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Abstract. We study the poset of Borel congruence classes of symmetric matrices ordered by containment of closures.
We give a combinatorial description of this poset and calculate its rank function. We discuss the relation between this
poset and the Bruhat poset of involutions of the symmetric group. Also we present the poset of Borel congruence
classes of anti-symmetric matrices ordered by containment of closures. We show that there exists a bijection between
the set of these classes and the set of involutions of the symmetric group. We give two formulas for the rank function
of this poset.

Résumé Nous étudions l’ensemble ordonné des classes de congruence de matrices symétriques ordonnées par con-
tainment de leurs fermetures. Nous donnons une description combinatoire de cet ensemble et calculons sa fonction
rang. Nous étudions les relations entre cet ensemble et l’ensemble des involutions du groupe symérique ordonné selon
l’ordre de Bruhat. Nous montrons qu’il existe une bijection parmi l’ensemble ordonné de classes de congruences de
Borel des matrices anti-symétriques et l’ensemble des involutions du groupe symétrique. On termine en donnant deux
formules pour la fonction rang pour ce dernier ensemble.
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1 Introduction
A remarkable property of the Bruhat decomposition of GLn(C) (i.e. the decomposition of GLn(C) into
double cosets {B1πB2} where π ∈ Sn , B1, B2 ∈ Bn(C) – the subgroup of upper-triangular invertible
matrices ) is that the natural order on double cosets (defined by containment of closures) leads to the
same poset as the combinatorially defined Bruhat order on permutations of Sn (for π, σ ∈ Sn, π 6 σ if
π is a subword of σ with respect to the reduced form in Coxeter generators). L. Renner introduced and
developed the beautiful theory of Bruhat decomposition for not necessarily invertible matrices, see [10]
and [9]. When the Borel group acts on all the matrices, the double cosets are in bijection with partial
permutations which form a so called rook monoid Rn which is the finite monoid whose elements are the
0-1 matrices with at most one nonzero entry in each row and column. The group of invertible elements of
Rn is isomorphic to the symmetric group Sn. Another efficient, combinatorial description of the Bruhat
ordering on Rn and a useful, combinatorial formula for the length function on Rn are given by M. Can
and L. Renner in [3].

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmANind.html


486 Eli Bagno and Yonah Cherniavsky

The Bruhat poset of involutions of Sn was first studied by F. Incitti in [6] from a purely combinatorial
point of view. He proved that this poset is graded, calculated the rank function and also showed several
other important properties of this poset.

In this extended abstract we present a geometric interpretation of this poset and its natural general-
ization, considering the action of the Borel subgroup on symmetric matrices by congruence. Denote by
Bn(C) the Borel subgroup ofGLn(C), i.e. the group of invertible upper-triangular n×nmatrices over the
complex numbers. Denote by S(n,C) the set of all complex symmetric n× n matrices. The congruence
action of B ∈ Bn(C) on S ∈ S(n,C) is defined in the following way:

S 7−→ BtSB .

The orbits of this action (to be precisely correct, we must say S 7→
(
B−1

)t
SB−1 to get indeed a group

action) are called the congruence B-orbits. It is known that the orbits of this action may be indexed by
partial Sn-involutions (i.e. symmetric n×n matrices with at most one 1 in each row and in each column)
(see [11]). Thus, if π is such a partial involution, we denote by Cπ the corresponding congruence B-orbit
of symmetric matrices. The poset of these orbits gives a natural extension of the Bruhat poset of regular
(i.e. not partial) involutions of Sn. If we restrict this action to the set of invertible symmetric matrices we
get a poset of orbits that is isomorphic to the Bruhat poset of involutions of Sn studied by F. Incitti.

Here, we give another view of the rank function of this poset, combining combinatorics with the geo-
metric nature of it. The rank function equals to the dimension of the orbit variety. We define the combina-
torial parameter D which is an invariant of the orbit closure and give two combinatorial formulas for the
rank function of the poset of partial involutions (Theorems 2 and 7). The result of Incitti that the Bruhat
poset of involutions of Sn is graded and his formula for the rank function of this poset follow from our
exposition (Corollary 1).

Also we present another graded poset of involutions of the symmetric group which also has the geo-
metric nature, i.e. it can be described as a poset of matrix varieties ordered by containment of closures.
Denote by AS(n,C) the set of all complex anti-symmetric n × n matrices. It is actually a vector space
with respect to standard operations of addition and multiplication by complex scalars, also it is a Lie al-
gebra usually denoted as so with [A,B] := AB −BA. It is easy to see that AS(n,C) is closed under the
congruence action. We consider the orbits of the congruence action of Bn(C) on AS(n,C).

The main points of this work are Proposition 2, Definition 8, Theorem ?? and Proposition 8. In Propo-
sition 2 we show that the orbits of this action may be indexed by involutions of Sn. Then we consider
the poset of these orbits ordered by containment of closures. In Definition 7 we introduce the parameter
A and then in Theorem 2 and Proposition 8 we give two different formulas for the rank function of the
studied poset using the parameter A. This parameter is similar to the parameter D introduced in [1] and
it can be seen as a particular case of a certain unified approach to the calculation of the rank function for
several ”Bruhat-like” posets as we briefly discuss it at the last section of [1].

If we restrict this action on the set of invertible anti-symmetric matrices we get a poset of orbits that is
isomorphic to the (reversed) Bruhat poset of involutions of Sn without fixed points which is a subposet of
the poset studied by F. Incitti.
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2 Preliminaries
2.1 Permutations and partial permutations. The Bruhat order
The Bruhat order on permutations of Sn is defined as follows: π 6 σ if π is a subword of σ in Coxeter
generators s1 = (1, 2), s2 = (2, 3),...,sn−1 = (n − 1, n). It it well studied from various points of
view. The rank function is the length in Coxeter generators which is exactly the number of inversions in
a permutation. A permutation matrix is a square matrix which has exactly one 1 in each row and each
column while all other entries are zeros. A partial permutation is an injective map defined on a subset
of {1, 2, .., n}. A partial permutation matrix is a square matrix which has at most one 1 at each row and
each column and all other entries are zeros. So, if we delete the zero rows and columns from a partial
permutation matrix we get a (regular) permutation matrix of smaller size, we will use this view later. See
works of L. Renner [9] and [10] where the Bruhat order on partial permutations is introduced and studied.

2.2 Partial order on orbits
When an algebraic group acts on a set of matrices, the classical partial order on the set of all orbits is
defined as follows:

O1 ≤ O2 ⇐⇒ O1 ⊆ O2

where S is the (Zariski) closure of the set S.

Reminder 1 Note that O1 ⊆ O2 =⇒ O1 ⊆ O2 for any two sets O1,O2.

Definition 1 As usual, a monomial matrix is a matrix which has at most one non-zero entry in each its
row and in each its column.

3 Rank-control matrices
In this section we define the rank control matrix which will turn out to be a key corner in the identification
of our poset. We start with the following definition:

Definition 2 Let X = (xij) be an n × m matrix. For each 1 ≤ k ≤ n and 1 ≤ l ≤ m, denote by
Xk` the upper-left k × ` submatrix of X . We denote by R(X) the n × m matrix whose entries are:
rk` = rank (Xk`) and call it the rank control matrix of X .

It follows from the definitions that for each matrix X , the entries of R(X) are nonnegative integers
which do not decrease in rows and columns and each entry is not greater than its row and column number.
If X is symmetric, then R(X) is symmetric as well.

Reminder 2 This rank-control matrix is similar to the one introduced by A. Melnikov [7] when she stud-
ied the poset (with respect to the covering relation given in Definition 2.2) of adjoint B-orbits of certain
nilpotent strictly upper-triangular matrices.

The rank control matrix is connected also to the work of Incitti [6] where regular involutions of Sn are
discussed.

Proposition 1 Let X,Y ∈ GLn(F) be such that Y = LXB for some invertible lower-triangular matrix
L and some matrix B ∈ Bn(C). Denote by Xk` and Yk` the upper-left k × ` submatrices of X and Y
respectively. Then for all 1 6 k, ` 6 n

rank (Xk`) = rank (Yk`) .
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Proof: (
Lkk 0k×(n−k)
∗ ∗

)(
Xk` ∗
∗ ∗

)(
B`` ∗

0(n−`)×` ∗

)
=

(
LkkXk`B`` ∗

∗ ∗

)
,

and therefore, Yk` = LkkXk`B``. The matrices Lkk and B`` are invertible, which implies that Yk` and
Xk` have equal ranks. 2

The rank control matrices of two permutations can be used to compare between them in the sense of
Bruhat order. This is the reasoning for the next definition:

Definition 3 Define the following order on n ×m matrices with positive integer entries: Let P = (pij)
and Q = (qij) be two such matrices.

Then
P 6R Q ⇐⇒ pij 6 qij for all i, j .

The following lemma appears in another form as Theorem 2.1.5 of [2].

Lemma 1 Denote by 6B the Bruhat order of Sn and let π, σ ∈ Sn. Then

π 6B σ ⇐⇒ R(π) >R R(σ) .

In other words, the Bruhat order on permutations corresponds to the inverse order of their rank-control
matrices. 2

4 Partial permutations, Partial Involutions and Congruence B-Orbits
Definition 4 A partial permutation is an n×n (0, 1)-matrix such that each row and each column contains
at most one ‘1’.

Definition 5 If a partial permutation matrix is symmetric, then we call it a partial involution.

The following easily verified lemma claims that partial permutations are completely characterized by
their rank control matrices.

Lemma 2 For two n× n partial permutation matrices π, σ we have

R(π) = R(σ) ⇐⇒ π = σ.

Proof: The statement of the lemma is implied by the following simple observation: let U be the n × n
upper-triangular matrix with ’1’s on the main diagonal and in all upper triangle and let π be any partial
permutation. Then

R(π) = U tπU .

2 The following theorem can be found in [11] (Theorem 3.2). It is proved by performing a symmetric

version of Gauss elimination process.

Theorem 1 There exists a bijection between the set of congruence B-orbits of symmetric matrices over C
and the set of partial involutions.
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5 A bijection between orbits and involutions
The following Proposition 2 is somewhat similar to Theorem 3.2 in [11].

Proposition 2 There is a bijection between the set of congruence B-orbits of all anti-symmetric n × n
matrices and the set of all involutions of Sn.

Proof: The complete proof can be found in [4]. It is done by symmetric elimination process which starts
with an anti-symmetric matrix and terminates with a certain monomial anti-symmetric matrix which has
1’s in its upper triangle and −1’s in its lower triangle. Such matrix is unique for the given orbit and there
is a bihection between the set of such matrices and involutions of Sn. This bijection is illustrated in the
Example 1. 2

Example 1 The monomial anti-symmetric matrix


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0

 corresponds to the involu-

tion(
1 2 3 4 5 6
4 5 3 1 2 6

)
∈ S6, which can be written as the product of disjoint transpositions as (1, 4)(2, 5).

a

Observation 1 The congruence B-orbits of invertible anti-symmetric 2n × 2n matrices can be indexed
by involutions of S2n without fixed points.

6 The Poset of Congruence B-Orbits of Symmetric Matrices
Here is a direct consequence of Lemma 2 and Proposition 1.

Proposition 3 All the matrices of a fixed congruence B-Orbit share a comon rank-control matrix. In other
words, if π is a partial Sn-involution, and Cπ is the congruence B-orbit of symmetric matrices associated
with π then

Cπ = {S ∈ S(n,C) |R(S) = R(π)} .

The following lemma describes the orbits:

Lemma 3 Let π be a partial involution and let R(π) be its rank-control matrix. Then

Cπ = {S ∈ S(n,C) | R(S) 6R R(π)} .

This lemma follows from Theorem 15.31 of [8]. Their exposition differs somewhat from ours as it deals
with rectangular, not necessarily symmetric matrices but the differences can be easily overwhelmed by
considering also equations of the form aij = aji which are polynomial equations with regard to the entries
of a matrix.

Reminder 3 Over the fields C and R the closure in Lemma 5 may also be considered with respect to the
metric topology.
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The next corollary follows from Lemma 5 and characterizes the order relation of the poset of B-orbits.
Let π and σ be partial Sn-involutions. Then

Cπ 6O Cσ ⇐⇒ R(π) 6R R(σ)

Explicit examples for n = 3 in the symmetric case can be found in [1] and for n = 4 in the antisym-
metric case can be found in [4].

7 The Poset of Congruence B-Orbits of Anti-Symmetric Matrices
Here is a direct consequence of Proposition 1.

Proposition 4 All the matrices of a fixed congruence B-Orbit have the same rank-control matrix. In other
words, if X ∈ AS(n,C) and AX is the congruence B-orbit of X , then

AX = {S ∈ AS(n,C) |R(S) = R(X)} .

Similarly to the symmetric case we give the proposition which describes the orbit closures in the anti-
symmetric case. This proposition also follows from Theorem 15.31 given by E. Miller and B. Sturmfels,
see [8, Chapter 15, page 301]:

Proposition 5 Let X be an anti-symmetric matrix and let R(X) be its rank-control matrix. Then

AX = {S ∈ AS(n,C) |R(S) 6R R(X)} .

The next corollary characterizes the order relation of the poset of B-orbits.

Corollary 1 Let X,Y ∈ AS(n,C). Then

AX 6O AY ⇐⇒ R(X) 6R R(Y )

8 The Rank Function
Definition 6 A poset P is called graded (or ranked) if for every x, y ∈ P , any two maximal chains from
x to y have the same length.

Proposition 6 The poset of congruence B-orbits of symmetric matrices and the poset of congruence B-
orbits of anti-symmetric matrices(with respect to the order 6O) are graded posets with the rank function
given by the dimension of the closure.

This proposition is a particular case of the following fact. Let G be a connected, solvable group acting
on an irreducible, affine variety X . Suppose that there are a finite number of orbits. Let O be the set of
G-orbits on X . For x, y ∈ O define x 6 y if x ⊆ y. Then O is a graded poset.

This fact is given as an exercise in [10] (exercise 12, page 151) and can be proved using the proof of the
theorem appearing of Section 8 of [9]. (Note that in our case the Borel group is solvable, the varieties of
all symmetric and anti-symmetric matrices are irreducible because they are vector spaces and the number
of orbits is finite since there are only finitely many partial permutation.)

A natural problem is to find an algorithm which calculates the dimension of the orbit closure from the
monomial matrix or from its rank-control matrix. Here we present such an algorithm.
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Definition 7 Let π be a partial involution matrix and let R(π) = (rij) be its rank-control matrix. Add an
extra 0 row to R(π), pushed one place to the left, i.e. assume that r0k = 0 for each 0 6 k < n.

Denote
D(π) = # {(i, j) | 1 6 i 6 j 6 n and rij = ri−1,j−1} .

Definition 8 Let X ∈ AS(n,C) and let R(X) = (rij)
n
i,j=1 be the rank-control matrix of X . Add an

extra 0 row to R(X), pushed one place to the left, i.e. assume that r0k = 0 for each 0 6 k < n. Denote

A(X) = # {(i, j) | 1 6 i < j 6 n and rij = ri−1,j−1} .

The first parameter D counts equalities in the diagonals of the upper triangle of the rank-control matrix
including the main diagonal and the second parameter A counts equalities in the diagonals of the upper
triangle of the rank-control matrix without the main diagonal.

Theorem 2 Let π be a partial Sn-involution. As above Cπ denotes the orbit of symmetric matrices which
corresponds to π. Then

dim Cπ =
n2 + n

2
−D(π).

Proof: Consider the vector space

Cn
2

=

[aij ]
n
i,j=1 =

a11 · · · a1n
· · · · · · · · ·
an1 · · · ann

 : aij ∈ C

 .

Let X be some set of pairs of indexes, i.e. X ⊆ {(i, j) : 1 6 i, j 6 n}. Define a subspace WX ⊂ Cn2

of
dimension n2 − |X| in the following way:

WX = {[aitjt ] : (it, jt) /∈ X} ,

i.e. WX is spanned by the elements of the standard basis of Cn2

which we index by all pairs of indices
not belonging to X .

Consider also the natural projection pX : Cn2 → WX . Since we consider elements of Cn2

as n × n
matrices, we denote elements of WX as matrices with empty boxes in the positions whose indexes are in
X . For example, consider

C32 =

[aij ]
3
i,j=1 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 : aij ∈ C


and let X = {(2, 3), (3, 2), (3, 3)}. Then

WX =

[a11, a12, a13, a21, a22, a31] =

a11 a12 a13
a21 a22 �
a31 � �

 : aij ∈ C

 ⊂ C32 .

In this example the natural projection pX : C32 →WX is

pX ([a11, a12, a13, a21, a22, a23, a31, a32, a33]) = [a11, a12, a13, a21, a22, a31]
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or in the matrix notation

pX

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a11 a12 a13
a21 a22 �
a31 � �

 .
By a fragment of an n× n matrix we mean the image of this matrix under the projection pX with certain
X .

Denote
V kn = pX(Cπ)

where X = {(k + 1, n), (n, k + 1), (k + 2, n), (n, k + 2), ...(n, n)}.
The variety V kn corresponds to the fragments of V with empty entries in the n-th row and column: the

last non-empty entry in the n-th column is in the row number k, all further positions in the n-th row and
column are empty.

Observation 2 Let V be a variety in Cn which is described by the polynomial equations

f1 (x1, ..., xn) = 0, f2 (x1, ..., xn) = 0, ..., fk (x1, ..., xn) = 0

and let p : Cn → Cn−k be the natural projection

p (x1, x2, ..., xn−k, ..., xn−1, xn) = (x1, x2, ..., xn−k) .

Then
p(V ) = {(x1, x2, ..., xn−k) ∈ Cn−k : fi1 = 0, fi2 = 0, ..., fit = 0}

where the equations fij = 0 appearing here are only those which do not include the variables xn−k+1,
xn−k+2,...,xn, i.e. only those fi whose partial derivatives by with respect to the variables xn−k+1,
xn−k+2,...,xn are zeros.

Observation 3 Note that since V kn and V k−1,n are projections of the same variety Cπ and V kn has
one more coordinate than V k−1,n, there are only two possibilities for their dimensions: dimV kn =
dimV k−1,n or dimV kn = dimV k−1,n + 1.

(This is true since the rank of the Jacobian matrix can change only by 1 when we delete the rows
corresponding to the coordinates.)

Now, let us start the course of the proof, by induction on n. For n = 1 the statement is obviously true.
Let πn be any partial Sn involution. Denote by πn−1 its upper-left n−1×n−1 submatrix (which is an

Sn−1 partial involution by itself). Denote by R(πn), (R(πn−1)) the corresponding rank-control matrices.
By the induction hypothesis, dim Cπn−1

= n2−n
2 −D (πn−1). Now we add to πn−1 the n-th column

and consider the n-th column of R(πn). (We also add the n-th row but since our matrices are symmetric
it suffices to check the dimension when we add the n-th column.) We added n new coordinates to the
variety Cπn−1 and we have to show that

dim Cπ = dim Cπn−1
+ n−# {(i, n) | 1 6 i 6 n and rin = ri−1,n−1} , (∗)

The equality (∗) implies the statement of our theorem since n2−n
2 + n = n2+n

2 and

D (π) = D (πn−1) + # {(i, n) | 1 6 i 6 n and rin = ri−1,n−1} .
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Obviously, if r1,n = 0, then a1,n = 0 for anyA = (aij)
n
i,j=1 ∈ Cπ . This itself is a polynomial equation

which decreases the dimension by 1.
If, on the other hand, r1,n = 1, it means that the rank of the first row is maximal and therefore, no

equation is involved. In other words, the dimension of the variety V 1n is one more than the dimension of
the variety V 0n, corresponding to and they have equal dimensions when r1,n = 0.

Now move down along the n-th column of R(πn). Again, by induction, this time on the number of
rows, assume that for each 1 6 i 6 k − 1 dimV in = dimV i−1,n if and only if ri−1,n−1 = ri,n while
dimV in = dimV i−1,n + 1 if and only if ri−1,n−1 < ri,n.

First, let rk−1,n−1 = rk,n = c. Consider a matrix A = (aij)
n
i,j=1 ∈ Cπ and its upper-left (k − 1) ×

(n− 1) submatrix 
a11 a12 · · · a1,n−1
a21 a22 · · · a2,n−1
· · · · · · · · · · · ·

ak−1,1 ak−1,2 · · · ak−1,n−1

 .
Using the notation introduced in Proposition 1, we denote this submatrix as Ak−1,n−1.
If c = 0, then rankAkn = 0, so Akn is a zero matrix and thus dimV in = dimV i−1,n = 0.

Let c 6= 0. Since rank (Ak−1,n−1) = c, we can take c linearly independent columns


a1,j1
a2,j1
· · ·

ak−1,j1

 , ... ,


a1,jc
a2,jc
· · ·

ak−1,jc

 which span its column space. Now take only the linearly independent rows of the (k − 1)× c

matrix


a1,j1 · · · a1,jc
a2,j1 · · · a2,jc
· · · · · · · · ·

ak−1,j1 · · · ak−1,jc

 to get a nonsingular c× c matrix Tc =


ai1,j1 · · · ai1,jc
ai2,j1 · · · ai2,jc
· · · · · · · · ·
aic,j1 · · · aic,jc

.

The equality rk−1,n−1 = rk,n = c 6 k− 1 implies that any (c+1)× (c+1) minor of the matrix Akn
is zero, in particular

det


ai1,j1 · · · ai1,jc ai1,n
ai2,j1 · · · ai2,jc ai2,n
· · · · · · · · · · · ·
aic,j1 · · · aic,jc aic,n
ak,j1 · · · ak,jc ak,n

 = 0

which is a polynomial equation. This equation is algebraically independent of the similar equations ob-
tained for 1 6 i 6 k − 1 since it contains a ”new” variable – the entry ak,n. It indeed involves the entry
ak,n since detTc 6= 0. This equation means that the variable ak,n is not independent of the coordinates
of the variety V k−1,n, and therefore dimV k−1,n = dimV kn.

Now let rk−1,n−1 < rk,n = c. We have to show that in this case the variable ank is independent of
the coordinates of V k−1,n, in other words, we have to show that there is no new equation. Consider the
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fragment
[
rk−1,n−1 rk−1,n
rk−1,n rk,n

]
. There are four possible cases:[

rk−1,n−1 rk−1,n
rk−1,n rk,n

]
=

[
c− 1 c− 1
c− 1 c

]
or

[
c− 2 c− 1
c− 1 c

]
or[

c− 1 c
c− 1 c

]
or

[
c− 1 c− 1
c c

]
.

The equality rk,n = c implies that each (c+ 1)× (c+ 1) minor of Akn is equal to zero, but we shall see
that each such equation is not new, i.e. it is implied by the equality rk,n−1 = c − 1 or by the equality

rk−1,n = c− 1. In the first three cases we decompose the (c+1)× (c+1) determinant det
[
· · · · · ·
· · · ak,n

]
using the last column. Since in all these cases rk,n−1 = c − 1, each c × c minor of this decomposition
(i.e. each c × c minor of Ak,n−1) is zero and therefore, this determinant is zero. In the fourth case
we get the same if we decompose the determinant using the last row instead of the last column: since
rk−1,n = c− 1, all the c× c minors of this decomposition (i.e. all c× c minor of Ak−1,n) are zeros and
thus, our (c+ 1)× (c+ 1) determinant equals to zero. So there is no algebraic dependence between akn
and the coordinates of V k−1,n. Therefore, dimV kn = dimV k−1,n + 1. The case k = n is the same as
other cases when k 6 n− 1. The proof is completed. 2

Theorem 3 Let π ∈ Sn be an involution. Denote by Aπ the orbit of anti-symmetric matrices which
corresponds to π.Then

dim Aπ =
n2 − n

2
− A(π).

The proof is similar to the proof of Theorem 2 and can be found in [4].

9 Another formula for the rank function.

9.1 The symmetric case.
Obviously, an n × n partial involution matrix π can be described uniquely by the pair (π̃, {i1, ..., ik}),
where n−k is the rank of the matrix π, π̃ ∈ Sn−k such that π̃2 = Id is the regular (not partial) involution
of the symmetric group Sn−k and the integers i1, ..., ik are the numbers of zero rows (columns) in the
matrix π.

The following theorem is a generalization of the formula for the rank function of the Bruhat poset of
the involutions of Sn given by Incitti in [6]. It is indeed the rank function because we already know
that the rank function is the dimension (Proposition 6) and the dimension is determined by the parameter
D (Theorem 2). Recall that for σ ∈ Sn, inv(σ) = #{(i, j)|i < j&σ(i) > σ(j)} and exc(σ) =
#{i|σ(i) > i}.
Proposition 7 Following Incitti, denote by Invol(G) the set of all involutions in the group G. Then for
a partial permutation π = (π̃, {i1, ..., ik}), where π̃ ∈ Invol(Sn−k) and the integers i1, ..., ik are the
numbers of zero rows (columns) in the matrix π is:

D(π) =
exc(π̃) + inv(π̃)

2
+

k∑
t=1

(n+ 1− it)
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In other words, D(π) equals to the length of π̃ in the poset of the involutions of the group Sn−k plus
the sum of the numbers of zero rows of the matrix π, where the numbers are taken in the opposite order,
i.e. the n-th row is labeled by 1, the (n− 1)-th row is labeled by 2,..., the first row is labeled by n.

Comment 1 The Bruhat poset of regular (not partial) involutions of Sn is a graded poset with the rank
function given by the formula

D(σ) =
exc(σ) + inv(σ)

2
,

where σ ∈ Invol(Sn).

The proofs of Proposition 7 and Corollary 1 can be found in [1].

9.2 The anti-symmetric case.
Here we don’t distinguish between an involution π ∈ Sn and the monomial anti-symmetric matrix (with
minuses in the lower triangle) associated to π by the bijection presented in Proposition 2.

Definition 9 Let π ∈ Sn be an involution. It is always possible to write it as product of disjoint transpo-
sitions

π = (i1, j1) (i2, j2) · · · (ik, jk)

in such a way that for all 1 6 t 6 k, it < jt and i1 < i2 < · · · < ik. Let us call it ”the canonic form”.
Denote by I(π) the number of inversions in the word i1j1i2j2 · · · ikjk.

Proposition 8 Let π ∈ Sn be an involution. Then

A(π) = I(π) +
∑

a :π(a)=a

(n− a) .

The proof can be found in [4].
The proofs of Propositions 7 and 8 are done by induction and use Theorems 2 and 3 respectively.
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