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Abstract. We take a geometric view of lecture hall partitions and anti-lecture hall compositions in order to settle some
open questions about their enumeration. In the process, we discover an intrinsic connection between these families of
partitions and certain quadratic permutation statistics. We define some unusual quadratic permutation statistics and
derive results about their joint distributions with linear statistics. We show that certain specializations are equivalent
to the lecture hall and anti-lecture hall theorems and another leads back to a special case of a Weyl group generating
function that “ought to be better known.”

Résumé. Nous regardons géométriquement les partitions amphithéâtre et les compositions planétarium afin de résoudre
quelques questions énumératives ouvertes. Nous découvrons un lien intrinsèque entre ces familles des partitions et
certaines statistiques quadratiques de permutation. Nous définissons quelques statistiques quadratiques peu com-
munes des permutations et dérivons des résultats sur leurs distributions jointes avec des statistiques linéaires. Nous
démontrons que certaines spécialisations sont équivalentes aux théorèmes amphithéâtre et planétarium. Une autre
spécialisation mène à un cas spécial de la série génératrice d’un groupe de Weyl qui “devrait être mieux connue”.

Keywords: lecture hall partitions, anti-lecture hall compositions, permutation statistics, lattice point enumeration,
generating functions

1 Introduction
A lecture hall partition of length n is an integer sequence λ = (λ1, λ2, . . . , λn) [BME97] satisfying

0 ≤ λ1

1
≤ λ2

2
≤ . . . ≤ λn

n
.

An anti-lecture hall composition of length n is an integer sequence λ = (λ1, λ2, . . . , λn) [CS03] satisfy-
ing

λ1

1
≥ λ2

2
≥ . . . ≥ λn

n
≥ 0.
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These intriguing combinatorial objects and their various generalizations have been the subject of several
papers and they have been shown to be related to Bott’s formula in the theory of affine Coxeter groups
[BME97, BME99], Euler’s partition theorem [BME97, Yee01, SY08], the Gaussian polynomials [CLS07,
CS04], the q-Chu-Vandermonde Identities [CLS07, CS04], the q-Gauss summation [ACS09], and the little
Göllnitz partition theorems [CSS09]. In this paper we regard them from the point of view of lattice point
enumeration and uncover several new results and connections.

The set Zn ⊂ Rn is the n-dimensional integer lattice and its elements are called lattice points. Zn≥0

denotes the set of lattice points with all coordinates nonnegative. So, lecture hall partitions and anti-lecture
hall compositions of length n can be viewed as lattice points in Zn≥0.

Let Ln be the set of lecture hall partitions of length n and An, the set of anti-lecture hall compositions
of length n. Define the subsets L(t)

n and A(t)
n by the constraints:

L(t)
n : 0 ≤ λ1

1
≤ λ2

2
≤ . . . ≤ λn

n
≤ t

and
A(t)
n : t ≥ λ1

1
≥ λ2

2
≥ . . . ≥ λn

n
≥ 0.

The following was shown in [CLS07]

Theorem 1.1 For integer t ≥ 0, ∣∣∣L(t)
n

∣∣∣ = (t+ 1)n =
∣∣∣A(t)

n

∣∣∣ .
Let Qnt denote the lattice points in the n-dimensional cube of width t:

Qnt = {(x1, x2, . . . , xn) ∈ Zn≥0 | 0 ≤ xi ≤ t, 1 ≤ i ≤ n}.

Matthias Beck observed [Bec09] that since also |Qnt | = (t+ 1)n, there should be some natural bijections
with L(t)

n and A(t)
n .

In Section 2, we prove two simple bijections

Θ : Zn≥0 → Ln

and
Φ : Zn≥0 → An

with the property that for every t ≥ 0,

Θ−1(L(t)
n ) = Qtn = Φ−1(A(t)

n ).

Previously, a bijection between L(t)
n and A(t)

n was known [CLS07], but it depended on t, it did not extend
to Ln andAn, and it did not explain the relationship between their generating functions. In contrast, a new
bijection Ln → An reveals the functional relationship between their generating functions and restricts to
a bijection between L(t)

n and A(t)
n . What emerges is a characterization of Ln and An in terms of (new)

permutation statistics.
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In Section 3, we use the bijections Θ and Φ to derive generating functions for Ln and An in terms of
permutation statistics and show how to derive one from the other. Similar ideas underlie the computa-
tion of the refined generating function for Ln in [BME99] and An in [CS04], but the connection with
permutation statistics, a key ingredient in the relationship between Ln and An, was missed.

In Section 4, we show how the generating functions derived in Section 3 imply new results about
distributions of quadratic permutation statistics and connections with affine Coxeter groups.

2 The bijections
The bijections between points in the cube and the lecture hall partitions and anti-lecture hall compositions
have simple descriptions in terms of permutations and their inversion sequences, so we first review some
notation and results.

2.1 Permutation statistics and stable sorting

Let Sn be the set of permutations of {1, 2, . . . , n}. For π ∈ Sn, an inversion of π is a pair (i, j) such
that i < j, but πi > πj . The number of inversions of π is denoted inv(π). A descent of π is a position
i such that 1 ≤ i < n and πi > πi+1. The set of all descents of π is denoted Des(π) and its size is
des(π) = |Des(π)|.

Define the inversion sequence of π as the sequence ε(π) = (ε1, ε2, . . . , εn), where εi is the number of
elements of {1, . . . , n} to the right of i, in π, which are smaller than i. Then inv(π) = ε1 + ε2 + · · ·+ εn.

It is well-known ([Knu73], p. 12) that the mapping π → ε(π) is a bijection between Sn and integer
sequences In, where

In = {(ε1, ε2, . . . , εn) | 0 ≤ εi < i}.

For π ∈ Sn, although in general ε(π) 6= ε(π−1), it is known that ([Knu73], p. 14-15):

inv(π) = inv(π−1). (1)

A permutation π ∈ Sn stably sorts a sequence s = (s1, . . . , sn) into weakly increasing order if

sπ1 ≤ sπ2 ≤ . . . ≤ sπn

and if i ∈ Des(π) then sπi < sπi+1 , that is, equal elements of s retain their relative order. For every
sequence s of length n there is a unique π ∈ Sn such that π stably sorts s into weakly increasing order.

Let (w1 ≤ w2 ≤ . . . ≤ wn) denote a weakly increasing sequence and (w1 ≥ w2 ≥ . . . ≥ wn)
a weakly decreasing sequence. For a sequence s = (s1, . . . , sn) and π ∈ Sn, define π(s) by π(s) =
(sπ1 , sπ2 , . . . , sπn).

Define
Sn/(w1 ≤ w2 ≤ . . . ≤ wn) = {π ∈ Sn | if i ∈ Des(π−1) then wi < wi+1}

and
Sn/(w1 ≥ w2 ≥ . . . ≥ wn) = {π ∈ Sn | if i ∈ Des(π−1) then wi > wi+1}

Informally, π ∈ Sn/w iff π−1 is the unique permutation in Sn that stably sorts π(w) into w.
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Define
In/w = {ε ∈ In | if wi = wi+1 then εi ≥ εi+1}.

It is straightforward to prove the following lemma, which characterizes the multiset permutations of
{w1, . . . , wn} in terms of their inversion sequences.

Lemma 2.1 Given w = (w1 ≤ w2 ≤ . . . ≤ wn) or w = (w1 ≥ w2 ≥ . . . ≥ wn), the mapping π → ε(π)
on Sn restricts to a bijection between Sn/w and In/w. The mapping π → π(w) is a bijection between
Sn/w and (distinguishable) permutations of w. In particular, there is a bijection between permutations
of w and inversion sequences in In/w.

2.2 The bijection for lecture hall partitions

Bijection Θ : Zn≥0 → Ln:

For p ∈ Zn≥0, define Θ(p) as follows:

1. Let π−1 be the unique permutation that stably sorts p into weakly increasing order
(w1 ≤ w2 ≤ ... ≤ wn) = π−1(p)

2. Let ε = (ε1, ε2, . . . , εn) be the inversion sequence of π

Then Θ(p) = λ = (λ1, λ2, . . . , λn) where λi = iwi − εi, i = 1, 2, . . . , n.

Example 2.1 Let p = (9, 0, 3, 3, 5, 4, 3, 8, 1, 8, 2, 9) ∈ Z12
≥0. Thenw = (0, 1, 2, 3, 3, 3, 4, 5, 8, 8, 9, 9)

and π = (11, 1, 4, 5, 8, 7, 6, 9, 2, 10, 3, 12) and ε(π) = (0, 0, 0, 2, 2, 2, 3, 4, 2, 1, 10, 0). So

Θ(p) = λ

= (0− 0, 2− 0, 6− 0, 12− 2, 15− 2, 18− 2, 28− 3, 40− 4, 72− 2, 80− 1, 99− 10, 108− 0)

= (0, 2, 6, 10, 13, 16, 25, 36, 70, 79, 89, 108).

To check that Θ(p) = λ ∈ Ln, verify that

0 ≤ 0

1
≤ 2

2
≤ 6

3
≤ 10

4
≤ 13

5
≤ 16

6
≤ 25

7
≤ 36

8
≤ 70

9
≤ 79

10
≤ 89

11
≤ 108

12
.

Also, note that p ∈ Q12
9 , since its largest coordinate is 9 and that Θ(p) = λ ∈ L(9)

n , since
λ12/12 = (108)/(12) ≤ 9.

Theorem 2.2 Θ is a bijection between lattice points in Zn≥0 and lecture hall partitions of length n. In

fact, Θ(Qnt ) = L
(t)
n .

Proof: First, to prove Θ(Qnt ) ⊆ L(t)
n , let p ∈ Qnt and λ = Θ(p). From the definition of Θ, λi = iwi− εi,

where w = (w1 ≤ w2 ≤ . . . ≤ wn) is the sorted sequence of coordinates of p and (ε1, ε2, . . . , εn) = ε(π)
for the unique π ∈ Sn/w with π(w) = p. By Lemma 2.1, ε(π) ∈ In/w, so 0 ≤ εi < i and if wi = wi+1,
then εi ≥ εi+1.
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To show that λ ∈ L(t)
n , we must show that

0 ≤ 1w1 − ε1
1

≤ . . . ≤ iwi − εi
i

≤ (i+ 1)wi+1 − εi+1

i+ 1
≤ . . . ≤ nwn − εn

n
≤ t.

Clearly, the first inequality holds, since w1 ≥ 0 and ε1 = 0. Also, since p ∈ Qnt , wn ≤ t, so the last
inequality holds.

To show iwi−εi
i ≤ (i+1)wi+1−εi+1

i+1 , consider the relationship between wi and wi+1. If wi = wi+1, then
since εi ≥ εi+1,

iwi − εi
i

= wi+1 −
εi
i
≤ wi+1 −

εi+1

i
≤ wi+1 −

εi+1

i+ 1
=

(i+ 1)wi+1 − εi+1

i+ 1
.

Otherwise, wi+1 ≥ wi + 1, so since 0 ≤ εi+1 < i+ 1,

(i+ 1)wi+1 − εi+1

i+ 1
≥ wi + 1− εi+1

i+ 1
≥ wi + 1− i

i+ 1
> wi ≥

iwi − εi
i

.

To complete the proof that Θ(Qnt ) = L
(t)
n , since by Theorem 1.1, |L(t)

n | = |Qnt |, it suffices to show that
Θ is one-to-one. Suppose Θ(p) = λ = Θ(r) for p, r ∈ Qnt . Then λ = (w1− ε1, . . . , iwi− εi, . . . , nwn−
εn) for some w = (w1 ≤ w2 ≤ . . . ≤ wn) and ε satisfying ε ∈ In/w, and in particular, 0 ≤ εi < i. But
this determines w uniquely as

w = (dλ1/1e, dλ2/2e, . . . , dλn/ne) (2)

and thus ε uniquely as
εi = iwi − λi.

There is a unique permutation π ∈ Sn with inversion sequence ε and by Lemma 2.1, π ∈ Sn/w. Then,
by the definition of Θ, π(w) = p and π(w) = r. Thus p = r and therefore Θ is a bijection. 2

2.3 The bijection for anti-lecture hall compositions

Bijection Φ : Zn≥0 → Ln:

For p ∈ Zn≥0, define Φ(p) as follows:

1. Let π−1 be the unique permutation that stably sorts p into weakly decreasing order
(w1 ≥ w2 ≥ ... ≥ wn) = π−1(p)

2. Let ε = (ε1, ε2, . . . , εn) be the inversion sequence of π

Then Φ(p) = λ = (λ1, λ2, . . . , λn) where λi = iwi + εi, i = 1, 2, . . . , n.

Example 2.2 Let p = (9, 0, 3, 3, 5, 4, 3, 8, 1, 8, 2, 9) ∈ Z12
≥0. Thenw = (9, 9, 8, 8, 5, 4, 3, 3, 3, 2, 1, 0)

and π = (1, 12, 7, 8, 5, 6, 9, 3, 11, 4, 10, 2) and ε(π) = (0, 0, 1, 1, 3, 3, 5, 5, 3, 1, 3, 10). So

Φ(p) = λ = (9, 18, 25, 33, 28, 27, 26, 29, 30, 21, 14, 10).
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Theorem 2.3 Φ is a bijection between lattice points in Zn≥0 and anti-lecture hall compositions of length

n. In fact, Φ(Qnt ) = A
(t)
n .

Proof: In the same spirit as the proof of Theorem 2.2, first show that λ resulting from Φ(p) is, in fact, an
anti-lecture hall composition. Then, cite Theorem 1.1 to show

∣∣∣A(t)
n

∣∣∣ = |Qnt |. To complete the bijective
proof, show that Φ is one-to-one by observing that if Φ(p) = λ = Φ(r), then because

w = (bλ1/1c , bλ2/2c , . . . , bλn/nc), (3)

we know, from Lemma 2.1 that p = r. 2

3 Generating Functions
In this section we will derive generating functions for lecture hall partitions and anti-lecture hall compo-
sitions via the bijections Θ and Φ. We need the following additional observations about permutations.

Lemma 3.1 If π ∈ Sn stably sorts (p1, . . . , pn) into weakly increasing order and σ ∈ Sn stably sorts
(pn, . . . , p1) into weakly decreasing order then σi = n+ 1− πn+1−i.

Lemma 3.2 Let σ, π ∈ Sn be related by σi = n+ 1− πn+1−i. Then their inverses are similarly related:
σ−1
i = n+ 1− π−1

n+1−i.

Lemma 3.3 If σ, π ∈ Sn are related by σi = n+1−πn+1−i, then des(σ) = des(π) and inv(σ) = inv(π).

For a point p ∈ Zn≥0, the weight of p is |p| = p1 + . . .+ pn. For λ ∈ An, let

bλc = (bλ1/1c, bλ2/2c, . . . , bλn/nc).

Note from (3) that, for λ ∈ An,
|bλc| = |Φ−1(λ)|.

Similarly, for λ ∈ Ln, let
dλe = (dλ1/1e, dλ2/2e, . . . , dλn/ne).

Then from (2) for λ ∈ Ln,
|dλe| = |Θ−1(λ)|.

Define
Ln(u, q) =

∑
λ∈Ln

u|dλe|q|λ| and An(u, q) =
∑
λ∈An

u|bλc|q|λ|.

It was shown in [BME99] that

Ln(u, q) =

n∏
i=1

1 + uqi

1− u2qn+i
(4)
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and in [CS04] that

An(u, q) =

n∏
i=1

1 + uqi

1− u2q1+i
. (5)

Although a relationship between An(u, q) and Ln(u, q) can be deduced from (4) and (5), each generating
function was derived independently and until now the relationship could not be explained combinatorially.

From Theorem 2.2, the mapping p→ Θ(p) is a bijection Zn≥0 → Ln and if λ = Θ(p) then |p| = |dλe|.
Thus

Ln(u, q) =
∑
p∈Zn≥0

u|p|q|Θ(p)|.

Similarly, from Theorem 2.3, the mapping p → Φ(p) is a bijection Zn≥0 → An and if λ = Φ(p) then
|p| = |bλc|. So,

An(u, q) =
∑
p∈Zn≥0

u|p|q|Φ(p)|.

For the first time we are able to show that Ln(u, q) can be derived from An(u, q). Define the reverse of a
sequence s = (s1, s2, . . . , sn) by srev = (sn, sn−1, . . . , s1).

Theorem 3.4
Ln(u, q) = An(uqn+1, q−1).

Proof: For p ∈ Zn≥0, we compare the contribution of Φ(p) toAn(u, q) with the contribution of Θ(prev) to
Ln(u, q). Let π−1 be the permutation that stably sorts p into weakly decreasing order w = (w1 ≥ . . . ≥
wn) and let σ−1 be the permutation that stably sorts prev into weakly increasing order wrev. Then

Φ(p) = (w1 + ε1(π), 2w2 + ε2(π), . . . , nwn + εn(π))

Θ(prev) = (wn − ε1(σ), 2wn−1 − ε2(σ), . . . , nw1 − εn(σ)).

So

u|p|q|Φ(p)| = u|w|q
∑n
i iwiqinv(π)

and

u|p
rev|q|Θ(prev)| = u|w

rev|q
∑n
i (n+1−i)wiq−inv(σ)

= (uqn+1)|w|q−
∑n
i iwiq−inv(σ) = (uqn+1)|p|q−|Φ(p)|,

where we have used inv(σ) = inv(π) from Lemma 3.3. Note finally that summing over all p ∈ Zn≥0 is
equivalent to summing over all prev ∈ Zn≥0, so

Ln(u, q) =
∑
p∈Zn≥0

u|p|q|Θ(p)| =
∑

prev∈Zn≥0

u|p
rev|q|Θ(prev)|

=
∑
p∈Zn≥0

(uqn+1)|p|q−|Φ(p)| = An(uqn+1, q−1).
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2

Now we derive the generating function for An in terms of permutation statistics.

Theorem 3.5

An(u, q) =
∑
π∈Sn

qinv(π)
∏
i∈Des(π) u

iqi(i+1)/2

(1− uq)(1− u2q1+2) · · · (1− unq1+2+...+n)

Proof: For T ⊆ Zn≥0, define FT by

FT (u, z1, . . . , zn) =
∑
λ∈T

u|λ|zλ1
1 zλ2

2 . . . zλnn .

Given D ⊆ {1, 2, . . . , n− 1}, define

SD = {(w1 ≥ w2 ≥ . . . ≥ wn) ∈ Zn≥0 | wi > wi+1 if i ∈ D}.

Then

FSD (u, z1, . . . , zn) =

∏
i∈D u

iz1z2 · · · zi
(1− uz1)(1− u2z1z2) · · · (1− unz1z2 · · · zn)

.

We count An from Zn≥0 via Φ. Use the permutations π ∈ Sn to partition the points p ∈ Zn≥0 into sets Tπ
defined by

Tπ = {p | p = π(w1 ≥ w2 ≥ . . . ≥ wn) such that i ∈ Des(π−1) → wi > wi+1}.

So, we are partitioning the points according to the permutation π such that π−1 stably sorts p into weakly
decreasing order. The bijection Φ : Zn≥0 → An does the following to the points in Tπ: They are first
mapped onto the points in SDes(π−1). Then for each i, the ith coordinate is multiplied by i and added to
εi(π). So in the generating function

z
ε1(π)
1 · · · zεn(π)

n FSDes(π−1)
(u, z1, z

2
2 , . . . , z

n
n),

u keeps track of the weight of p ∈ Tπ and the variables zi track the weight of Φ(p). Putting this together,

An(u, z1, . . . , zn) =
∑
λ∈An

u|bλc|zλ1
1 · · · zλnn =

∑
π∈Sn

∑
p∈Tπ

u|p|z
Θ(p)1
1 · · · zΘ(p)n

n

=
∑
π∈Sn

∑
p∈Tπ

z
ε1(π)
1 · · · zεn(π)

n FSDes(π−1)
(u, z1, z

2
2 , . . . , z

n
n)

=
∑
π∈Sn

z
ε1(π)
1 · · · zεn(π)

n
∏
i∈Des(π−1) u

iz1z
2
2 · · · zii

(1− uz1)(1− u2z1z2
2) · · · (1− unz1z2

2 · · · znn)
.

Setting all zi = q, and using (1), which states that inv(π) = inv(π−1),

An(u, q) =
∑
π∈Sn

qinv(π)
∏
i∈Des(π) u

iqi(i+1)/2

(1− uq)(1− u2q1+2) · · · (1− unq1+2+...+n)
.

2
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Theorem 3.6

Ln(u, q) =
∑
π∈Sn

q−inv(π)
∏
i∈Des(π)(uq

(n+1))iq−i(i+1)/2∏n
i=1(1− uiqi(n+1)−i(i+1)/2)

.

Proof: From Theorem 3.4, Ln(u, q) = An(uqn+1, q−1), so apply Theorem 3.5. 2

Combining Theorems 3.5 and 3.6 with equations (4) and (5) will have implications about the distribu-
tion of certain permutation statistics, discussed in the next section.

4 Quadratic Permutation Statistics
Define the q-integer [ n ]q by [ n ]1 = 1 and for q 6= 1, by [ n ]q = (1 − qn)/(1 − q). In Section 2.1
we defined the permutation statistics inv and des. The major index of π ∈ Sn is the sum of the descent
positions: maj(π) =

∑
i∈Des(π) i. It is known that

∑
π∈Sn

qmaj(π) =

n∏
i=1

[ i ]q, (6)

and that inv and maj are equally distributed over all permutations [Mac60].
Motivated by Theorems 3.5 and 3.6, we introduce quadratic permutation statistics sq and bin:

sq(π) =
∑

i∈Des(π)

i2 and bin(π) =
∑

i∈Des(π)

(
i+ 1

2

)
.

Because of the way “inv” is involved with the distribution of these quadratic statistics, we also define

sqin(π) = sq(π) + inv(π)

binv(π) = bin(π) + inv(π)

and prove two distribution theorems that refine (6). The first comes from the enumeration of anti-lecture
hall compositions.

Theorem 4.1 ∑
π∈Sn

umaj(π)qbinv(π) =

n∏
i=1

(1− uiq(
i+1
2 ))

1 + uqi

1− u2q1+i
.

Proof: Restate the generating function for An(u, q) in Theorem 3.5 in terms of the new permutation
statistics and apply equation (5). 2

Setting q = 1 in Theorem 4.1 gives (6). Setting u = 1 in Theorem 4.1 gives the following interesting
generating function for the symmetric group.
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Corollary 4.2 ∑
π∈Sn

qbinv(π) =

n∏
i=1

[ 2 ]qi
[ i(i+ 1)/2 ]q

[ i+ 1 ]q

In Theorem 4.1, setting q = q−1 and then u = qn+1 gives an unusual variation of (6).

Corollary 4.3 ∑
π∈Sn

q(n+1)maj(π)−binv(π) =

n∏
i=1

[ i ]q2(n−i)+1 .

Proof: By Theorem 3.4, An(u, qn+1, q−1) = Ln(u, q). Equate Ln(u, q) in Theorem 3.6 and equation
(4), setting u = 1, and simplify:

∑
π∈Sn

q(n+1)maj(π)−binv(π) =

n∏
i=1

(1− qi(2n−i+1)/2)

n∏
i=1

1

1− q2i−1
.

The result follows by observing that

1− qi(2n−i+1)/2 =

{
1− qk(2(n−k)+1) = [ k ]q2(n−k)+1(1− q2(n−k)+1) if i = 2k

1− q(2k+1)(n−k) = [ n− k ]q2k+1(1− q2k+1) if i = 2k + 1.

2

The second distribution theorem has the following form.

Theorem 4.4 ∑
π∈Sn

qmaj(π)tsqin(π) =

n∏
i=1

[ i ]qti

Before proving Theorem 4.4, we observe that it has the following specializations. Setting t = 1 in
Theorem 4.4 gives (6). Setting q = 1 in Theorem 4.4 gives the following, which appears to be a new
observation:

Corollary 4.5 ∑
π∈Sn

tsqin(π) =

n∏
i=1

[ i ]ti .

Setting q = qn and t = 1/q in Theorem 4.4 gives:

Corollary 4.6 ∑
π∈Sn

qnmaj(π)−sqin(π) =

n∏
i=1

[ i ]qn−i .
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In [SW98], Stembridge and Waugh derive a Weyl group generating function which, especially in the
case of the symmetric group, they felt “ought to be better known”. In [Zab03], Zabrocki gave a simple
combinatorial proof of that special case, which was exactly Corollary 4.6 above. It appears that we have
come full circle, since lecture hall partitions originally arose in Eriksson’s work on affine Coxeter groups
[BME97].

Setting q = q2n+1 and t = 1/q2 in Theorem 4.4 gives:

Corollary 4.7 ∑
π∈Sn

q(2n+1)maj(π)−2sqin(π) =

n∏
i=1

[ i ]q2(n−i)+1 ,

We finish this section with a proof of Theorem 4.4, which follows the same strategy as Zabrocki’s proof
of Corollary 4.6 above. In contrast to the proof of Theorem 4.3, this is a direct and elementary proof which
does not rely on the theory of lecture hall partitions or affine Coxeter groups. We have not as yet found a
similar approach to Theorem 4.3.

Proof: (of Theorem 4.4) Expand the product in Theorem 4.4 as

n∏
i=1

[ i ]qti = (1)(1 + qt2)(1 + qt3 + (qt3)2) . . . (7)

=
∑

(r1,...,rn)

qr1+...+rnt1r1+2r2+...+nrn (8)

where the sum is over the n! sequences (r1, . . . , rn) satisfying 0 ≤ r < i. So, we will establish a bijection
from Sn to these sequences with the property that if π maps to (r1, . . . , rn), then maj(π) = r1 + . . .+ rn
and sqin(π) = 1r1 + 2r2 + . . .+ nrn.

Given π, let ε = ε(π−1) be the inversion sequence of π−1. Define r by ri = εi− εi+1 + i if i ∈ Des(π)
and ri = εi− εi+1, otherwise. Observe that εi < εi+1 if and only if i ∈ Des(π). By definition, 0 ≤ εi < i
for every i Thus 0 ≤ ri < i for every i. Clearly r1 + . . .+ rn = maj(π) and

n∑
i=1

iri =
∑

i∈Des(π)

i2 +

n∑
i=1

i(εi − εi+1) = sq(π) + inv(π−1) = sq(π) + inv(π).

Finally, observe that ε, and therefore π−1 and π, can be recovered from r: εn = rn and for i < n, given
ri and εi+1, it must be that εi = ri + εi+1 if ri + εi+1 < i and otherwise, εi = ri + εi+1 − i. 2

5 Further directions
We mention a few questions suggested by this work. Are there other areas where quadratic permutation
statistics arise naturally? Other joint distribution results? Can we give a direct and elementary proof of
Theorem 4.4 on the joint distribution of maj and binv that is independent of the theory of lecture hall
partitions and Weyl groups? The lecture hall theorem came from the theory of affine Coxeter groups and
Bott’s formula; do anti-lecture hall compositions have any place in this theory?
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