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Abstract.

It is well-known that Catalan numbers Cn = 1
n+1

(
2n
n

)
count the number of dominant regions in the Shi arrangement

of type A, and that they also count partitions which are both n-cores as well as (n + 1)-cores. These concepts have
natural extensions, which we call here the m-Catalan numbers and m-Shi arrangement. In this paper, we construct
a bijection between dominant regions of the m-Shi arrangement and partitions which are both n-cores as well as
(mn+ 1)-cores.

We also modify our construction to produce a bijection between bounded dominant regions of them-Shi arrangement
and partitions which are both n-cores as well as (mn − 1)-cores. The bijections are natural in the sense that they
commute with the action of the affine symmetric group.

Résumé.

Il est bien connu que les nombres de Catalan Cn = 1
n+1

(
2n
n

)
comptent non seulement le nombre de régions domi-

nantes dans le Shi arrangement de type A mais aussi les partitions qui sont à la fois n-coeur et (n + 1)-coeur. Ces
concepts ont des extensions naturelles, que nous appelons ici les nombres m-Catalan et le m-Shi arrangement. Dans
cet article, nous construisons une bijection entre régions dominantes du m-Shi arrangement et les partitions qui sont
à la fois n-coeur et (nm+ 1)-coeur.

Nous modifions également notre construction pour produire une bijection entre régions dominantes bornées dum-Shi
arrangement et les partitions qui sont à la fois n-coeur et (mn− 1)-coeur. Ces bijections sont naturelles dans le sens
où elles commutent avec l’action du groupe affine symétrique.

Keywords: cores, symmetric group, Shi arrangement, Catalan numbers

1 Introduction
Let ∆ be the root system of type An−1, with Weyl group W , and let m be a positive integer. Then let Smn
be the arrangement of hyperplanes Hα,k = {x | 〈α | x〉 = k for −m + 1 ≤ k ≤ m and α ∈ ∆+}. Smn
is the mth extended Shi arrangement of type An−1, called here the m-Shi arrangement.

In Fishel and Vazirani (2010, 2009), the authors constructed and analyzed bijections between certain
regions of Smn and certain n-cores. In this extended abstract, we summarize the results from both papers.
We will first construct and discuss a bijection between dominant regions of Smn , and partitions that are
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n-cores as well as (mn+1)-cores. We will then modify the construction to give a direct bijection between
bounded dominant regions and partitions which are simultaneously n-cores and (mn− 1)-cores.

Our bijection is W -equivariant in the following sense. In each connected component of Smn there is
exactly one m-minimal alcove, the alcove closest to the fundamental alcove A0, and in each bounded
connected component there is exactly one m-maximal alcove, the alcove farthest from the fundamental
alcove A0. Since the affine Weyl group W acts freely and transitively on the set of alcoves, there is a
natural way to associate an element w ∈ W = Ŝn to any alcove w−1A0, and to the m-minimal and
m-maximal alcoves in particular. There is also a natural action of Ŝn on partitions, whereby the orbit of
the empty partition ∅ is precisely the n-cores. We will show that when w is associated to an m-minimal
alcove, then w∅ is an (mn+ 1)-core as well as an n-cores and that all such (mn+ 1)-cores that are also
n-cores can be obtained this way. We will also show the analogous result for m-maximal alcoves and
(mn− 1)-cores that are also n-cores.

Roughly speaking, to each n-core λ we can associate an integer vector ~n(λ) whose entries sum to zero,
as in Garvan et al. (1990). When λ is also an (mn+ 1)-core, these entries satisfy certain inequalities. On
the other hand, these are precisely the inequalities that describe when a dominant alcove is m-minimal.
We λ is an (mn − 1)-core, the inequalites which must be satisfied by the entries of the vector exactly
describe when a dominant alcove is m-maximal.

As a consequence, we show an n-core λ is automatically an (mn + 1)-core if εi(λ) ≤ m for all
0 ≤ i < n, where εi(λ) counts the number of removable boxes of residue i. We also show the related
result, that an n-core λ is automatically an (mn − 1)-core if ϕi(λ) ≤ m for all 0 ≤ i < n, where ϕi(λ)
counts how many addable boxes of residue i the partition λ has.

The article is organized as follows. In Section 2 we introduce notation and recall facts about Coxeter
groups, root systems of type A, and inversion sets for elements of the affine symmetric group. Section 3
explains how the position of w−1A0 relative to our system of affine hyperplanes is captured by the action
of w on affine roots and that m-minimality and m-maximality can each be expressed by certain inequal-
ities on the entries of w(0, 0, . . . , 0). In Section 4 we review facts about core partitions and in particular
remind the reader how to associate an element of the root lattice to each core. Our main theorems, the
bijection between dominant regions of them-Shi arrangement and special cores and the bijection between
bounded dominant regions of the m-Shi arrangement and other special cores, is in Section 5. Section 6
describes the effect of a related bijection on m-minimal and m-maximal alcoves. In Section 7, we derive
further results that refine our bijection between alcoves and cores and that involve Narayana numbers. We
also characterize alcove walls in terms of addable and removable boxes.

2 Preliminaries
Please also see Fishel and Vazirani (2010, 2009). Let ∆ be the root system for type An−1, with Weyl
group the symmetric group Sn. Let ∆̃ be the affine root system of type A(1)

n−1, with null root δ, and with
Weyl group the affine symmetric group Ŝn. See Kac (1990) for more details. ∆ spans a Euclidean space
V with inner product 〈 | 〉. Let Q ⊆ V denote the root lattice for ∆. Let m be a positive integer. The
m-Shi arrangement is the collection of hyperplanes

Smn = {Hα,k | α ∈ ∆+,−m < k ≤ m},

where Hα,k = {v ∈ V | 〈v | α〉 = k}. This arrangement can be defined for all types; here we are
concerned with type A.
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The arrangement dissects V into connected components we call regions. We refer to regions which are
in the dominant chamber of V as dominant regions. Each connected component of V \

⋃
α∈∆+

k∈Z
Hα,k is

called an alcove and the fundamental alcove is denoted A0.
We denote the (closed) half spaces H+

α,k = {v ∈ V | 〈v | α〉 ≥ k} and H−α,k = {v ∈ V | 〈v | α〉 ≤ k}.
Note A0 is the interior of H−θ,1 ∩

⋂n−1
i=1 H

+
αi,0

and the dominant chamber is
⋂n−1
i=1 H

+
αi,0

.

The affine symmetric group Ŝn acts on V (preserving Q) via affine linear transformations, and acts
freely and transitively on the set of alcoves. We thus identify each alcoveA with the unique w ∈ Ŝn such
that A = wA0. We also note that we may express any w ∈ Ŝn as w = utγ for unique u ∈ Sn, γ ∈ Q,
or equivalently w = tγ′u where γ′ = u(γ). If we embed V into Rn by mapping αi to εi− εi+1, note that
γ′ = w(0, . . . , 0).

We also remind the reader that when w−1 is a minimal length right coset representative for Ŝn/Sn,
then we may write w−1 = tγ′u where u ∈ Sn and γ′ is in the dominant chamber.

For w ∈ Ŝn, we define the inversion set Inv(w) = {α ∈ ∆̃+ | w(α) ∈ ∆̃−}. Notice that the length
`(w) = |Inv(w)| for w ∈ Ŝn is just the minimal number of affine hyperplanes separating w−1A0 from
A0. We will need the following well-known proposition and corollary, both describing Inv(w) and both
proved in Fishel and Vazirani (2010).

Proposition 2.1. Let w ∈ Ŝn and α+ kδ ∈ ∆̃+. Then α+ kδ ∈ Inv(w) iff w−1A0 ⊆ H+
−α,k

Corollary 2.2. Suppose w is a minimal length left coset representative for Ŝn/Sn. Then Inv(w) consists
only of roots of the form −α + kδ, k ∈ Z>0, α ∈ ∆+. Further, if −α + kδ ∈ Inv(w) and k > 1 then
−α+ (k − 1)δ ∈ Inv(w).

3 m-minimal and m-maximal alcoves
We say an alcovewA0 ism-minimal if it is the unique alcove in its region such that `(w) is smallest. Such
alcoves are termed “representative alcoves” by Athanasiadis. We can identify each connected component
of the complement of the m-Shi arrangement with its unique m-minimal alcove.

If the region is bounded, we can also identify it with the unique alcove w′A0 contained in it such that
`(w′) is largest. In this situation we will say the alcove w′A0 is m-maximal. Note that for unbounded
regions, no such alcove exists.

See Figure 5 below for a picture of the m-maximal alcoves of type A2 for m = 1, 2.
The following proposition is useful. For a given alcove, it characterizes the affine hyperplanes contain-

ing its walls and which simple reflections flip it over those walls (by the right action). It can be found in
Shi (1987) in slightly different notation.

Proposition 3.1. Suppose wA0 ⊆ H+
α,k but wsiA0 ⊆ H−α,k

1. Then w(αi) = α− kδ.

2. Let β = w−1(0, . . . , 0) ∈ V . Then 〈β | αi〉 = −k.

Using the coordinates of V ⊆ Rn, we note k = γu(i) − γu(i+1), where w = tγu.

Remark 3.2. Note, if wA0 is m-minimal, then whenever k ∈ Z≥0 and wA0 ⊆ H+
α,k but wsiA0 ⊆ H−α,k

then we must have k ≤ m in the case α > 0 and k ≤ m− 1 in the case α < 0.



286 Susanna Fishel and Monica Vazirani

It is easy to see that this condition is not only necessary but sufficient to describe when wA0 is m-
minimal. Together with Proposition 2.1, Proposition 3.1 says that when αi ∈ Inv(w) andw(αi) = α−kδ
then k ≤ m, and for β = w−1(0, . . . , 0) that 〈β | αi〉 ≥ −m.

Applying Remark 3.2 to positive α and alcoves in the dominant chamber, we get the following corollary.

Corollary 3.3. Suppose wA0 is in the dominant chamber and m-minimal.

1. If wA0 ⊆ H+
α,k but wsiA0 ⊆ H−α,k for some α ∈ ∆+, k ∈ Z≥0, then k ≤ m.

2. Let β = w−1(0, . . . , 0). Then 〈β | αi〉 ≥ −m, for all i, and in particular 〈β | θ〉 ≤ m+ 1.

Proof. The first statement follows directly from Proposition 3.1 and Remark 3.2. To conclude that the
second statement holds for all i, note that if k ≤ 0 then automatically k ≤ m.

It is possible to make a remark analogous to Remark 3.2 for the case of m-maximal alcoves and we
derive a corollary analogous to Corollary 3.3

Corollary 3.4. Suppose wA0 is in the dominant chamber and m-maximal.

1. If wA0 ⊆ H−α,k but wsiA0 ⊆ H+
α,k for some α ∈ ∆+, k ∈ Z≥0, then k ≤ m.

2. Let β = w−1(0, . . . , 0). Then 〈β | αi〉 ≤ m, for all i, and in particular 〈β | θ〉 ≥ −m+ 1.

4 Core partitions and their abacus diagrams
In this section we review some well-known facts about n-cores and review the useful tool of the abacus
construction. Details can be found in James and Kerber (1981).

There is a well-known bijection C : {n-cores} → Q that commutes with the action of Ŝn. One can use
the Ŝn-action to define the bijection, or describe it directly from the combinatorics of partitions via the
work of Garvan-Kim-Stanton’s ~n-vectors in Garvan et al. (1990) or of Lascoux (2001), or as described
in terms of balanced abaci as in Berg et al. (2009). Here, we will recall the description from Berg et al.
(2009) as well as remind the reader of the Ŝn-action on n-cores.

We identify a partition λ = (λ1, . . . , λr) with its Young diagram, the array of boxes with coordinates
{(i, j) | 1 ≤ j ≤ λi}. We say the box (i, j) ∈ λ has residue j − imodn, and in that case, we often refer
to it as a (j − imodn)-box. Its hook length hλ(i,j) is 1+ the number of boxes to the right of and below
(i, j).

An n-core is a partition λ such that n - hλ(i,j) for all (i, j) ∈ λ.
We say a box is removable from λ if its removal results in a partition. Equivalently its hook length is 1.

A box not in λ is addable if its union with λ results in a partition.

Claim 4.1. Let λ be an n-core. Suppose λ has a removable i-box. Then it has no addable i-boxes.
Likewise, if λ has an addable i-box it has no removable i-boxes.

Ŝn acts transitively on the set of n-cores as follows. Let λ be an n-core. Then

siλ =


λ ∪ all addable i-boxes ∃ any addable i-box,
λ \ all removable i-boxes ∃ any removable i-box,
λ else.

It is easy to check siλ is an n-core.
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4.1 Abacus diagrams
We can associate to each partition λ its abacus diagram. When λ is an n-core, its abacus has a particularly
nice form, and then can be used to construct an element of Q. Each partition λ = (λ1, . . . , λr) is
determined by its hook lengths in the first column, the βk = hλ(k,1).

An abacus diagram is a diagram, with entries from Z arranged in n columns labeled 0, 1, . . . , n − 1,
called runners. The horizontal cross-sections or rows will be called levels and runner k contains the entry
labeled by rn + k on level r where −∞ < r < ∞. We draw the abacus so that each runner is vertical,
oriented with −∞ at the top and∞ at the bottom, and we always put runner 0 in the leftmost position,
increasing to runner n − 1 in the rightmost position. Entries in the abacus diagram may be circled; such
circled elements are called beads. Entries which are not circled will be called gaps. We shall say two
abaci are equivalent if they differ by adding a constant to all entries. Note, in this case we must cyclically
permute the runners so that runner 0 is leftmost. Given a partition λ its abacus is any abacus diagram
equivalent to the one obtained by placing beads at entries βk = hλ(k,1) and all j ∈ Z<0.

Remark 4.2. It is well-known that λ is an n-core if and only if its abacus is flush, that is to say whenever
there is a bead at entry j there is also a bead at j − n.

We define the balance number of an abacus to be the sum over all runners of the largest level in that
runner which contains a bead. We say that an abacus is balanced if its balance number is zero. Note that
there is a unique abacus which represents a given n-core λ for each balance number. Given a flush abacus,
that is, the abacus of an n-core λ, we can associate to it the vector whose ith entry is the largest level in
runner i − 1 which contains a bead. The sum of the entries in this vector is the balance number of the
abacus. When the abacus is balanced, we will call this vector ~n(λ), in keeping with the notation of Garvan
et al. (1990). We note that ~n(λ) ∈ Q, when we identify Q with {(a1, . . . , an) ∈ Zn |

∑
i ai = 0}.

We recall the following claim, which can be found in Berg et al. (2009).

Claim 4.3. The map λ 7→ ~n(λ) is an Ŝn-equivariant bijection {n-cores} → Q.

We recall here results of Anderson (2002), which describe the abacus of an n-core that is also a t-core,
for t relatively prime to n. When t = mn− 1, this takes a particularly nice form.

Proposition 4.4 (Anderson). Let λ be an n-core. Suppose t is relatively prime to n. Let M = nt−n− t.
Consider the grid of points (x, y) ∈ Z× Z with 0 ≤ x ≤ n− 1, 0 ≤ y labelled by M − xt− yn. Circle
a point in this grid if and only if its label is obtained from the first column hooklengths of λ or its label is
in Z<0. Then λ is a t-core if and only if the following three conditions hold.

1. All beads in the abacus of λ are at entries ≤ M , in other words at (x, y) with 0 ≤ x ≤ n − 1,
0 ≤ y;

2. The circled points in the grid are upwards flush, in other words if (x, y) is circled, so is (x, y − 1);

3. The circled points in the grid are flush to the right, in other words if (x, y) is circled and x ≤ n−2,
so is (x+ 1, y).

Note that the columns of this grid are exactly the runners of λ’s abacus, written out of order, with each
runner shifted up or down relative to its new left neighbor. The runners have also been truncated, which
is irrelevant given condition (1) above. This shifting is performed exactly so labels in the same row are
congruent mod t. This explains why the circles must be flush to the right as well as upwards flush.
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We will now analyze the special cases t = mn+1 and t = mn−1 to derive the conditions for a n-core
to be a mn± 1-core.

Corollary 4.5. Let λ be an n-core.

1. Then λ is an (mn+1)-core if and only if 〈~n(λ) | αi〉 ≥ −m for 0 < i < n and 〈~n(λ) | θ〉 ≤ m+1.

2. Let λ be an n-core. Then λ is an (mn− 1)-core if and only if 〈~n(λ) | αi〉 ≤ m for 0 < i < n and
〈~n(λ) | θ〉 ≥ −m+ 1.

Proof. In the notation of Proposition 4.4, in the special case t = mn+ 1, the columns of the grid are the
runners of λ’s abacus, written in reverse order. Furthermore, each runner has been shifted m units down
relative to its new left neighbor. So the condition of being flush to the right on Anderson’s grid is given by
requiring on the abacus that if the largest circled entry on runner i+ 1 is at level r then runner i must have
a circled entry at level r−m. In other words, if (a1, . . . , an) = ~n(λ), then we require ai+m−ai+1 ≥ 0,
i.e. 〈~n(λ) | αi〉 ≥ −m for 0 < i < n. Recall the 0th and (n − 1)st and runners must also have this
relationship (adding a constant to all entries in the abacus cyclically permutes the runners). This condition
becomes an + 1 +m− a1 ≥ 0, i.e. 〈~n(λ) | θ〉 ≤ m+ 1.

In the other special case, t = mn − 1, the columns of the grid are now the runners of λ’s abacus,
cyclically shifted so the 0-runner is now rightmost versus leftmost. Otherwise, the analysis is the same.

5 The bijection between cores and alcoves
Let Φ be the map

{n-cores} → {alcoves in the dominant chamber}
w∅ 7→ w−1A0,

which is Ŝn-equivariant, except for the minor technicality that the action on cores is a left action, but we
take the right action on alcoves when discussing the Shi arrangement.

Theorem 5.1. The map Φ : w∅ 7→ w−1A0 for w a minimal length left coset representative of Ŝn/Sn

induces a bijection between the set of n-cores that are also (mn + 1)-cores and the set of m-minimal
alcoves, which are in the dominant chamber of V .

Theorem 5.2. The map Φ : w∅ 7→ w−1A0 for w a minimal length left coset representative of Ŝn/Sn

induces a bijection from the set of n-cores that are also (mn− 1)-cores to the set of m-maximal alcoves
in the dominant chamber.

The first bijection is pictured below in Figure 1 and the second in Figure 2.

6 A bijection on alcoves
Although they are not an ingredient in the main theorem of this paper, the following theorems build on
the work of Section 3. They describe what the bijection wA0 7→ w−1A0 does to the m-minimal and
m-maximal alcoves. In particular, we do not limit ourselves to dominant alcoves.
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∅ ∅

Fig. 1: m-minimal alcoves w−1A0 in the dominant chamber of the m-Shi arrangement of type A2, filled with the
3-core partition w∅. On the left (m = 1), they are also 4-cores, and on the right (m = 2), they are also 7-cores.

∅ ∅

Fig. 2: m-maximal alcoves w−1A0 in the dominant chamber of the m-Shi arrangement of type A2, filled with the
3-core partition w∅. On the left (m = 1), they are also 2-cores, and on the right (m = 2), they are also 5-cores.

6.1 Effect on m-minimal alcoves
Define Am to be the m-dilation of A0:

Am = {v ∈ V | 〈v | αi〉 ≥ −m, 〈v | θ〉 ≤ m+ 1}.

Note that the set of alcoves in Am is in bijection with Q/(mn + 1)Q. Furthermore, it is easy to see by
translating (by mρ = m

2

∑
α∈∆+ α) that Q∩Am is in bijection with Q∩ (mn+ 1)A0. It is the latter that

is discussed in Lemma 7.4.1 of Haiman (1994) and studied in Athanasiadis (2005) (technically for the
co-root lattice Q∨). Taking the latter bijection into account, the second statement of Theorem 6.1 below
appears in Theorem 4.2 of Athanasiadis (2005).

Theorem 6.1. 1. The map wA0 7→ w−1A0 restricts to a bijection between alcoves in the region Am
and m-minimal alcoves.

2. The map w(0, . . . , 0) 7→ w−1A0 restricts to a bijection between Q ∩ Am and m-minimal alcoves
in the dominant chamber.

Proof. Observe Am = H−θ,m+1 ∩
⋂n−1
i=1 H

+
αi,−m can be viewed as an m-dilation of (the closure of)

A0 ⊆ H−θ,1 ∩
⋂n−1
i=1 H

+
αi,0

.
The second statement follows directly from Corollary 3.3.
A proof of the first statement can be given that is very similar to that of Propositions 3.1 and 2.1. In

Fishel and Vazirani (2010) we use those propositions to prove it.

The first part of the bijection is illustrated in Figures 3, and 4, by comparing Figure 4 to Figure 3.
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Fig. 3: wA0 for the m-minimal alcoves w−1A0 in Figure 4 below, m = 1, 2. Note wA0 ⊆ Am. Each γ ∈ Q is in
precisely one yellow/blue alcove, so this illustrates the second statement of Theorem 6.1.

Fig. 4: m-minimal alcoves in the m-Shi arrangement for m = 1 (m = 2). Dominant alcoves are shaded yellow
(and/or blue, respectively).

6.2 Effect on m-maximal alcoves

Let

am = {v ∈ V | 〈v | αi〉 ≤ m for 1 ≤ i < n, 〈v | θ〉 ≥ −m+ 1}.

Theorem 6.2. 1. The map wA0 7→ w−1A0 restricts to a bijection between alcoves in the region am
and m-maximal alcoves.

2. The map w(0, . . . , 0) 7→ w−1A0 restricts to a bijection between Q ∩ am and m-maximal alcoves
in the dominant chamber.

The proof is similar to the proof of Theorem 6.1.
The bijection is illustrated below, the first part comparing Figure 5 to Figure 6, and the second part from

restricting our attention to the lattice points.
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Fig. 5: m-maximal alcoves in the m-Shi arrangement for m = 1 (m = 2). Dominant alcoves are shaded yellow
(and/or blue, respectively), whereas other m-maximal alcoves are shaded gray.

Fig. 6: wA0 for the m-maximal alcoves w−1A0 in Figure 5 above, m = 1, 2. Note
⋃
wĀ0 = am. Each γ =

w(0, . . . , 0) ∈ Q∩am is in precisely one yellow/blue alcove, so this illustrates the second statement of Theorem 6.2.

7 Alcove walls and addable and removable boxes for cores
In this section, we show how certain alcove walls correspond to addable and removable boxes in cores.
We characterize the regions counted by the Narayana numbers in terms of their corresponding cores and
explain an analagous result for bounded regions.

We will use some ideas from the theory of crystal graphs. For those readers familiar with the realization
of the basic crystal B(Λ0) of ŝln as having nodes parameterized by n-regular partitions,

siλ =

{
f̃
〈hi,wt(λ)〉
i (λ) 〈hi,wt(λ)〉 ≥ 0

ẽ
−〈hi,wt(λ)〉
i (λ) 〈hi,wt(λ)〉 ≤ 0,

where

wt(λ) = Λ0 −
∑

(x,y)∈λ

αy−xmodn, (7.1)

and hi is the co-root corresponding to αi.
Then the n-cores are exactly the Ŝn-orbit on the highest weight node, which is the empty partition ∅.
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It is well-known that siλ = µ iff siwt(λ) = wt(µ) where the action of Ŝn on the weight lattice is
given by

si(γ) = γ − 〈γ | αi〉αi.
We refer the reader to Chapters 5,6 of Kac (1990) for details on the affine weight lattice, definition of
Λ0 and so on. For computational purposes, all we need remind the reader of is that 〈Λ0 | αi〉 = δi,0 and
〈α0 | αi〉 = 2δi,0 − δi,1 − δi,n−1.

It is useful to recall the following notation from the theory of crystal graphs. In the case si removes k
boxes of residue i from the core λ, write εi(λ) = k, ϕi(λ) = 0. In the case si adds r boxes to λ to obtain
µ, write εi(λ) = 0, ϕi(λ) = r.

7.1 Narayana numbers
In this section, we add another set to the list in Theorem 1.2 of Athanasiadis (2005) of combinatorial
objects counted by generalized Narayana numbers. We further refine the enumeration of n-cores λ which
are also (mn + 1)-cores. This refinement produces the m-Narayana numbers, or generalized Narayana
numbers, Nm

n (k), which are defined in Definition 7.4 below. Recall that the (k, l)-box of the n-core λ is
referred to as an i-box if it has residue i = l − k mod n. Our refinement here is to count the number of
n-cores λ which are also (mn+1)-cores by the number of residues i such that λ has exactlym removable
i-boxes.

Remark 7.1. Equation (7.1) says that if si removes k boxes (of residue i) from λ, or adds−k boxes to λ to
obtain µ, then wt(µ) = si(wt(λ)) = wt(λ)− kαi. In either case, wt(µ) = wt(λ) + (ϕi(λ)− εi(λ))αi.

A straightforward rephrasing of Proposition 3.1 is then:

Proposition 7.2. Let λ be an n-core, k ∈ Z>0, and w ∈ Ŝn of minimal length such that w∅ = λ. Fix
0 ≤ i < n. The following are equivalent:

1. λ has k many removable i-boxes; in particular |siλ| = |λ| − k as the action of si removes those
i-boxes.

2. 〈~n(λ) | αi〉 = −k for i 6= 0, 〈~n(λ) | θ〉 = k + 1 for i = 0,

3. w−1A0 ⊆ H+
α,k, w−1siA0 ⊆ H−α,k where w−1(αi) = α− kδ.

When we rephrase Corollary 3.3 in this context, it says:

Proposition 7.3 (Corollary 3.3 restated). Suppose λ = w∅ is the n-core associated to the dominant alcove
A = w−1A0 via the bijection Φ of Section 5.

ThenA is m-minimal if and only if whenever λ has exactly k removable boxes of residue i then k ≤ m.
(And in this case, λ is also an (mn+ 1)-core.)

7.1.1 A refinement
Proposition 7.2 thus gives us another combinatorial interpretation of the m-Narayana numbers, as in
Athanasiadis (2005).

Definition 7.4. The kth m-Narayana number of type A is

Nm
n (k) =

1

nm+ 1

(
n− 1

n− k − 1

)(
mn+ 1

n− k

)
.
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Recall from Athanasiadis (2005) that Nm
n (k) is the number of dominant regions of the m-Shi arrange-

ment which have exactly k hyperplanes Hα,m separating them from A0 such that Hα,m contains a wall
of the region.

In other words, for fixed k, we count how manym-minimal alcovesA = w−1A0 satisfy that for exactly
k positive roots α, there exists an i such that w−1A0 ⊆ H+

α,m but w−1siA0 ⊆ H−α,m. It is clear that∑
k≥0

Nm
n (k) = m-Catalan number

since each dominant m-minimal alcove gets counted once.
By Proposition 7.2 above,Nm

n (k) equivalently counts how many n-cores λ that are also (mn+1)-cores
have exactly k distinct residues i such that λ has precisely m removable i-boxes.

Corollary 7.5. Let Nm
n (k) denote the m-Narayana number of type An−1. Then

Nm
n (k) = |{λ | λ is an n-core and (mn+ 1)-core and ∃K ⊆ Z/nZ

with |K| = k such that λ has exactly m removable boxes

of residue i iff i ∈ K}|.

7.2 Bounded regions
We rephrase Equation (7.1) and Proposition 3.1 again, this time for m-maximal alcoves and bounded
regions.

Recall Remark 7.1. In the context ofm-maximal alcoves and bounded regions, Proposition 3.1 becomes

Proposition 7.6. Let λ be an n-core, k ∈ Z>0, and w ∈ Ŝn of minimal length such that w∅ = λ. Fix
0 ≤ i < n. The following are equivalent

1. ϕi(λ) = k,

2. 〈~n(λ) | αi〉 = k for i 6= 0, 〈~n(λ) | θ〉 = −k + 1 for i = 0,

3. w−1A0 ⊆ H−α,k, w−1siA0 ⊆ H+
α,k where w−1(αi) = −α+ kδ.

When we rephrase Corollary 3.4 in this context, it says:
Suppose λ = w∅ is the n-core associated to the dominant alcove A = w−1A0. Then A is m-maximal

iff whenever λ has exactly k addable boxes of residue i then k ≤ m. (And in this case, λ is also an
(mn− 1)-core.)

As a consequence, note an n-core λ is automatically an (mn− 1)-core if ϕi(λ) ≤ m for all 0 ≤ i < n.
Athanasiadis and Tzanaki (2006) define h+

k (∆,m), 0 ≤ k < n as the number of bounded dominant
regions of Smn for which exactly n− 1− k hyperplanes of the form Hα,m, α ∈ ∆+ are walls (i.e. support
a facet) of that region and do not separate it from the fundamental alcove A0.

By the definition of m-maximal, we can replace a bounded region by its unique m-maximal alcove and
consider its walls instead. In other words, to calculate h+

k (∆,m), we count how manym-maximal alcoves
A = w−1A0 satisfy that for exactly n−1−k positive roots α, there exists an i such that w−1A0 ⊆ H−α,m
but w−1siA0 ⊆ H+

α,m.
By Proposition 7.6 above, h+

k (∆,m) equivalently counts how many n-cores λ that are also (mn− 1)-
cores have exactly n− 1− k distinct residues i such that λ has precisely m addable i-boxes.
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