2

)
− d′1 − d2.

Therefore we can take the “limit” of such basis for n′ → ∞. This basis is indexed by the partitions of k.
As a consequence, (Mn′)d′1,d2 can be imbedded as a subspace of the polynomial ring with infinite many
variables C[ρ1, ρ2, . . . ]. The induced map

ϕ̄ : (Mn)d1,d2 → C[ρ1, ρ2, . . . ],

which will be defined explicitly in subsection 1.2.3, provides a powerful tool to study Mn.

1.2.1 Asymptotic behavior when k � n

We shall show that if k � n, then (Mn)d1,d2 has a basis {∆(D)} where D are so-called minimal
staircase forms that will be defined later.

The essential step is to observe the following three linear relations that turn the questions into combi-
natorial games First we introduce some notations.
• For D = {P1, . . . , Pn} ∈ Dn where Pi = (αi, βi), define |Pi| = αi + βi.

Relation 1. Given positive integers 1 ≤ i 6= j ≤ n such that |Pi| = i − 1, |Pi+1| = i, |Pj | = j − 1,
|Pj+1| = j, βi > 0, αj > 0 (we assume |Pn+1| = n). Let D′ be obtained from D by moving Pi to
southeast and Pj to northwest, i.e.

D′ = {P1, . . . , Pi−1, Pi + (1,−1), Pi+1, . . . , Pj−1, Pj + (−1, 1), Pj+1, . . . , Pn}.

Then ∆(D) = ∆(D′).

Example: n = 9, i = 2, j = 6.

D = vv
v v v vv vv@@R @@I

−→ D′ = v v
v v v v v vv

Relation 2. Given positive integers h, ` andm such that 2 ≤ h < h+`+m ≤ n+1, |Ph| = h−1, |Ph+`| =
h+ `− 1, |Ph+`+m| = h+ `+m− 1 (by convention, the last equality holds if h+ `+m = n+ 1) and
αh+`, ..., αh+`+m−1 ≥ `. Let D′ be obtained from D by moving the m points Ph+`, . . . , Ph+`+m−1 to
the left by ` units and moving the ` points Ph, . . . , Ph+`−1 to the right by m units, i.e.

D′ = {P1, P2, . . . , Ph−1, Ph+` − (`, 0), Ph+`+1 − (`, 0), . . . , Ph+`+m−1 − (`, 0),

Ph + (m, 0), Ph+1 + (m, 0), . . . , Ph+`−1 + (m, 0), Ph+`+m, . . . , Pn}.

Then ∆(D) = ∆(D′).
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Example: n = 10, h = 3, ` = 4,m = 3.

D = v vv vv v
v v v v

p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p p p p p p
p p p p p p p p p p

p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p
p p p p p

yx

−→ D′ = v v
v v v v vv v v

p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p
p p p p p
p p p p p p p p p p p p p p

p p p p p p p p p p p p p p
p p p p p p p p

p p p p p p p p
Relation 3. Given positive integers j and s. Suppose Ps0 is the last point in D satisfying |Pi| = i − 1.
Define j = (s0−1−|Ps0 |)+(s0−|Ps0+1|)+· · ·+(n−1−|Pn|). Suppose |Pi| = i−1 for 1 ≤ i ≤ j+2,
P2 = (1, 0), s0 ≤ s ≤ n, and αs, βs ≥ 1. Let

D↖ = {P1, . . . , Pj+1, Pj+2 + (1,−1), Pj+3, . . . , Ps−1, Ps + (−1, 1), Ps+1, . . . , Pn},
D↘ = {P1, (0, 1), P3, . . . , Ps−1, Ps + (1,−1), Ps+2, . . . , Pn}.

Then 2∆(D) = ∆(D↖) + ∆(D↘).

Example: n = 9, i = 2, j = 6.

D = v v vv v vv@@II
@@R

@@I
R@@R −→ D↖ =v v v vv v

v
, D↘ =vv vv v v v

We call D = {P1, . . . , Pn} a minimal staircase form if |Pi| = i− 1 or i− 2 for every 1 ≤ i ≤ n. For
a minimal staircase form D, let {i1 < i2 < · · · < i`} be the set of i’s such that |Pi| = i − 1, we define
the partition type of D to be the partition of (

(
n
2

)
−
∑
|Pi|) consisting of all the positive integers in the

sequence
(i1 − 1, i2 − i1 − 1, i3 − i2 − 1, . . . , i` − i`−1 − 1, n− i`).

Example: Let n = 8 and D = {P1, . . . , P8} satisfying (|P1|, . . . , |P8|) = (0, 1, 1, 2, 4, 4, 5, 6). Then

D is a minimal staircase form. The set {i
∣∣ |Pi| = i − 1} equals {1, 2, 5}. The positive integers in the

sequence (1− 1, 2− 1− 1, 5− 2− 1, 8− 5) are (2, 3), so the partition type of D is (2, 3).

vv v v v v v v
Let p(k) denote the number of partitions of an integer k and Πk denote the set of partitions of k.

Theorem 1.2 Let k be any positive integer. There are positive constants c1 = 8k + 5, c2 = 2k + 1 such
that the following holds:

For integers n, d1, d2 satisfying n ≥ c1, d1 ≥ c2n, d2 ≥ c2n and d1 + d2 =
(
n
2

)
− k, the vector space

(Mn)d1,d2 has dimension p(k), and the p(k) elements{
a minimal staircase form of bi-degree (d1, d2) and of partition type µ

}
µ∈Πk

form a basis of (Mn)d1,d2 .

Note that N.Bergeron and Z.Chen have found explicit bases for (Mn)d1,d2 for certain bi-degrees using
a different method [1].
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1.2.2 For arbitrary k and n

Denote by p(k) the partition number of k and by convention p(0) = 1 and p(k) = 0 for k < 0. Denote
by p(b, k) the partition number of k into no more than b parts, and by convention p(0, k) = 0 for k > 0,
p(b, 0) = 1 for b ≥ 0. One of our main results is as follows.

Theorem 1.3 Let d1, d2 be non-negative integers d1, d2 with d1 + d2 ≤
(
n
2

)
. Define k =

(
n
2

)
− d1 − d2

and δ = min(d1, d2). Then the coefficient of qd1td2 in Cn(q, t) is less than or equal to p(δ, k), and the
equality holds if and only if one the following conditions holds:

• k ≤ n− 3, or

• k = n− 2 and δ = 1, or

• δ = 0.

This theorem is a consequence of Theorem C. It contains [8, Theorem 6] and a result of N.Bergeron and
Z.Chen [1, Corollary 8.3.1] as special cases. In fact it proves [8, Conjecture 8]. We feel that the coefficient
of qd1td2 for general k can also be expressed in terms of partition numbers, only that the expression might
be complicated. For example, we give the following conjecture which is verified for 6 ≤ n ≤ 10.
Conjecture. Let n, d1, d2, δ, k be as in Theorem 1.3. If n − 2 ≤ k ≤ 2n − 8 and δ ≥ k, then the
coefficient of qd1td2 in Cn(q, t) equals

p(k)− 2[p(0) + p(1) + · · ·+ p(k − n+ 1)]− p(k − n+ 2).

As a corollary of Theorem 1.3 , we can compute some higher degree terms of the specialization at
t = q.

Corollary 1.4

Cn(q, q) =

n−3∑
k=0

(
p(k)

((
n

2

)
− 3k + 1

)
+ 2

k−1∑
i=1

p(i, k)

)
q(

n
2)−k + (lower degree terms).

The following theorem immediately implies Theorem 1.3.

Theorem 1.5 Let d1, d2 be non-negative integers d1, d2 with d1+d2 ≤
(
n
2

)
. Define k =

(
n
2

)
−d1−d2 and

δ = min(d1, d2). Then dim(Mn)d1,d2 ≤ p(δ, k), and the equality holds if and only if one the following
conditions holds:

• k ≤ n− 3, or

• k = n− 2 and δ = 1, or

• δ = 0.

In case the equality holds, there is an explicit construction of a basis of (Mn)d1,d2 .
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The idea of the construction of the basis in the above theorem consists of two parts:
(1) Prove that

dim(Mn)d1,d2 ≤ p(δ, k)

using a new characterization of q, t-Catalan numbers. The characterization is as follows, and is discovered
independently by A. Woo [10].

Let Dcatalan
n be the set consisting of D ⊂ N × N, where D contains n points satisfying the following

conditions.
(a) If (p, 0) ∈ D then (i, 0) ∈ D,∀i ∈ [0, p].
(b) For any p ∈ N,

#{j | (p+ 1, j) ∈ D}+ #{j | (p, j) ∈ D} ≥ max{j | (p, j) ∈ D}+ 1.

(If {j | (p, j) ∈ D} = ∅, then we require that no point (i, j) ∈ D satisfies i ≥ p.) Denote by degxD

(resp. degyD) the sum of the first (resp. second) components of the n points in D.

Proposition 1.6 The coefficient of qd1td2 in the q, t-Catalan number Cn(q, t) is equal to

#{D ∈ Dcatalan
n | degxD = d1,degyD = d2}.

(2) Construct a set of p(δ, k) linearly independent elements in (Mn)d1,d2 . It seems difficult (as least to the
authors) to test directly whether a given set of elements in (Mn)d1,d2 are linearly independent. We define
a map ϕ sending an alternating polynomial f ∈ C[x, y]ε to a polynomial ring

C[ρ] := C[ρ1, ρ2, ρ3, . . . ].

The map has two desirable properties: (i) for many f , ϕ(f) can be easily computed, and (ii) for each
bi-degree (d1, d2), ϕ induces a morphism ϕ̄ : (Mn)d1,d2 → C[ρ] of C-modules. Then we use the fact the
linear dependency is easier to check in C[ρ] than in (Mn)d1,d2 . The map ϕ is defined as below.

1.2.3 Maps ϕ and ϕ̄.
(a) Define the map ϕ : Dn → Z[ρ] as follows. Let D = {(a1, b1), ..., (an, bn)} ∈ Dn, k =

(
n
2

)
−∑n

i=1(ai + bi), and define

ϕ(D) := (−1)k
∑
σ∈Sn

sgn(σ)

n∏
i=1

(∑
ρw1ρw2 · · · ρwbi

)
,

where (w1, . . . , wbi) in the sum
∑
ρw1

ρw2
· · · ρwbi

runs through the set

{(w1, . . . , wbi) ∈ Nbi | w1 + ...+ wbi = σ(i)− 1− ai − bi},

with the convention that

∑
ρw1

...ρwbi
=

 0 if σ(i)− 1− ai − bi < 0;
0 if bi = 0 and σ(i)− 1− ai − bi > 0;
1 if bi = 0 and σ(i)− 1− ai − bi = 0.
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(b) Here is an equivalent definition of ϕ(D). Define the weight of ρi to be i for i ∈ N+ and define
the weight of ρ0 = 1 to be 0. Naturally the weight of any monomial cρi1 ...ρin (c ∈ Z) is defined to be
i1 + ... + in. For w ∈ N and a power series f ∈ Z[[ρ1, ρ2, . . . ]], denote by {f}w the sum of terms of
weight-w in f , which is a polynomial. Define

h(b,w) :=
{

(1 + ρ1 + ρ2 + · · · )b
}

w
, b ∈ N,w ∈ Z.

Naturally h(b,w) = 0 if w < 0. Also assume (1 + ρ1 + ρ2 + · · · )0 = 1. Then

ϕ(D) = (−1)k

∣∣∣∣∣∣∣∣∣
h(b1,−|P1|) h(b1, 1− |P1|) h(b1, 2− |P1|) · · · h(b1, n− 1− |P1|)
h(b2,−|P2|) h(b2, 1− |P2|) h(b2, 2− |P2|) · · · h(b2, n− 1− |P2|)

...
...

...
. . .

...
h(bn,−|Pn|) h(bn, 1− |Pn|) h(bn, 2− |Pn|) · · · h(bn, n− 1− |Pn|)

∣∣∣∣∣∣∣∣∣ .
(c) Let D1, . . . , D` ∈ D′ be of the same bi-degree and

∑`
i=1 ciDi be the formal sum for any ci ∈ C

(1 ≤ i ≤ `). Define

ϕ(
∑̀
i=1

ciDi) :=
∑̀
i=1

ci ϕ(Di).

For any bi-homogeneous alternating polynomials f =
∑`
i=1 ci ∆(Di) ∈ C[x, y]ε, we define

ϕ(f) := ϕ(
∑̀
i=1

ciDi) =
∑̀
i=1

ci ϕ(Di)

by abuse of notation. 2

Proposition 1.7 Fix any pair of nonnegative integers (d1, d2), the map ϕ induces a well-defined linear
map

ϕ̄ : (Mn)d1,d2 −→ C[ρ].

Moreover, this map ϕ̄ is conjecturally injective. And our future work is to generalizing it to the case
Imn /(x, y)Imn for any positive integer m.
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