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Descent polynomials for permutations with
bounded drop size
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Abstract. Motivated by juggling sequences and bubble sort, we examine permutations on the set {1, 2, . . . , n} with d
descents and maximum drop size k. We give explicit formulas for enumerating such permutations for given integers
k and d. We also derive the related generating functions and prove unimodality and symmetry of the coefficients.

Résumé. Motivés par les “suites de jonglerie” et le tri à bulles, nous étudions les permutations de l’ensemble
{1, 2, . . . , n} ayant d descentes et une taille de déficience maximale k. Nous donnons des formules explicites pour
l’énumération de telles permutations pour des entiers k et d fixés, ainsi que les fonctions génératrices connexes. Nous
montrons aussi que les coefficients possèdent des propriétés d’unimodalité et de symétrie.
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1 Introduction
There have been extensive studies of various statistics on Sn, the set of all permutations of {1, 2, . . . , n}.
For a permutation π in Sn, we say that π has a drop at i if πi < i and that the drop size is i − πi. We
say that π has a descent at i if πi > πi+1. One of the earliest results [8] in permutation statistics states
that the number of permutations in Sn with k drops equals the number of permutations with k descents.
A concept closely related to drops is that of excedances, which is just a drop of the inverse permutation.
In this paper we focus on drops instead of excedances because of their connection with our motivating
applications concerning bubble sort and juggling sequences.

Other statistics on a permutation π include such things as the number of inversions (pairs (i, j) such that
i < j and πi > πj) and the major index of π (the sum of i for which a descent occurs). The enumeration
of and generating functions for these statistics can be traced back to the work of Rodrigues in 1839 [9] but
was mainly influenced by McMahon’s treatise in 1915 [8]. There is an extensive literature studying the
distribution of the above statistics and their q-analogs, see for example Foata and Han [4], or the papers
of Shareshian and Wachs [10, 11] for more recent developments.

This joint work originated from its connection with a paper [2] on sequences that can be translated into
juggling patterns. The set of juggling sequences of period n containing a specific state, called the ground
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state, corresponds to the set Bn,k of permutations in Sn with drops of size at most k. As it turns out,
Bn,k can also be associated with the set of permutations that can be sorted by k operations of bubble sort.
These connections will be further described in the next section. We note that the maxdrop statistic has not
been treated in the literature as extensively as many other statistics in permutations. As far as we know,
this is the first time that the distribution of descents with respect to maxdrop has been determined.

First we give some definitions concerning the statistics and polynomials that we examine. Given a
permutation π in Sn, let Des(π) = {1 ≤ i < n : πi > πi+1} be the descent set of π and let des(π) =
|Des(π)| be the number of descents. We use maxdrop(π) to denote the value of the maximum drop (or
maxdrop) of π,

maxdrop(π) = max{ i− π(i) : 1 ≤ i ≤ n }.
Let Bn,k = {π ∈ Sn : maxdrop(π) ≤ k}. It is known, and also easy to show, that |Bn,k| = k!(k+1)n−k;
e.g., see [2, Thm. 1] or [7, p. 108]. Let

bn,k(r) = |{π ∈ Bn,k : des(π) = r}|,

and define the (k-maxdrop-restricted) descent polynomial

Bn,k(x) =
∑
r≥0

bn,k(r)x
r =

∑
π∈Bn,k

xdes(π).

Examining the case of k = 2, we observed the coefficients bn,2(r) of Bn,2(x) appear to be given by
every third coefficient of the simple polynomial

(1 + x2)(1 + x+ x2)n−1.

Looking at the next two cases, k = 3 and k = 4, yielded more mysterious polynomials: bn,3(r) appeared
to be every fourth coefficient of

(1 + x2 + 2x3 + x4 + x6)(1 + x+ x2 + x3)n−2

and bn,4(r) every fifth coefficient of

(1 + x2 + 2x3 + 4x4 + 4x5 + 4x7 + 4x8 + 2x9 + x10 + x12)(1 + x+ x2 + x3 + x4)n−3.

After a fierce battle with these polynomials, we were able to show that bn,k(r) is the coefficient of ur(k+1)

in the polynomial
Pk(u)

(
1 + u+ · · ·+ uk

)n−k
(1)

where

Pk(u) =

k∑
j=0

Ak−j(u
k+1)(uk+1 − 1)j

k∑
i=j

(
i

j

)
u−i, (2)

and Ak denotes the kth Eulerian polynomial (defined in the next section). Further to this, we give an
expression for the generating function Bk(z, y) =

∑
n≥0Bn,k(y)z

n, namely

Bk(z, y) =

1 +

k∑
t=1

(
At(y)−

t∑
i=1

(
k + 1

i

)
(y − 1)i−1At−i(y)

)
zt

1−
k+1∑
i=1

(
k + 1

i

)
zi(y − 1)i−1

. (3)
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We also give some alternative formulations for Pk which lead to some identities involving Eulerian
numbers as well as proving the symmetry and unimodality of the polynomials Bn,k(x).

Many questions remain. For example, is there a more natural bijective proof for the formulas that we
have derived forBn,k and Bk? Why do permutations that are k-bubble sortable define the aforementioned
juggling sequences?

2 Descent polynomials, bubble sort and juggling sequences
We first state some standard notation. The polynomial

An(x) =
∑
π∈Sn

xdes(π)

is called the nth Eulerian polynomial. For instance, A0(x) = A1(x) = 1 and A2(x) = 1 + x. Note that
Bn,k(x) = An(x) for k ≥ n − 1, since maxdrop(π) ≤ n − 1 for all π ∈ Sn. The coefficient of xk in
An(x) is denoted

〈
n
k

〉
and is called an Eulerian number. It is well known that [5]

1− w
e(w−1)z − w

=
∑
k,n≥0

〈
n

k

〉
wk

zn

n!
. (4)

The Eulerian numbers are also known to be given explicitly as [3, 5]
〈
n
k

〉
=
∑n
i=0

(
n+1
i

)
(k+1−i)n(−1)i.

We define the operator bubble which acts recursively on permutations via

bubble(LnR) = bubble(L)Rn.

In other words, to apply bubble to a permutation π in Sn, we split π into (possibly empty) blocks L
and R to the left and right, respectively, of the largest element of π (which initially is n), interchange n
and R, and then recursively apply this procedure to L. We will use the convention that bubble(∅) = ∅;
here ∅ denotes the empty permutation. This operator corresponds to one pass of the classical bubble
sort operation. Several interesting results on the analysis of bubble sort can be found in Knuth [7, pp.
106–110]. We define the bubble sort complexity of π as

bsc(π) = min{k : bubblek(π) = id},

the number of times bubble must be applied to π to give the identity permutation. The following lemma
is easy to prove using induction.

Lemma 1 (i) For all permutations π we have maxdrop(π) = bsc(π).
(ii) The bubble sort operator maps Bn,k to Bn,k−1.

The class of permutations Bn,k appears in a recent paper [2] on enumerating juggling patterns that are
usually called siteswaps by (mathematically inclined) jugglers. Suppose a juggler throws a ball at time i
so that the ball will be in the air for a time ti before landing at time ti + i. Instead of an infinite sequence,
we will consider periodic patterns, denoted by T = (t1, t2, . . . , tn). A juggling sequence is just one in
which two balls never land at the same time. It is not hard to show [1] that a necessary and sufficient
condition for a sequence to be a juggling sequence is that all the values ti + i (mod n) are distinct. In
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particular, it follows that that the average of ti is just the numbers of balls being juggled. Here is an
example:

If T = (3, 5, 0, 2, 0) then at time 1 a ball is thrown that will land at time 1 + 3 = 4. At time 2 a ball
is thrown that will land at time 2 + 5 = 7. At time 3 a ball is thrown that will land at time 3 + 0 = 3.
Alternatively one can say that no ball is thrown at time 3. This is represented in the following diagram.

1 2 3 4 5 6 7

Repeating this for all intervals of length 5 gives

1 2 3 4 5 6 7 8 9 10

For a given juggling sequence, it is often possible to further decompose into shorter juggling sequences,
called primitive juggling sequences, which themselves cannot be further decomposed. These primitive
juggling sequences act as basic building blocks for juggling sequences [2]. However, in the other direc-
tion, it is not always possible to combine primitive juggling sequences into a longer juggling sequence.
Nevertheless, if primitive juggling sequences share a common state (which one can think of as a landing
schedule), then we can combine them to form a longer and more complicated juggling sequences. In
[2] primitive juggling sequences associated with a specified state are enumerated. Here we mention the
related fact concerning Bn,k:

There is a bijection mapping permutations in Bn,k to primitive juggling sequences of period n with k
balls that all share a certain state, called the ground state.

The bijection maps π to φ(π) = (t1, . . . , tn) with ti = k − i + πi. As a consequence of the above
fact and Lemma 1, we can use bubble sort to transform a juggling sequence using k balls to a juggling
sequence using k − 1 balls.

To make this more precise, let T = (t1, . . . , tn) be a juggling sequence that corresponds to π ∈ Bn,k,
and suppose that T ′ = (s1, . . . , sn) is the juggling sequence that corresponds to bubble(π). Assume that
the ball B thrown at time j is the one that lands latest out of all the n throws. In other words, tj + j is the
largest element in {ti + i}ni=1. Now, write T = LtjR where L = (t1, . . . , tj−1) and R = (tj+1, . . . , tn).
Then we have

T ′ = fk(T ) = fk(L)Rs,

where s = tj + j − (n+1). In other words, we have removed the ball B thrown at time j and thus throw
all balls after time j one time unit sooner. Then at time n we throw the ball B so that it lands one time unit
sooner than it would have originally landed. Then we repeat this procedure to all the balls thrown before
time j.

3 The polynomials Bn,k(y)

In this section we will characterise the polynomials Bn,k(y). This is done by first finding a recurrence
for the polynomials and then solving the recurrence by exploiting some aspects of their associated char-
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acteristic polynomials. The latter step is quite involved and so we present the special case dealing with
Bn,4(y) first.

3.1 Deriving the recurrence for Bn,k(y)

We will derive the following recurrence for Bn,k(y).

Theorem 1 For n ≥ 0,

Bn+k+1,k(y) =

k+1∑
i=1

(
k + 1

i

)
(y − 1)i−1Bn+k+1−i,k(y) (5)

with the initial conditions
Bi,k(y) = Ai(y), 0 ≤ i ≤ k.

We use the notation [a, b] = {i ∈ Z : a ≤ i ≤ b} and [b] = [1, b]. Let A = {a1, . . . , an} with
a1 < · · · < an be any finite subset of N. The standardization of a permutation π on A is the permu-
tation st(π) on [n] obtained from π by replacing the integer ai with the integer i. Thus π and st(π) are
order isomorphic. For example, st(19452) = 15342. If the set A is fixed, the inverse of the standard-
ization map is well defined, and we denote it by st−1A (σ); for instance, with A = {1, 2, 4, 5, 9}, we have
st−1A (15342) = 19452. Note that st and st−1A each preserve the descent set.

For any set S ⊆ [n− 1] we define An,k(S) = {π ∈ Bn,k : Des(π) ⊇ S} and

tn(S) = max{i ∈ N : [n− i, n− 1] ⊆ S}.

Note that tn(S) = 0 in the case that n− 1 is not a member of S. Now, for any permutation π = π1 . . . πn
in An,k(S) define

f(π) = (σ,X), where σ = st(π1 . . . πn−i−1), X = {πn−i, . . . , πn} and i = tn(S).

Example 1 Let S = {3, 7, 8}, and choose the permutation π = 138425976 in A9,3(S). Notice that
Des(π) = {3, 4, 7, 8} ⊃ S. Now t9(S) = 2. This gives f(π) = (σ,X) where σ = st(138425) = 136425
and X = {π7, π8, π9} = {6, 7, 9}. Hence f(138425976) = (136425, {6, 7, 9}).

Lemma 2 For any π in An,k(S), the image f(π) is in the Cartesian product

An−i−1,k(S ∩ [n− tn(S)− 2])×
(
[n− k, n]
tn(S) + 1

)
,

where
(
X
m

)
denotes that set of all m-element subsets of the set X .

Proof: Given π ∈ An,k(S), let f(π) = (σ,X). Suppose i = tn(S). Then there are descents at positions
n− i, . . . , n− 1 (this is an empty sequence in case i = 0). Thus

n ≥ πn−i > πn−i+1 > · · · > πn−1 > πn ≥ n− k,

where the last inequality follows from the assumption that maxdrop(π) ≤ k. Hence X is an (i + 1)-
element subset of [n− k, n], as claimed. Clearly σ ∈ Sn−i−1.
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Next we shall show that σ is in An−i−1,k. Notice that the entries of (π1, . . . , πn−i−1) that do not
change under standardization are those π` which are less than πn. Since these values remain unchanged,
the values `− π` are also unchanged and are thus at most k.

Let (πa(1), . . . , πa(m)) be the subsequence of values which are greater than πn. The smallest value that
any of these may take after standardization is πn ≥ n − k. So σa(j) ≥ πn ≥ n − k for all j ∈ [1,m].
Thus a(j)− σa(j) ≤ a(j)− (n− k) = k − (n− a(j)) ≤ k for all j ∈ [1,m]. Therefore `− σ` ≤ k for
all ` ∈ [1, n− i− 1] and so σ ∈ An−i−1,k.

The descent set is preserved under standardization, and consequently σ is inAn−i−1,k(S∩ [n− i−2]),
as claimed. 2

We now define a function g which will be shown to be the inverse of f . Let π be a permutation in
Am,k(T ), where T is a subset of [m−1]. We will add i+1 elements to π to yield a new permutation σ in
Am+i,k(T ∪[m+1,m+i]). Choose any (i+1)-element subsetX of the interval [m+i+1−k,m+i+1],
and let us write X = {x1, . . . , xi+1}, where x1 ≤ · · · ≤ xi+1. Define

g(π,X) = st−1V (π1 . . . πm)xi+1xi . . . x1, where V = [m+ i+ 1] \X.

Example 2 Let T = {1}, and choose the permutation π = 3142 in A4,3(T ). Notice that Des(π) =
{1, 3} ⊇ T . Choose i = 2 and select a subset X from [4 + 2 + 1 − 3, 4 + 2 + 1] = {4, 5, 6, 7} of size
i+ 1 = 3. Let us select X = {4, 6, 7}. Now we have g(π,X) = st−1V (3142) 764 = 3152764, where V is
the set [4 + 2 + 1] \ {4, 6, 7} = {1, 2, 3, 5}.

Lemma 3 If (π,X) is in the Cartesian product

Am,k(T )×
(
[m+ i+ 1− k,m+ i+ 1]

i+ 1

)
for some i > 0 then g(π,X) is in

Am+i+1,k(T ∪ [m+ 1,m+ i]).

Proof: Let σ = g(π,X). For the first m elements of σ, since σj ≥ πj for all 1 ≤ j ≤ m, we have
j − σj ≤ j − πj which gives

max{j − σj : j ∈ [m]} ≤ max{j − πj : j ∈ [m]} ≤ k.

The final i + 1 elements of σ are decreasing so the maxdrop of these elements will be the maxdrop of
the final element,

m+ i+ 1− σm+i+1 = m+ i+ 1− x1 ≤ m+ i+ 1− (m+ i+ 1− k) = k.

Thus maxdrop(σ) ≤ k and so σ ∈ Bm+i+1,k. The descents of σ will be in the set T ∪ [m + 1,m + i]
since descents are preserved under standardization and the final i+1 elements of σ are listed in decreasing
order. Hence σ ∈ Am+i+1,k(T ∪ [m+ 1,m+ i]), as claimed. 2

We omit the straightforward, but a bit tedious, proof of the following important Lemma.

Lemma 4 The function f is a bijection, and g is its inverse.
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Corollary 1 Let an,k(S) = |An,k(S)| and i = tn(S). Then

an,k(S) =

(
k + 1

i+ 1

)
an−(i+1),k(S ∩ [1, n− (i+ 1)]).

Proposition 1 For all n ≥ 0,

Bn,k(y + 1) =

k+1∑
i=1

(
k + 1

i

)
yi−1Bn−i,k(y + 1).

Proof: Notice that

Bn,k(y + 1) =
∑

π∈Bn,k

(y + 1)des(π)

=
∑

π∈Bn,k

des(π)∑
i=0

(
des(π)

i

)
yi

=
∑

π∈Bn,k

∑
S⊆Des(π)

y|S|

=
∑

S⊆[n−1]

y|S|
∑

π∈An,k(S)

1 =
∑

S⊆[n−1]

y|S|an,k(S).

From Corollary 1, multiply both sides by y|S| and sum over all S ⊆ [n− 1]. We have

Bn,k(y + 1) =
∑

S⊆[n−1]

y|S|
(

k + 1

tn(S) + 1

)
an−(tn(S)+1),k(S ∩ [n− (tn(S) + 2)])

=
∑
i≥0

∑
S⊆[n−1]
tn(S)=i

yiy|S|−i
(
k + 1

i+ 1

)
an−(i+1),k(S ∩ [n− (i+ 2)])

=
∑
i≥0

(
k + 1

i+ 1

)
yi

∑
S⊆[n−1]
tn(S)=i

an−(i+1),k(S ∩ [n− (i+ 2)])y|S|−i

=
∑
i≥0

(
k + 1

i+ 1

)
yi

∑
S⊆[n−(i+1)]

an−(i+1),k(S)y
|S|

=
∑
i≥0

(
k + 1

i+ 1

)
yiBn−(i+1),k(y + 1)

=
∑
i≥1

(
k + 1

i

)
yi−1Bn−i,k(y + 1).

2
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Proof of Theorem 1: Replacing n and y by n+ k+1 and y− 1, respectively, in Proposition 1 yields the
recurrence (5):

Bn+k+1,k(y) =

k+1∑
i=1

(
k + 1

i

)
(y − 1)i−1Bn+k+1−i,k(y)

for n ≥ 0, with the initial conditions Bi,k(y) = Ai(y) for 0 ≤ i ≤ k. 2

By multiplying the above recurrence by zn and summing over all n ≥ 0, we have the generating
function Bk(z, y) given in equation (3).

3.2 Solving the recurrence for Bn,4(y).
Before we proceed to solve the recurrence for Bn,k, we first examine the special case of k = 4 which is
quite illuminating. We note that the characteristic polynomial for the recurrence for Bn,4 is

h(z) = z5 − 5z4 + 10(1− y)z3 − 10(1− y)2z2 + 5(1− y)3z − (1− y)4 =
(z − 1 + y)5 − yz5

1− y
.

Substituting y = t5 in the expression above, we see that the roots of h(z) are just

ρj(t) =
1− t5

1− ωjt
, 0 ≤ j ≤ 4,

where ω = exp( 2πi5 ) is a primitive 5th root of unity. Hence, the general term for Bn,4(t) can written as

Bn,4(t) =

4∑
i=0

αi(t)ρ
n
i (t)

where the αi(t) are appropriately chosen coefficients (polynomials in t). To determine the αi(t) we need
to solve the following system of linear equations:

4∑
i=0

αi(t)ρ
j
i (t) = Bj,4(t) = Aj(t

5), 0 ≤ j ≤ 4.

Thus, αi(t) can be expressed as the ratio N4,i+1(t)/D4(t) of two determinants. The denominator D4(t)

is just a standard Vandermonde determinant whose (i+1, j +1) entry is ρji (t). The numerator N4,i+1(t)

is formed fromD4(t) by replacing the elements ρji (t) in the (i+1)st row byAj(t5). A quick computation
(using the symbolic computation package Maple) gives:

D4(t) = 25
√
5 (1− t5)6t10;

N4,1(t) = 5
√
5 (t12 + t10 + 2t9 + 4t8 + 4t7 + 4t5 + 4t4 + 2t3 + t2 + 1)(1− t5)3(1− t)3t10

and, in general, N4,i+1(t) = N4,1(ω
it). Substituting the value α0(t) = N4,1(t)/D4(t) into the first term

in the expansion of Bn,4, we get

α0(t)(1 + t+ t2 + t3 + t4)n

= 1
5 (t

12 + t10 + 2t9 + 4t8 + 4t7 + 4t5 + 4t4 + 2t3 + t2 + 1)(1 + t+ t2 + t3 + t4)n−3.
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Now, since the other four terms αi(t)(1 + t + t2 + t3 + t4)n arise by replacing t by ωit then in the sum
of all five terms, the only powers of t that survive are those which have powers which are multiples of 5.
Thus, we can conclude that if we write

(t12 + t10 + 2t9 + 4t8 + 4t7 + 4t5 + 4t4 + 2t3 + t2 + 1)(1 + t+ t2 + t3 + t4)n−3 =
∑
r

β(r)tr

then bn,4(d) = β(5d). In other words, the number of permutations π ∈ Bn,4 with d descents is given by
the coefficient of t5d in the expansion of the above polynomial. Incidentally, the corresponding results for
the earlier Bn,i are as follows: bn,1(d) = β(2d) in the expansion of

(1 + t)n =
∑
r

β(r)tr,

so bn,1(d) =
(
n
2d

)
; bn,2(d) = β(3d) in the expansion of

(1 + t2)(1 + t+ t2)n−1 =
∑
r

β(r)tr;

and bn,3(d) = β(4d) in the expansion of

(1 + t2 + 2t3 + t4 + t6)(1 + t+ t2 + t3)n−2 =
∑
r

β(r)tr.

The preceding arguments have now set the stage for dealing with the general case of Bn,k. Of course,
the arguments will be somewhat more involved but it is hoped that treating the above special case will be
a useful guide for the reader.

3.3 Solving the recurrence for Bn,k(y)

Theorem 2 We have Bn,k(y) =
∑
d βk

(
(k + 1)d

)
yd, where∑

j

βk(j)u
j = Pk(u)

(
1 + u+ · · ·+ uk

)n−k
and

Pk(u) =

k∑
j=0

Ak−j(u
k+1)(uk+1 − 1)j

k∑
i=j

(
i

j

)
u−i. (6)

The first few values of Pk(u) are shown below.

k Pk(u)
0 1
1 1 + u
2 1 + u+ 2u2 + u3 + u4

3 1 + u+ 2u2 + 4u3 + 4u4 + 4u5 + 4u6 + 2u7 + u8 + u9

4 1 + u+ 2u2 + 4u3 + 8u4 + 11u5 + 11u6 + 14u7 + 16u8+
+14u9 + 11u10 + 11u11 + 8u12 + 4u13 + 2u14 + u15 + u16

There is clearly a lot of structure in the polynomials Pk(u) which will be discussed in the next section.
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4 The structure of Pk(u)
Consider Equation 6 of Theorem 2. We write Pk(u) =

∑k2

i=0 αiu
i and define the stretch of Pk(u) to be

PPk(u) = α0 + αk2u
k2+k +

k∑
i=0

k−2∑
j=0

α1+i+(k+1)ju
2+i+(k+1)j+j .

What this does to Pk(u) is to insert 0 coefficients at every (k + 1)st term, starting after α0. Thus, the
stretched polynomials corresponding to the values of Pk(u) given in the array above are:

k PPk(u)
0 1
1 1 + u2

2 1 + u2 + 2u3 + u4 + u6

3 1 + u2 + 2u3 + 4u4 + 4u5 + 4u7 + 4u8 + 2u9 + u10 + u12

4 1 + u2 + 2u3 + 4u4 + 8u5 + 11u6 + 11u8 + 14u9 + 16u10+
+14u11 + 11u12 + 11u14 + 8u15 + 4u16 + 2u17 + u18 + u20

Note that if Pk(u) has degree k2 then PPk(u) has degree k2 + k.
Theorem 3 For all k ≥ 1,

Pk+1(u) = PPk(u) · (1 + u+ u2 + · · ·+ uk+1).

Theorem 4 The coefficients of Pk(u) are symmetric and unimodal.

Proof: It follows from Theorem 3 that we can construct the coefficient sequence for Pk+1(u) from that
of Pk(u) by the following rule (where we assume that all coefficients of ut in Pk(u) are 0 if t < 0

or t > k2). Namely, suppose we write Pk(u) =
∑k2

i=0 αiu
i so that we have the coefficient sequence

Ak = (α0, α1, . . . , αk2). Now form the new sequence Bk = (β0, β1, . . . βk2+k) by the rule

βi =

i∑
j=i−k

αj , 0 ≤ i ≤ k2 + k.

Finally, starting with β0, insert duplicate values for the coefficients

β0, βk+1, β2(k+1), . . . , βt(k+1), . . . , β(k−1)(k+1) and βk(k+1).

Thus, this will generate the sequence

(β0, β0, β1, β2, . . . , βk, βk+1, βk+1, βk+2, . . . , βk2+k−1, βk2+k, βk2+k).

This new sequence will in fact just be the coefficient sequence Ak+1 for Pk+1(u). For example, start-
ing with P1(u) = 1 + u, we have A1 = (1, 1) and so B1 = (1, 2, 1). Now, inserting the duplicate
values for β0 = 1 and β2 = 1, we get the coefficient sequence A2 = (1,1, 2, 1,1) for P2(u) =
1 + u + 2u2 + u3 + u4. Repeating this process for A2, we sum blocks of length 3 to get B2 =
(1, 2, 4, 4, 4, 2, 1). Inserting duplicates for entries at positions 0, 3 and 6 gives us the new coefficient
sequence A3 = (1,1, 2, 4, 4,4, 4, 2, 1,1) of P3 = 1+u+2u2+4u3+4u4+4u5+4u6+2u7+u8+u9,
etc. It is also clear from this procedure that if Ak is symmetric and unimodal, then so is Bk, and conse-
quently, so is Ak+1. This is what we claimed. 2



Descent polynomials for permutations with bounded drop 257

4.1 An Eulerian identity
Note that since Pk(u) is symmetric and has degree uk

2

, we have Pk(u) = uk
2

Pk(
1
u ). Replacing Pk(u)

by its expression in (6), we obtain (with some calculation) the interesting identity

a+b∑
j=0

(−1)j
(
a

j

)
(1− x)jAa+b−j(x) = x

a+b∑
j=0

(
b

j

)
(1− x)jAa+b−j(x) +

(
b

a+ b

)
(1− x)a+b+1

for all integers a and b provided that a+ b ≥ 0.
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