Paths of specified length in a random k-partite graph

C.R. Subramanian ${ }^{\dagger}$
Department of Computer Science and Automation, Indian Institute of Science, Bangalore-560012, INDIA.
email: crs@csa.iisc.ernet.in
received Aug 22, 2000, accepted Aug 10, 2001.

Fix positive integers k and l. Consider a random k-partite graph on n vertices obtained by partitioning the vertex set into $V_{i},(i=1, \ldots, k)$ each having size $\Omega(n)$ and choosing each possible edge with probability p. Consider any vertex x in any V_{i} and any vertex y. We show that the expected number of simple paths of even length l between x and y differ significantly depending on whether y belongs to the same V_{i} (as x does) or not. A similar phenomenon occurs when l is odd. This result holds even when k, l vary slowly with n. This fact has implications to coloring random graphs. The proof is based on establishing bijections between sets of paths.

Keywords: random graphs, paths, bijections

1 Motivation

This problem arose in the analysis of algorithms for coloring random k-colorable graphs [2, 3]. Consider a random graph drawn as explained in the abstract. To separate a color class, we fix a vertex x in the largest (or smallest) V_{i} and and compute the number of l-paths (paths of length l), $n(x, y, l)$, between x and an arbitrary vertex y. Depending on whether y belongs to the same class as x belongs to, the expectation of this quantity differs significantly. If we can show that $n(x, y, l)$ is close to its expected value almost surely, this gives us a way of separating the class containing x. Repeating this $k-2$ times, one gets a k-coloring. The expectation of $n(x, y, l)$ is $N(x, y, l) p^{l}$, where $N(x, y, l)$ is the total number of l-paths in the complete k-partite graph formed by $V_{i} \mathrm{~s}$. The result stated in the abstract shows that the expectations differ significantly as required.

We do not discuss the algorithmic issues here since they have been outlined in [2]. We only prove the results stated in the abstract using only counting arguments. Even though the results are obviously true for bipartite graphs, for $k \geq 3$, it is not so straightforward. We believe the arguments used here would be of interest to know. The basic idea is to partition (for each pair of start-end vertices) the corresponding set of l-paths into groups (based on the color classes of intermediate vertices). Then, for two different

[^0]pairs, we establish an (almost) bijection between the corresponding groups. For any such mapped pair of groups, we also establish an (almost) bijection between the l-paths in them. This establishes the required statement.

2 Paths of specified length

Definition 2.1 By an l-path between two vertices x and y, we mean a simple path of length l between x and y. A simple path is one in which no vertex appears more than once. An l-path is represented as a $(l+1)$-tuple $\left\langle x, v_{1}, \ldots, v_{l-1}, y\right\rangle$ of vertices such that successive vertices in this sequence belong to different partite sets V_{i}.

Notations : G is a complete k-partite graph on the partite sets V_{1}, \ldots, V_{k} with each $\left|V_{i}\right| \geq n / C$ for some constant $C \geq k$. For each i, n_{i} denotes the size $\left|V_{i}\right|$. For each i, let $W_{i} \doteq V_{i} \cup \ldots \cup V_{k}$. For all $i(1 \leq i \leq k-1)$, for all $x \in V_{i}$, for all $y \in W_{i}$ such that $y \neq x$, let $N(x, y, l, i)$ denote the number of l-paths between x and y involving only vertices from W_{i}. Given a tuple σ with integral component values and an integer $j, c(\sigma, j)$ denotes the number of times j appears in σ.

We obtain the following results.
Theorem 2.1 Assume that $n_{1} \leq \ldots \leq n_{k}$. Let l be any fixed even integer ≥ 2. For all $i, 1 \leq i \leq k-1$, for all $x, y \in V_{i}$, for all $z \in W_{i}-V_{i}$, we have

$$
\begin{aligned}
N(x, z, l, i) & =\Theta\left(n^{l-1}\right) \text { if } i \leq k-2 \\
N(x, y, l, i), N(x, y, l, i)-N(x, z, l, i) & =\Theta\left(n^{l-1}\right)
\end{aligned}
$$

Proof: Consider any $i(i=1, \ldots, k-1)$ and any $x, y \in V_{i}$ and $z \in V_{r}, r>i$ and fix these parameters. We use the factorial functions defined as follows : $(n)_{0}=1$. $(n)_{l}=n(n-1) \ldots(n-l+1), l \geq 1$. Let $P(x, y)$ denote the set of all l-paths between x and y involving only vertices from the $k-i+1$ partite sets $V_{j}(i \leq j \leq k)$. $P(x, z)$ is defined similarly. That is,

$$
\begin{aligned}
& P(x, y)=\left\{\left\langle x, v_{1}, \ldots, v_{l-1}, y\right\rangle \mid \text { the sequence is an } l \text {-path between } x \text { and } y\right\} . \\
& P(x, z)=\left\{\left\langle x, v_{1}, \ldots, v_{l-1}, z\right\rangle \mid \text { the sequence is an } l \text {-path between } x \text { and } z\right\} .
\end{aligned}
$$

Clearly, we have $|P(x, y)|=O\left(n^{l-1}\right)$ and $|P(x, z)|=O\left(n^{l-1}\right)$. Also if $i=k-1$, then there are only two partite sets, namely, V_{k-1} and V_{k} and hence $P(x, z)=\emptyset$ and $N(x, z, l, i)=0$. Define

$$
\begin{aligned}
& B_{l}^{s}=\left\{\left\langle\sigma_{1}, \ldots, \sigma_{l-1}\right\rangle \mid \sigma_{1} \neq i, \sigma_{l-1} \neq i, i \leq \sigma_{j} \leq k, \sigma_{j} \neq \sigma_{j+1} \forall j\right\} \\
& B_{l}^{d}=\left\{\left\langle\sigma_{1}, \ldots, \sigma_{l-1}\right\rangle \mid \sigma_{1} \neq i, \sigma_{l-1} \neq r, i \leq \sigma_{j} \leq k, \sigma_{j} \neq \sigma_{j+1} \forall j\right\}
\end{aligned}
$$

In the above, the superscript s (or d) is a short notation for the word "same" (or "different"). We have $\left|B_{l}^{s}\right|,\left|B_{l}^{d}\right| \leq k^{l-1}$.
Now $f: P(x, y) \rightarrow B_{l}^{s}$ is a mapping which identifies each l-path $\left\langle x, v_{1}, \ldots, v_{l-1}, y\right\rangle$ with the unique $(l-1)$ tuple $\left\langle\sigma_{1}, \ldots, \sigma_{l-1}\right\rangle$ in B_{l}^{s} where if $v_{m} \in V_{j}$ then $\sigma_{m}=j$. Similarly, we can define a mapping $g: P(x, z) \rightarrow B_{l}^{d}$ which identifies each l-path in $P(x, z)$ with a unique $(l-1)$-tuple in B_{l}^{d}. We use the elements of B_{l}^{s} (or B_{l}^{d}) to partition the set $P(x, y)$ (or $\left.P(x, z)\right)$ as follows.

$$
P(x, y)=\bigcup_{\sigma \in B_{l}^{s}} P_{\sigma} \text { where } P_{\sigma}=\{\tau \in P(x, y) \mid f(\tau)=\sigma\}
$$

$$
P(x, z)=\bigcup_{\sigma \in B_{l}^{d}} P_{\sigma} \text { where } P_{\sigma}=\{\tau \in P(x, z) \mid g(\tau)=\sigma\} .
$$

Now, for each $\sigma \in B_{l}^{s} \cup B_{l}^{d},\left|P_{\sigma}\right|=\left(\prod_{i \leq j \leq k}\left(n_{j}\right)_{c(\sigma, j)}\right)=\left(\prod_{i \leq j \leq k}\left(n_{j}\right)^{c(\sigma, j)}\right) \cdot[1-o(1)]$. As a result, for each $\sigma \in B_{l}^{s} \cup B_{l}^{d},\left|P_{\sigma}\right|=\Theta\left(n^{l-1}\right)$. The $[1-o(1)]$ factor arises not only because of factorials, but also because x, y and z have to be excluded from consideration.

Also B_{l}^{s} is non-empty and it contains at least one element, namely, the tuple $\langle r, i, r, i, \ldots, r\rangle$. Hence $N(x, y, l, i)=|P(x, y)|=\Theta\left(n^{l-1}\right)$. Also, if $i \leq k-2$, then there are at least 3 partite sets to be considered and hence B_{l}^{d} is non-empty. Hence $N(x, z, l, i)=|P(x, z)|=\Theta\left(n^{l-1}\right)$ if $i \leq k-2$.
We need to prove that $|P(x, y)|-|P(x, z)|=\Theta\left(n^{l-1}\right)$. In order to prove this, it is enough to prove that the following two assertions are true.

1. $\left|B_{l}^{s}\right| \geq\left|B_{l}^{d}\right|+1$ and
2. There exists a one-to-one mapping $h: B_{l}^{d} \rightarrow B_{l}^{s}$ such that for each $\tau \in B_{l}^{d}$, we have $\left|P_{h(\tau)}\right| \geq\left|P_{\tau}\right|[1-$ $o(1)]$.

We prove that the two assertions are true as follows. Now, partition B_{l}^{s}, B_{l}^{d} into

$$
\begin{aligned}
& B_{l}^{s}=B_{l, 1}^{s} \cup \ldots \cup B_{l, l-1}^{s} \cup B_{l, l}^{s} \\
& B_{l}^{d}=B_{l, 2}^{d} \cup \ldots \cup B_{l, l-1}^{d} \cup B_{l, l}^{d}
\end{aligned}
$$

where

$$
\begin{aligned}
& B_{l, l}^{s}=\left\{\sigma \in B_{l}^{s} \mid \sigma_{l-1} \neq i, \sigma_{l-1} \neq r\right\} . \\
& B_{l, l}^{d}=\left\{\sigma \in B_{l}^{d} \mid \sigma_{l-1} \neq i, \sigma_{l-1} \neq r\right\} . \\
& B_{l, j}^{s}=\left\{\sigma \in B_{l}^{s} \mid \sigma_{j-1} \neq i, \sigma_{j-1} \neq r, \sigma_{m}=i, r \text { for } m \geq j\right\}, \text { for } 2 \leq j \leq l-1 . \\
& B_{l, j}^{d}=\left\{\sigma \in B_{l}^{d} \mid \sigma_{j-1} \neq i, \sigma_{j-1} \neq r, \sigma_{m}=i, r \text { form } \geq j\right\}, \text { for } 2 \leq j \leq l-1 . \\
& B_{l, 1}^{s}=\{\langle r, i, r, i, \ldots, r\rangle\}
\end{aligned}
$$

Now $B_{l, 1}^{d}$ cannot be defined similarly since l is even. It is easy to see that the definitions form a welldefined partition of B_{l}^{s} and B_{l}^{d}. In other words, for each $\sigma \in B_{l}^{s}$, there exists a unique value of j between 1 and l such that $\sigma \in B_{l, j}^{s}$. Similarly, for each $\tau \in B_{l}^{d}$, there exists a unique value of j between 2 and l such that $\tau \in B_{l, j}^{d}$.
Now we claim that for all j such that $2 \leq j \leq l,\left|B_{l, j}^{s}\right|=\left|B_{l, j}^{d}\right|$. For $j=l$, this follows from $B_{l, l}^{s}=B_{l, l}^{d}$. For $j<l$, consider the mapping $h_{j}: B_{l, j}^{d} \rightarrow B_{l, j}^{s}$ defined as follows. Let $\tau \in B_{l, j}^{d}$ be any tuple. Then, $h_{j}(\tau)=\sigma$ where σ is defined as

- For all $m(1 \leq m \leq j-1), \sigma_{m}=\tau_{m}$.
- For all m such that $j \leq m \leq l-1, \sigma_{m}=i$ if $\tau_{m}=r$ and $\sigma_{m}=r$ if $\tau_{m}=i$.

Clearly $\sigma \in B_{l, j}^{s}$. Also it can be verified that h_{j} is a one-to-one and onto mapping. Since $B_{l, j}^{s}$ and $B_{l, j}^{d}$ are finite sets, it follows that $\left|B_{l, j}^{s}\right|=\left|B_{l, j}^{d}\right|$.
Thus, we have $\left|B_{l}^{s}\right| \geq\left|B_{l}^{d}\right|+1$ and the first assertion is true.
To prove the second assertion, define the mapping $h: B_{l}^{d} \rightarrow B_{l}^{s}$ to be as follows. For each $\tau \in B_{l}^{d}$, define $h(\tau)=h_{j}(\tau)$ where j is such that $\tau \in B_{l, j}^{d}$. Clearly, h is a one-to-one mapping since each h_{j} is a one-to-one mapping.
We prove that for each $\tau \in B_{l}^{d}$, we have $\left|P_{h(\tau)}\right| \geq\left|P_{\tau}\right|[1-o(1)]$. Let $\tau \in B_{l}^{d}$ be any tuple and let σ denote the tuple $h(\tau)$. We know $\tau \in B_{l, j}^{d}$ for some $j, 2 \leq j \leq l$.
If $j=l$, then we have $\sigma=\tau$ and hence $\left|P_{\sigma}\right| \geq\left|P_{\tau}\right|[1-o(1)]$.
If $j=l-2, l-4, \ldots, 2$, then clearly, $c(\tau, m)=c(\sigma, m)$ for all values of $m(i \leq m \leq k)$ and hence $\left|P_{\sigma}\right| \geq$ $\left|P_{\tau}\right|[1-o(1)]$.
If $j=l-1, l-3, \ldots, 3$, then clearly, $c(\tau, m)=c(\sigma, m)$ for all values of $m(i \leq m \leq k)$ such that $m \neq i$, $m \neq r$. Also, $c(\sigma, r)=c(\tau, r)+1$ and $c(\tau, i)=c(\sigma, i)+1$. Since $n_{i} \leq n_{r}(r>i)$ by assumption, we have $\left|P_{\sigma}\right| \geq\left|P_{\tau}\right|[1-o(1)]$.
Thus, we have

$$
\begin{align*}
N(x, y, l, i)-N(x, z, l, i)= & |P(x, y)|-P(x, z) \mid \\
= & \left|\bigcup_{\sigma \in B_{l}^{s}} P_{\sigma}\right|-\left|\bigcup_{\tau \in B_{l}^{d}} P_{\tau}\right| \\
= & \sum_{j=l-1, \ldots, 3}\left(\sum_{\sigma \in B_{l, j}^{s}}\left|P_{\sigma}\right|\right)+\sum_{j=l, l-2, \ldots, 2}\left(\sum_{\sigma \in B_{l, j}^{s}}\left|P_{\sigma}\right|\right)+\sum_{\sigma=\langle r, i, \ldots, r\rangle}\left|P_{\sigma}\right| \\
& -\sum_{j=l-1, \ldots, 3}\left(\sum_{\tau \in B_{l, j}^{d}}\left|P_{\tau}\right|\right)-\sum_{j=l, l-2, \ldots, 2}\left(\sum_{\tau \in B_{l, j}^{d}}\left|P_{\tau}\right|\right) \\
\geq & \left|P_{\sigma}\right|-o\left(\left|P_{\sigma}\right|\right) \text { where } \sigma=\langle r, i, \ldots, r\rangle . \tag{1}
\end{align*}
$$

Thus,

$$
\begin{aligned}
N(x, y, l, i)-N(x, z, l, i) & =\Theta\left(\left(n_{r}\right)_{l / 2}\left(n_{i}\right)_{l / 2-1}\right) \\
& =\Theta\left(n^{l-1}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
N(x, z, l, i) & =\Theta\left(n^{l-1}\right) \text { if } i \leq k-2 \\
N(x, y, l, i), N(x, y, l, i)-N(x, z, l, i) & =\Theta\left(n^{l-1}\right) .
\end{aligned}
$$

This completes the proof of the theorem.
Using similar arguments, we can prove the following theorem also.

Theorem 2.2 Assume that $n_{1} \geq \ldots \geq n_{k}$. Let l be any fixed odd integer ≥ 3. For all $i(1 \leq i \leq k-1)$, for all $x, y \in V_{i}$, for all $z \in W_{i}-V_{i}$, we have

$$
\begin{aligned}
N(x, y, l, i) & =\Theta\left(n^{l-1}\right) \text { if } i \leq k-2 \\
N(x, z, l, i), N(x, z, l, i)-N(x, y, l, i) & =\Theta\left(n^{l-1}\right)
\end{aligned}
$$

3 Conclusions

1. The main result of the paper is that the number of l-paths joining a vertex x (in the largest or smallest V_{i} depending on the parity of l) and a vertex y differs significantly depending on where y comes from. A close look at the proof (particularly, derivation of (1)) shows that this holds even if we allow k, l and C to vary with n, provided $l k^{l} C^{l}=o(n)$.
2. It would be interesting to extend these results to structures other than simple paths. Such results can be applied to the design and analysis of efficient algorithms for random graphs (see [i]] for a survey).

References

[1] A.M. Frieze and C. McDiarmid, "Algorithmic Theory of Random Graphs", Random Structures and Algorithms, 10:5-42, 1997.
[2] C.R. Subramanian, "Improved Algorithms for Coloring Random Graphs", Proceedings of the Fifth International Symposium on Algorithms and Computation, 1994, Springer-Verlag LNCS 834.
[3] C.R. Subramanian, "Algorithms for Coloring Random and Semi-Random Graphs", Phd thesis, Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 1994.

[^0]: ${ }^{\dagger}$ Present address: The Institute of Mathematical Sciences, Taramani, Chennai-600 113, INDIA. email : crs@imsc.ernet.in

