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Abstract. A unicellular map is the embedding of a connected graph in a surface in such a way that the complement
of the graph is a topological disk. In this paper we give a bijective operation that relates unicellular maps on a non-
orientable surface to unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a
recurrence equation that leads to (new) explicit counting formulas for non-orientable precubic (all vertices of degree
1 or 3) unicellular maps of fixed topology. We also determine asymptotic formulas for the number of all unicellular
maps of fixed topology, when the number of edges goes to infinity. Our strategy is inspired by recent results obtained
for the orientable case [Chapuy, PTRF 2010], but significant novelties are introduced: in particular we construct an
involution which, in some sense, “averages” the effects of non-orientability.

Résumé. Une carte unicellulaire est le plongement d’un graphe connexe dans une surface, tel que le complémentaire
du graphe est un disque topologique. On décrit une opération bijective qui relie les cartes unicellulaires sur une surface
non-orientable aux cartes unicellulaires de type topologique inférieur, avec des sommets marqués. On en déduit une
récurrence qui conduit à de (nouvelles) formules closes d’énumération pour les cartes unicellulaires précubiques
(sommets de degré 1 ou 3) de topologie fixée. On obtient aussi des formules asymptotiques pour le nombre total de
cartes unicellulaires de topologie fixée, quand le nombre d’arêtes tend vers l’infini. Notre stratégie est motivée par
de récents résultats dans le cas orientable [Chapuy, PTRF, 2010], mais d’importantes nouveautés sont introduites: en
particulier, on construit une involution qui, en un certain sens, “moyenne” les effets de la non-orientabilité.
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1 Introduction
A map is an embedding of a connected graph in a (2-dimensional, compact, connected) surface considered
up to homeomorphism. By embedding, we mean that the graph is drawn on the surface in such a way that
the edges do not intersect and the faces (connected components of the complementary of the graph) are
simply connected. Maps are sometimes referred to as ribbon graphs, fat-graphs, and can be defined
combinatorially rather than topologically as is recalled in Section 2. A map is unicellular if is has a single
face. For instance, the unicellular maps on the sphere are the plane trees.
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In this paper we consider the problem of counting unicellular maps by the number of edges, when the
topology of the surface is fixed. In the orientable case, this question has a respectable history. The first
formula for the number εg(n) of orientable unicellular maps with n edges and n+ 1− 2g vertices (hence
genus g) was given by Lehman and Walsh in [WL72], as a sum over the integer partitions of size g.
Independently, Harer and Zagier found a simple recurrence formula for the numbers εg(n) [HZ86]. Part
of their proof relied on expressing the generating function of unicellular maps as a matrix integral. Other
proofs of Harer-Zagier’s formula were given in [Las01, GN05]. Recently, Chapuy [Cha09], extending
previous results for cubic maps [Cha10], gave a bijective construction that relates unicellular maps of a
given genus to unicellular maps of a smaller genus, hence leading to a new recurrence equation for the
numbers εg(n). In particular, the construction in[Cha09] gives a combinatorial interpretation of the fact
that for each g the number εg(n) is the product of a polynomial in n times the n-th Catalan number.

For non-orientable surfaces, results are more recent. The interpretation of matrix integrals over the
Gaussian Orthogonal Ensemble (space of real symmetric matrices) in terms of maps was made explicit in
[GJ97]. Ledoux [Led09], by means of matrix integrals and orthogonal polynomials, obtained for unicel-
lular maps on general surfaces a recurrence relation which is similar to the Harer-Zagier one. As far as we
know, no direct combinatorial nor bijective technique have successfully been used for the enumeration of
a family of non-orientable maps until now.

A unicellular map is precubic if it has only vertices of degree 1 and 3: precubic unicellular maps are
a natural generalization of binary trees to general surfaces. In this paper, we show that for all h ∈ 1

2N,
the number of precubic unicellular maps of size m on the non-orientable surface of Euler Characteristic
2 − 2h is given by an explicit formula, which has the form of a polynomial in m times the mth Catalan
number for h ∈ N, and of a polynomial times 4m if h 6∈ N. These formulas, and our main results, are
presented in Section 3. Our approach, which is completely combinatorial, is based on two ingredients.
The first one, inspired from the orientable case [Cha10, Cha09], is to consider some special vertices called
intertwined nodes, whose deletion reduces the topological type h of a map. The second ingredient is of
a different nature: we show that, among non-orientable maps of a given topology and size, the average
number of intertwined nodes per map can be determined explicitly. This is done thanks to an averaging
involution, which is described in Section 4. This enables us to find a simple recurrence equation for the
number of precubic unicellular maps by the number of edges and the topological type. As in the orientable
case, an important feature of our recurrence is that it is recursive only on the topological type, contrarily
to equations of the Harer-Zagier type [HZ86, Led09], where also the number of edges vary. It is then easy
to iterate the recurrence, to obtain the promised counting formulas for precubic maps.

In the case of general (not necessarily precubic) unicellular maps, our approach does not work exactly,
but it does work, in some sense, asymptotically. We obtain, with the same technique, the asymptotic
number of non-orientable unicellular maps of fixed topology, when the number of edges tends to infinity.
As far as we know, these formulas, and the ones for precubic maps, never appeared before in the literature.

2 Topological considerations
2.1 Classical definitions of surfaces and maps
Surfaces. Our surfaces are compact, connected, 2-dimensional manifolds. We consider surfaces up to
homeomorphism. For any non-negative integer g, we denote by Sg the g-torus, that is, the orientable
surface obtained by adding g handles to the sphere. For any positive half-integer h, we denote by Nh
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the non-orientable surface obtained by adding 2h cross-caps to the sphere. Hence, S0 is the sphere, S1
is the torus, N1/2 is the projective plane and N1 is the Klein bottle. The type of the surface Sh or Nh is
the number h ∈ {0, 12 , 1,

3
2 , . . .} By the theorem of classification, each orientable surface is homeomor-

phic to one of the Sg and each non-orientable surface is homeomorphic to one of the Nh (see e.g. [MT01]).

Maps as graphs embedding. Our graphs are finite and undirected; loops and multiple edges are allowed.
A map is an embedding (without edge-crossings) of a connected graph into a surface, in such a way that
the faces (connected components of the complement of the graph) are simply connected. Maps are always
considered up to homeomorphism. A map is unicellular if it has a single face.

Each edge in a map is made of two half-edges, obtained by removing its middle-point. The degree of a
vertex is the number of incident half-edges. A leaf is a vertex of degree 1. A corner in a map is an angular
sector determined by a vertex, and two half-edges which are consecutive around it. The total number of
corners in a map equals the number of half-edges which is twice the number of edges. A map is rooted
if it carries a distinguished half-edge called the root, together with a distinguished side of this half-edge.
The vertex incident to the root is the root vertex. The unique corner incident to the root half-edge and its
distinguished side is the root corner. From now on, all maps are rooted.

The type of a map is the type of the underlying surface. If m is a map, we let v(m), e(m), f(m) and
h(m) be its numbers of vertices, edges, faces, and its type. These quantities satisfy the Euler formula:

e(m) = v(m) + f(m) + 2− 2h(m). (1)

Maps as graphs with rotation systems and twists. Let G be a graph. To each edge e of G correspond
two half-edges, each of them incident to an endpoint of e (they are both incident to the same vertex if
e is a loop). A rotation system for G is the choice, for each vertex v of G, of a cyclic ordering of the
half-edges incident to v. We now explain the relation between maps and rotation systems. Our surfaces
are locally orientable and an orientation convention for a map m is the choice of an orientation, called
counterclockwise orientation, in the vicinity of each vertex. Any orientation convention for the map m
induces a rotation system on the underlying graph, by taking the counterclockwise ordering of appearance
of the half-edges around each vertex. Given an orientation convention, an edge e = (v1, v2) of m is a twist
if the orientation conventions in the vicinity of the endpoints v1 and v2 are not simultaneously extendable
to an orientation of a vicinity of the edge e; this happens exactly when the two sides of e appear in the
same order when crossed clockwise around v1 and clockwise around v2. Therefore a map together with
an orientation convention defines both a rotation system and a subset of edges (the twists). The flip of a
vertex v consists in inverting the orientation convention at that vertex. This changes the rotation system
at v by inverting the cyclic order on the half-edges incident to v, and changes the set of twists by the fact
that non-loop edges incident to e become twist if and only if they were not twist (while the status of the
other edges remain unchanged). The next lemma is a classical topological result (see e.g. [MT01]).

Lemma 1 A map (and the underlying surface) is entirely determined by the triple consisting of its (con-
nected) graph, its rotation system, and the subset of its edges which are twists. Conversely, two triples
define the same map if and only if one can be obtained from the other by flipping some vertices.

By the lemma above, we can represent maps of positive types on a sheet of paper as follows: we draw
the graph (with possible edge crossings) in such a way that the rotation system at each vertex is given by
the counterclockwise order of the half-edges, and we indicate the twists by marking them by a cross (see
e.g. Figure 1). The faces of the map are in bijection with the borders of that drawing, which are obtained
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by walking along the edge-sides of the graph, and using the crosses in the middle of twisted edges as
”crosswalks” that change the side of the edge along which one is walking (Figure 1). Observe that the
number of faces of the map gives the type of the underlying surface using Euler formula.

Fig. 1: A representation of a map on the Klein bottle with three
faces. The border of one of them is distinguished in dotted lines.

tour

tour

(a) (b)

(c)

border of
the face

Fig. 2: (a) a twist; (b) a left corner; (c) a right
corner.

2.2 Unicellular maps, tours, and canonical rotation system
Tours of unicellular maps. Let m be a unicellular map. By definition, m has a unique face. The tour of
the map m is done by following the edges of m starting from the root corner along the distinguished side
of the root half-edge, until returning to the root-corner. Since m is unicellular, every corner is visited once
during the tour. An edge is said two-ways if it is followed in two different directions during the tour of
the map (this is always the case on orientable surfaces), and is said one-way otherwise. The tour induces
an order of appearance on the set of corners, for which the root corner is the least element. We denote by
c < d if the corner c appears before the corner d along the tour. Lastly, given an orientation convention,
a corner is said left if it lies on the left of the walker during the tour of map, and right otherwise (Figure 2).

Canonical rotation-system. As explained above, the rotation system associated to a map is defined up
to the choice of an orientation convention. We now explain how to choose a particular convention which
will be well-suited for our purposes. A map is said precubic if all its vertices have degree 1 or 3, and its
root-vertex has degree 1. Let m be a precubic unicellular map. Since the vertices of m all have an odd
degree, there exists a unique orientation convention at each vertex such that the number of left corners
is more than the number of right corners (indeed, by flipping a vertex we exchange its left and right
corners). We call canonical this orientation convention. From now on, we will always use the canonical
orientation convention. This defines canonically a rotation system, a set of twists, and a set of left/right
corners. Observe that the root corner is a left corner (as is any corner incident to a leaf) and that vertices
of degree 3 are incident to either 2 or 3 left corners. We have the following additional property.

Lemma 2 In a (canonically oriented) precubic unicellular map, two-ways edges are incident to left cor-
ners only and are not twists.

Proof: Let e be a two-ways edge, and let c1, c2 be two corners incident to the same vertex and separated
by e (c1 and c2 coincide if v has degree 1). Since e is two-ways, the corners c1, c2 are either simultaneously
left or simultaneously right. By definition of the canonical orientation, they have to be simultaneously
left. Thus two-way edges are only incident to left corners. Therefore two-ways edges are not twists since
following a twisted edge always leads from a left corner to a right corner or the converse. 2
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2.3 Intertwined nodes.
We now define a notion of intertwined node which generalizes the definition given in [Cha10] for precubic
maps on orientable surfaces.

Definition 1 Let m be a (canonically oriented) precubic unicellular map, let v be a vertex of degree 3,
and let c1, c2, c3 be the incident corners in counterclockwise order around v, with the convention that c1
is the first of these corners to appear during the tour of m.

• The vertex v is an intertwined node if c3 appears before c2 during the tour of m.
• Moreover, we say that v has flavor A if it is incident to three left corners. Otherwise, v is incident to

exactly one right corner, and we say that v is of flavor B, C, or D respectively, according to whether
the right corner is c1, c2 or c3.

Observe that the definition of the canonical orientation was a prerequisite to define intertwined nodes. We
will now show that intertwined nodes are exactly the ones whose deletion decreases the type of the map
without disconnecting it.

The opening of an intertwined node of a map m is the operation consisting in splitting this vertex into
three (marked) vertices of degree 1, as in Figure 3. That is, we define a rotation system and set of twists
of the embedded graph n obtained in this way (we refrain from calling it a map yet, since it is unclear that
it is connected) as the rotation system and set of twists inherited from the original map m.

v

opening

map m map n

Fig. 3: Opening an intertwined node.
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from w3
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from w2

w(m)=w1c1w2c3w3c2w4 w(n)=w1d1w3d2w2d3w4

Fig. 4: The tours of m and n, in the case of flavor B.

Proposition 1 Let n be a positive integer and let g be in {1, 3/2, 2, 5/2, . . .}. For each flavor F in
{A,B,C,D}, the opening operation gives a bijection between the set of precubic unicellular maps with
n edges, type h, and a distinguished intertwined node of flavor F , and the set of precubic unicellular maps
with n edges, type h− 1 and three distinguished vertices of degree 1. The converse bijection is called the
gluing of flavor F .

Moreover, if a precubic unicellular map m is obtained from a precubic unicellular map n of lower type
by a gluing of flavor F , then m is orientable if and only if n is orientable and F = A.

We omit the proof of the Proposition. However, let us give a ”picture” of what happens, in the case of
flavor B. If m is a unicellular map, and v is an intertwined node of m, then the sequence of corners appear-
ing during the tour of m has the form w(m) = w1c1w2c3w3c2w4, where c1, c2, c3 are as in Definition 1,
and w1, w2, w3, w4 are sequences of corners. Now, let n be the map obtained by opening m at v. If v
has flavor B, then by following the edges of the map n, starting from the root, one gets the sequence of
corners w(n) = w1d1w3d2w2d3w4, where w3 is the mirror word of w3, as can be seen from Figure 4
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(we used three new letters d1, d2, d3 for the three corners of degree 1 appearing after the opening). Since
this sequence contains all the corners of n, we know that n is a unicellular map, and since it has two more
vertices than m, its type is h(n) = h(m)− 1 (by Euler’s formula).

Conversely, given a unicellular map n with three distinguished leaves d1, d2, d3, the gluing of flavor B
can be defined by identifying these three vertices to a single vertex v, and then choosing the rotation
system and the twisted edges at v appropriately to ensure that the resulting map m is unicellular, and
that v is an intertwined node of flavor B in m.

The last statement of the Proposition is a consequence of the fact that a precubic unicellular map is
orientable if and only if it has left-corners only in its canonical orientation.

3 Main results.
3.1 The number of precubic unicellular maps.
In this section, we present our main results, which rely on two facts. The first one is Proposition 1, which
enables us to express the number of precubic unicellular maps of type h carrying a distinguished inter-
twined node in terms of the number of maps of a smaller type. The second one is the fact that, among
maps of type h and fixed size, the average number of intertwined nodes in a map is 2h − 1. This last
fact, which is technically the most difficult part of this paper, relies on the existence of an “averaging
involution”, which will be described in Section 4.

Let h ≥ 1 be an element of 1
2N, and letm ≥ 1 be an integer. Givenm and h, we let n = 2m+1h∈N, and

we let Oh(m) and Nh(m), respectively, be the sets of orientable and non-orientable precubic unicellular
maps of type h with n edges. We let ξh(m) and ηh(m), respectively, be the cardinality of Oh(m) and
Nh(m).

In order to use Proposition 1, we first need the following easy consequence of Euler’s formula:

Lemma 3 Let l ∈ 1
2N and let m be a precubic unicellular map of type l with n = 2m+1l∈N edges. Then

m has m+ (−1)2l − 3blc non-root leaves, where blc = l − 1
21l 6∈N denotes the integer part of l.

From the lemma and Proposition 1, the number ηinterh (m) of non-orientable unicellular precubic maps
of type h with n edges carrying a distinguished intertwined node equals:

ηinterh (m) = 4

(
m′ − 3bh− 1c

3

)
ηh−1(m) + 3

(
m′ − 3bh− 1c

3

)
ξh−1(m), (2)

where m′ = m + (−1)2h. Here, the first term accounts for intertwined nodes obtained by gluing three
leaves in a non-orientable map of type h− 1 (in which case the flavor of the gluing can be either A, B, C
or D), and the second term corresponds to the case where the starting map of type h− 1 is orientable (in
which case the gluing has to be of flavor B, C or D to destroy the orientability).

The keystone of this paper, which will be discussed in the next section, is the following result:

Proposition 2 There exists and involution Φ of Nh(m) such that for all maps m ∈ Nh(m), the total
number of intertwined nodes in the maps m and Φ(m) is 4h − 2. In particular, the average number of
intertwined nodes of elements of Nh(m) is (2h− 1), and one has ηinterh (m) = (2h− 1)ηh(m).

It is interesting to compare Proposition 2 with the analogous result in [Cha10]: in the orientable case,
each map of genus h has exactly 2h intertwined nodes, whereas here the quantity (2h − 1) is only an
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average value. For example, Figure 5 shows two maps on the Klein bottle (h = 1) which are related by
the involution Φ: they have respectively 2 and 0 intertwined nodes.

As a direct corollary of Proposition 2 and Equation (2), we can state our main result:

Theorem 1 The numbers ηh(m) of non-orientable precubic unicellular maps of type h with 2m+ 1h∈N
edges obey the following recursion:

(2h− 1) · ηh(m) = 4

(
m′ − 3bh− 1c

3

)
ηh−1(m) + 3

(
m′ − 3bh− 1c

3

)
ξh−1(m), (3)

wherem′ = m+(−1)2h, and where ξh(m) is the number of orientable precubic unicellular maps of genus
h with 2m+ 1h∈N edges, which is 0 if h 6∈ N, and is given by the following formula otherwise [Cha09]:

ξh(m) =
1

(2h)!!

(
m+ 1

3, 3, . . . , 3,m+ 1− 3h

)
Cat(m) =

(2m)!

12hh!m!(m+ 1− 3h)!
. (4)

The theorem implies explicit formulas for the numbers ηh(m), as shown by the two next corollaries:

Corollary 1 (the case h ∈ N) Let h ∈ N and m ∈ N, m ≥ 3h − 1. Then the number of non-orientable
precubic unicellular maps of type h with 2m+ 1 edges equals:

ηh(m) = ch

(
m+ 1

3, 3, . . . , 3,m+ 1− 3h

)
Cat(m) =

ch · (2m)!

6hm!(m+ 1− 3h)!
(5)

where ch = 3 · 23h−2 h!

(2h)!

h−1∑
l=0

(
2l

l

)
16−l.

Corollary 2 (the case h 6∈ N) Let h ∈ 1
2 + N and m ∈ N, m ≥ 3bhc + 1. Then the number of non-

orientable precubic unicellular maps of type h with 2m edges equals:

ηh(m) =
4bhc

(2h− 1)(2h− 3) . . . 1

(
m− 1

3, 3, . . . , 3,m− 1− 3bhc

)
× η1/2(m)

=
4m+bhc−1(m− 1)!

6bhc(2h− 1)!!(m− 1− 3bhc)!
.

Proof of Corollary 1: It follows by induction and Equations (3) and (4) that the statement of Equation (5)
holds, with the constant ch defined by the recurrence c0 = 0 and ch = ah−1 + bh−1ch−1, with ah−1 =

3
2h−1(h−1)!(2h−1) and bh−1 = 4

2h−1 . The solution of this recurrence is ch =
∑h−1
l=0 albl+1bl+2 . . . bh−1.

Now, by definition, we have albl+1bl+2 . . . bh−1 =
3 · 4h−1−l

2ll!(2l + 1)(2l + 3)(2l + 5) . . . (2h− 1)
. Using the

expression
1

(2l + 1)(2l + 3) . . . (2h− 1)
=

2hh!(2l)!

(2h)!2ll!
and reporting it in the sum gives the expression

of ch given in Corollary 1. 2

Proof of Corollary 2: Since for non-integer h we have ξh−1(m) = 0, the first equality is a direct
consequence of an iteration of the theorem. Therefore the only thing to prove is that η1/2(m) = 4m−1.
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This can be done easily by induction via an adaptation of Rémy’s bijection [Rém85], as follows. For
m = 1, we have η1/2(m) = 1, since the only precubic projective unicellular map with two edges is ”the
twisted loop with a hanging leaf”. For the induction step, observe that precubic projective unicellular
maps with one distinguished non-root leaf are in bijection with precubic projective unicellular maps with
one leaf less and a distinguished edge-side: too see that, delete the distinguished leaf, transform the
remaining vertex of degree 2 into an edge, and remember the side of that edge on which the original leaf
was attached. Since a projective precubic unicellular map with 2k edges has k− 1 non-root leaves and 4k
edge-sides, we obtain for all m ≥ 1 that mη1/2(m+ 1) = 4mη1/2(m), and the result follows. 2

left-to-right

right-to-left

root root

(a) (b)

Fig. 5: Two maps on the Klein Bottle. (a) TLR(m) = 1, TRL(m) = 1; (b)
TLR(m) = 2, TRL(m) = 0.

opening

m n

Fig. 6: The opening, in the case of
dominant unicellular maps.

3.2 The asymptotic number of rooted unicellular maps.
Though our results do not apply to the general case of all unicellular maps of given type (i.e., not neces-
sarily precubic), they do hold, in some sense, asymptotically. This is what we explain in this section.

If m is a unicellular map, its core is the map obtained by deleting recursively all the leaves of m, until
having only vertices of degree 2 or more left. Therefore the core is a unicellular map formed by chains of
vertices of degree 2 attached together at vertices of degree at least 3. The scheme of m is the map obtained
by replacing each of these chains by an edge. Hence, in the scheme, all vertices have degree at least 3. We
say that a unicellular map is dominant if all the vertices of its scheme have degree 3. This terminology,
borrowed from [Cha10], comes from the next proposition.

Proposition 3 ([CMS09, BR09]) Let h ∈ 1
2N. Then, among non-orientable unicellular maps of type h

with n edges, the proportion of maps which are dominant tends to 1 when n tends to infinity.

The idea behind that proposition is the following. Given a scheme s, one can easily compute the generat-
ing series of all unicellular maps of scheme s, by observing that these maps are obtained by substituting
each edge of the scheme with a ”branch of tree”. From that, it follows that this generating series has a
unique principal singularity at z = 1

4 , with dominating term (1 − 4z)−e(s)/2−1, up to a multiplicative
constant. Therefore, the schemes with the greatest contribution are those which have the maximal number
of edges, which for a given type, is achieved by schemes whose all vertices have degree 3.

Now, most of the combinatorics defined in this paper still apply to dominant unicellular maps. Given
a dominant map m of type h and scheme s, and v an intertwined node of s, we can define the opening
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operation of m at v by splitting the vertex v in three, and deciding on a convention on the redistribution
of the three ”subtrees” attached to the scheme at this point (Figure 6): one obtains a dominant map n of
type h − 1 with three distinguished vertices. These vertices are not any three vertices: they have to be
in ”general position” in n (i.e., they cannot be part of the core, and none can lie on a path from one to
another), but again, in the asymptotic case this does not make a big difference: when n tends to infinity,
the proportion of triples of vertices which are in ”general position” tends to 1. We do not state here the
asymptotic estimates that can make the previous claims precise (they can be copied almost verbatim from
the orientable case [Cha10]), but rather we state now our asymptotic theorem:

Theorem 2 Let κh(n) be the number of non-orientable rooted unicellular maps of type h with n edges.
Then one has, when n tends to infinity:

(2h− 1)κh(n) ∼ 4
n3

3!
κh−1(n) + 3

n3

3!
εh−1(n)

where εh(n) denotes the number of orientable rooted unicellular maps of genus h with n edges.

Using that εh(n) = 0 if h 6∈ N, that εh(n) ∼ 1
12hh!

√
π
n3h−

3
2 otherwise, and that κ1/2(n) ∼ 1

24n [BCR88],
we obtain:

Corollary 3 Let h ∈ 1
2N. Then one has, when n tends to infinity:

κh(n) ∼ ch√
π6h

n3h−
3
2 4n if h ∈ N , κh(n) ∼ 4bhc

2 · 6bhc(2h− 1)!!
n3h−

3
2 4n if h 6∈ N.

where the constant ch is defined in Corollary 1.

4 The average number of intertwined nodes
In this section we prove Proposition 2, and in particular the key result that the average number of inter-
twined nodes per map, among precubic unicellular maps of type h and size m is (2h− 1):

ηinterh (m) = (2h− 1)ηh(m). (6)

Let us emphasize the fact that the number of intertwined nodes is not a constant over the set of unicel-
lular precubic maps of given type and number of edges. For instance among the six maps with 5 edges
on the Klein bottle N1, three maps have 2 intertwined nodes, and three maps have none; see Figure 7. As
stated in Proposition 2, our strategy to prove Equation (6) is to exhibit a bijection Φ from the set Nh(m)
to itself, such that for any given map m, the total number of intertwined nodes in the maps m, Φ(m) is
4h(m)− 2. Observe from Figure 7 that the involution Φ cannot be a simple re-rooting of the map m.

Before defining the mapping Φ, we relate the number of intertwined nodes of a map to certain properties
of its twists. Let m be a (canonically oriented) precubic map, and let e be an an edge of m which is a twist.
Let c be the corner incident to e which appears first in the tour of m. We say that e is left-to-right if c is a
left-corner, and that it is right-to-left otherwise (see Figure 5). In other words, the twist e is left-to-right if
it changes the side of the corners from left, to right, when it is crossed for the first time in the tour of the
map (and the converse is true for right-to-left twists). We omit the proof of the next lemma:
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Fig. 7: The precubic unicellular maps with 5 edges on the Klein bottle (the root in the unique leaf corner). Intertwined
nodes are indicated as white vertices.

Lemma 4 Let m be a precubic unicellular map of type h(m), considered in its canonical orientation.
Then its numbers τ(m) of intertwined nodes, TLR(m) of left-to-right twists, and TRL(m) of right-to-left
twists are related by the formula:

2h(m) = τ(m) + TLR(m)− TRL(m). (7)

We now define the promised mapping Φ averaging the number of intertwined nodes. Let m be a unicel-
lular precubic map on a non-orientable surface. We consider the canonical orientation convention for the
map m, which defines a rotation system and set of twists. The set of twists is non-empty since the map m
lives on a non-orientable surface. By cutting every twist of m at their middle point, one obtains a graph
together with a rotation system and some dangling half-edges that we call buds. The resulting embedded
graph with buds, which we denote by m̂, can have several connected components and each component
(which is a map with buds) can have several faces; see Figure 8. We set a convention for the direction in
which one turns around a face of m̂: the edges are followed in such a way that every corner is left (this is
possible since m̂ has no twist). For any bud b of m̂, we let σ(b) be the bud following bwhen turning around
the face of m̂ containing b. Clearly, the mapping σ is a permutation on the set of buds. We now define
Φ(m) to be the graph with rotation system and twists obtained from m̂ by gluing together into a twist the
buds σ(b) and σ(b′) for every pair of buds b, b′ forming a twist of m. The mapping Φ is represented in
Figure 8.

Before proving that Φ(m) is a unicellular map, we set some additional notations. We denote by k the
number of twists of m and we denote by w(m) = w1w2 · · ·w2k+1 the sequence of corners encountered
during the tour of m, where the subsequences wi and wi+1 are separated by the traversal of a twist for
i = 1 . . . 2k. Observe that corners in wi are left corners of m if i is odd, and right corners if i is even
(since following a twist leads from a left to a right corner or the converse). Hence, the sequence of
corners encountered between two buds around a face of m̂ are one of the sequences w′1, w

′
2, . . . , w

′
2k,

where w′1 = w2k+1w1, and for i > 1, w′i = wi if i is odd and w′i = wi otherwise (where wi is the mirror
sequence of wi obtained by reading wi backwards). We identify the buds of m̂ (i.e. the half-twists of m
or m̂) with the integers in {1, . . . , 2k} by calling i the bud following the sequence of corners w′i around
the faces of m̂. The permutation σ can then be considered as a permutation of {1, . . . , 2k} and we denote
r = σ−1(1). The map in Figure 8 gives σ = (1, 8, 13, 2, 9, 14, 3, 10)(4, 11, 6, 5)(7, 12) and r = 10.

Lemma 5 The embedded graph Φ(m) is a unicellular map. Moreover, the rotation system and set of
twists of Φ(m) inherited from m correspond to the canonical orientation convention of Φ(m). Lastly, the
sequence of corners encountered during the tour of Φ(m) reads v1v2 . . . v2k+1, where the subsequences
vi separated twist traversals are given by vi = wσ(r+1−i) for i = 1, . . . , r, vi = wσ(2n+r+1−i) for
i = r+1, . . . , 2k, and v2k+1 = w2k+1.
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Fig. 8: A unicellular map m and its image by the mapping Φ. The twists are indicated by (partially) dotted lines,
while the map m̂ is represented in solid lines.

Lemma 6 Let m be a positive integer and h be in {1/2, 1, 3/2, . . .}. The mapping Φ is a bijection from
the set Nh(m) to itself. Moreover, for every map m in Nh(m), the total number of intertwined nodes in
the maps m and Φ(m) is 4h− 2.

Proof of Lemma 6: Clearly, the maps m and Φ(m) have the same number of edges and vertices. Hence,
they have the same type by Euler formula. Moreover, they both have k > 0 twists (for their canonical
convention) hence are non-orientable. Thus, Φ maps the set Nh(m) to itself. To prove the bijectivity (i.e.
injectivity) of Φ, observe that for any map m, the embedded graphs m̂ and Φ̂(m) are equal; this is because
the canonical rotation system and set of twists of m and Φ(m) coincide. In particular, the permutation σ
on the half-twists of m can be read from Φ(m). Hence, the twists of m are easily recovered from those of
Φ(m): the buds i and j form a twist of m if σ(i) and σ(j) form a twist of Φ(m).

We now proceed to prove that the total number of intertwined nodes in m and Φ(m) is 4h − 2. By
Lemma 4, this amounts to proving that TLR(m)− TRL(m) + TLR(Φ(m))− TRL(Φ(m)) = 2. Since m and
Φ(m) both have k twists, TLR(m)−TRL(m) +TLR(Φ(m))−TRL(Φ(m)) = 2(TLR(m) +TLR(Φ(m))−k).
Hence, we have to prove TLR(m) + TLR(Φ(m)) = k + 1.

Let i be a bud of m̂, let t be the twist of m containing i, and let c, c′ be the corners preceding and
following i in counterclockwise order around the vertex incident to i. By definition, the twist t of m is
left-to-right if and only if c appears before c′ during the tour of m. Given that the corners c and c′ belong
respectively to the subsequences wi and wσ(i) (except if i = r in which case σ(i) = 1 and c′ is in w2k+1),
the twist t is left-to right if and only if i < σ(i) or i = r.

Before going on, let us introduce a notation: for an integer i we denote by i the representative of
i modulo 2k belonging to {1, . . . , 2k}. Let us now examine under which circumstances the bud σ(i)
is part of a left-to-right twist of Φ(m). The corners d and d′ preceding and following the bud σ(i) in
counterclockwise order around the vertex incident to σ(i) belong respectively to wσ(i) and wσσ(i) (except
if σ(i) = r, in which case σσ(i) = 1 and c′ belongs to w2k+1). By Lemma 5, wσ(i) = vr+1−i for
i = 1 . . . 2k. Therefore, the twist t′ of Φ(m) containing σ(i) is left-to-right if and only if r + 1− i <
r + 1− σ(i) or σ(i) = r.

The two preceding points gives the number TLR(m) + TLR(Φ(m)) of left-to right twists as

TLR(m) + TLR(Φ(m)) = 1 + 1
2

∑2k
i=1 δ(i),
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where δ(i) = 1i<σ(i)+1r+1−i<r+1−σ(i) is the sum of two indicator functions (the factor 1/2 accounts for
the fact that a twist has two halves). The contribution δ(i) is equal to 2 if i ≤ r < σ(i), 0 if σ(i) ≤ r < i,
and 1 otherwise. Finally, there are as many integers i such that i ≤ r < σ(i) as integers such that
σ(i) ≤ r < i (true for each cycle of σ). Thus,

∑2k
i=1 δ(i) = 2k, and TLR(m) + TLR(Φ(m)) = k + 1. 2

The last lemma is sufficient to establish Equation (6), and the enumerative results of Section 3. How-
ever, Proposition 2 was saying a little bit more, namely that the bijection Φ can be chosen as an involution:

Proof of Proposition 2: Observe that, as we defined it, the bijection Φ is not an involution. But one
can easily define an involution from Φ, as the mapping acting as Φ on elements m of Nh(m) such that
τ(m) > 2h− 1, acting as Φ−1 if τ(m) < 2h− 1, and as the identity if τ(m) = 2h− 1. 2
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[WL72] T. R. S. Walsh and A. B. Lehman. Counting rooted maps by genus. I. J. Combinatorial Theory
Ser. B, 13:192–218, 1972.


	Introduction
	Topological considerations
	Classical definitions of surfaces and maps
	Unicellular maps, tours, and canonical rotation system
	Intertwined nodes.

	Main results.
	The number of precubic unicellular maps.
	The asymptotic number of rooted unicellular maps.

	The average number of intertwined nodes

