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Zonotopes, toric arrangements, and
generalized Tutte polynomials

Luca Moci1
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Abstract. We introduce a multiplicity Tutte polynomial M(x, y), which generalizes the ordinary one and has appli-
cations to zonotopes and toric arrangements. We prove that M(x, y) satisfies a deletion-restriction recurrence and has
positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to
be specializations of the associated polynomial M(x, y), likewise the corresponding polynomials for a hyperplane
arrangement are specializations of the ordinary Tutte polynomial. Furthermore, M(1, y) is the Hilbert series of the
related discrete Dahmen-Micchelli space, while M(x, 1) computes the volume and the number of integral points of
the associated zonotope.

Résumé. On introduit un polynôme de Tutte avec multiplicité M(x, y), qui généralise le polynôme de Tutte ordinaire
et a des applications aux zonotopes et aux arrangements toriques. Nous prouvons que M(x, y) satisfait une récurrence
de “deletion-restriction” et a des coefficients positifs. Le polynôme caractéristique et le polynôme de Poincaré d’un
arrangement torique sont des spécialisations du polynôme associé M(x, y), de même que les polynômes correspon-
dants pour un arrangement d’hyperplans sont des spécialisations du polynôme de Tutte ordinaire. En outre, M(1, y)
est la série de Hilbert de l’espace discret de Dahmen-Micchelli associé, et M(x, 1) calcule le volume et le nombre de
points entiers du zonotope associé.

Keywords: Tutte polynomial, zonotope, integral points, toric arrangement, characteristic polynomial, Dahmen-
Micchelli, partition function

1 Introduction
The Tutte polynomial is an invariant naturally associated to a matroid and encoding many of its features,
such as the number of bases and their internal and external activity ([21], [3], [6]). If the matroid is de-
fined by a finite list of vectors, it is natural to consider the arrangement obtained by taking the hyperplane
orthogonal to each vector. To the poset of the intersections of the hyperplanes one associates its charac-
teristic polynomial, which provides a rich combinatorial and topological description of the arrangement
([19], [22]). This polynomial can be obtained as a specialization of the Tutte polynomial.

Let T be a complex torus (i.e., a multiplicative group (C∗)n of n-tuples of nonzero complex numbers)
and take a finite list of characters: X ⊂ Hom(T,C∗). Then we consider the arrangement of hypersur-
faces in T obtained by taking the kernel of each element of the list X . To understand the geometry of this
toric arrangement one needs to describe the poset C(X) of the layers, i.e. connected components of the
intersections of the hypersurfaces ([5], [9], [15], [18]). Clearly this poset depends also on the arithmetics
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of X , and not only on its linear algebra: for example, the kernel of the identity character λ of C∗ is the
point t = 1, but the kernel of 2λ has equation t2 = 1, hence is made of two points. Therefore we have
no chance to get the characteristic polynomial of C(X) as a specialization of the ordinary Tutte polyno-
mial T (x, y) of X . In this paper we define a polynomial M(x, y) that specializes to the characteristic
polynomial of C(X) (Theorem 5.5) and to the Poincaré polynomial of the complement RX of the toric
arrangement (Theorem 5.6). In particular M(1, 0) equals the Euler characteristic of RX , and also the
number of connected components of the complement of the arrangement in the compact torus T = (S1)n.

We call M(x, y) the multiplicity Tutte polynomial of X , since it coincides with T (x, y) when X is
unimodular, and in general it satisfies the same deletion-restriction recurrence that holds for T (x, y). By
this formula (Theorem 3.3) we prove that M(x, y) has positive coefficients (Theorem 3.4).

Actually a similar polynomial can be defined more generally for matroids, if we enrich their structure
in order to encode some ”arithmetic data”; we call such objects multiplicity matroids. We hope to develop
in a future paper an axiomatic theory of these matroids, as well as applications to graph theory. In the
present paper the focus is on the case of a list X of vectors in Zn. Given such a list, we consider two
finite dimensional vector spaces: a space of polynomials D(X), defined by differential equations, and a
space of quasipolynomials DM(X), defined by difference equations. These spaces were introduced by
Dahmen and Micchelli to study respectively box splines and partition functions, and are deeply related
respectively with the hyperplane arrangement and the toric arrangement defined by X , as explained in the
forthcoming book [6]. In particular, T (1, y) is known to be the Hilbert series of D(X); then we prove
that M(1, y) is the Hilbert series of DM(X) (Theorem 6.3).

On the other hand, by Theorem 4.1 the coefficients of M(x, 1) count integral points in some faces
of a convex polytope, the zonotope defined by X . The relations between arrangements, zonotopes and
Dahmen-Micchelli spaces is being studied intensively in the very last years: see for example [6], [10],
[7], [1], [11], . In particular M(1, 1) equals the volume of the zonotope (Proposition 2.1), while M(2, 1)
is the number of its integral points (Proposition 4.2).

Finally we focus on the case in which X is a root system: then we show some connections with the
theory of Weyl groups (see for instance Corollary 7.3).

Remark 1.1 This paper is an extended abstract of [17], which contains more details and all the proofs,
which are omitted here.

2 Multiplicity matroids and multiplicity Tutte polynomials
We start recalling the notions we are going to generalize.

A matroid M is a pair (X, I), where X is a finite set and I is a family of subsets of X (called the
independent sets) with the following properties:

1. The empty set is independent;

2. Every subset of an independent set is independent;

3. Let A and B be two independent sets and assume that A has more elements than B. Then there
exists an element a ∈ A \B such that B ∪ {a} is still independent.

A maximal independent set is called a basis. The last axiom implies that all bases have the same
cardinality, which is called the rank of the matroid. Every A ⊆ X has a natural structure of matroid,
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defined by considering a subset of A independent if and only if it is in I . Then each A ⊆ X has a rank
which we denote by r(A).

The Tutte polynomial of the matroid is then defined as

T (x, y)
.
=
∑
A⊆X

(x− 1)r(X)−r(A)(y − 1)|A|−r(A).

From the definition it is clear that T (1, 1) equals the number of bases of the matroid.
In the next sections we will recall the main example of matroid and some properties of its Tutte poly-

nomial.

We now introduce the following definitions.
A multiplicity matroid M is a triple (X, I,m), where (X, I) is a matroid and m is a function (called

multiplicity) from the family of all subsets of X to the positive integers.
We say that m is the trivial multiplicity if it is identically equal to 1.
We define the multiplicity Tutte polynomial of a multiplicity matroid as

M(x, y)
.
=
∑
A⊆X

m(A)(x− 1)r(X)−r(A)(y − 1)|A|−r(A).

Let us remark that we can endow every matroid with the trivial multiplicity, and then M(x, y) =
T (x, y).

Let X be a finite list of vectors spanning a real vector space U , and I be the family of its linearly
independent subsets; then (X, I) is a matroid, and the rank of a subset A is just the dimension of the
spanned subspace. We denote by TX(x, y) the associated Tutte polynomial.

We associate to the list X a zonotope, that is a convex polytope in U defined as follows:

Z(X)
.
=

{∑
x∈X

txx, 0 ≤ tx ≤ 1

}
.

Zonotopes play an important role in the theory of hyperplane arrangements, and also in that of splines, a
class of functions studied in Approximation Theory. (see [6]).

We recall that a lattice Λ of rank n is a discrete subgroup of Rn which spans the real vector space Rn.
Every such Λ can be generated from some basis of the vector space by forming all linear combinations
with integral coefficients; hence the group Λ is isomorphic to Zn. We will use the word lattice always
with this meaning, and not in the combinatorial sense (poset with join and meet).

Then let X be a finite list of elements in a lattice Λ, and let I and r be as above. We denote by
〈A〉Z and 〈A〉R respectively the sublattice of Λ and the subspace of Λ ⊗ R spanned by A. Let us define
ΛA

.
= Λ ∩ 〈A〉R: this is the largest sublattice of Λ in which 〈A〉Z has finite index. Then we define m as

this index:
m(A)

.
= [ΛA : 〈A〉Z] .

This defines a multiplicity matroid and then a multiplicity Tutte polynomial MX(x, y), which is the main
subject of this paper. We start by showing the relations with the zonotope Z(X) generated by X in
U

.
= Λ⊗ R.
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We already observed that TX(1, 1) equals the number of bases that can be extracted from X; on the
other hand we have:

Proposition 2.1 MX(1, 1) equals the volume of the zonotope Z(X).

Further relations between the polynomial MX(x, y) and the zonotope Z(X) will be shown in Section
4.

3 Deletion-restriction formula and positivity
The central idea that inspired Tutte in defining the polynomial T (x, y), was to find the most general
invariant satisfying a recurrence known as deletion-restriction. Such recurrence allows to reduce the
computation of the Tutte polynomial to some trivial cases. We will explain this algorithm in the case
above, i.e. when the matroid is defined by a list of vectors, and we will show that in this case also the
polynomial M(x, y) satisfies a similar recursion.

3.1 Lists of vectors
Let X be a finite list of elements spanning a vector space U , and let v ∈ X be a nonzero element. We
define two new lists: the listX1

.
= X\{v} of elements of U and the listX2 of elements of U/〈v〉 obtained

by reducing X1 modulo v. Assume that v is dependent in X , i.e. v ∈ 〈X1〉R. Then we have the following
well-known formula:

Theorem 3.1
TX(x, y) = TX1

(x, y) + TX2
(x, y)

It is now clear why we defined X as a list, and not as a set: even if we start with X made of (nonzero)
distinct elements, in X2 some vector may appear many times (and some vector may be zero).

By this recurrence we get:

Theorem 3.2 TX(x, y) is a polynomial with positive coefficients.

3.2 Lists of elements in finitely generated abelian groups.
We now want to show a similar recursion for the polynomial MX(x, y). Inspired by [8], we notice that
in order to do this, we need to work in a larger category. Indeed, whereas the quotient of a vector space
by a subspace is still a vector space, the quotient of a lattice by a sublattice is not a lattice, but a finitely
generated abelian group. For example in the 1-dimensional case, the quotient of Z by mZ is the cyclic
group of order m.

Then let Γ be a finitely generated abelian group. For every subset S of Γ we denote by 〈S〉 the generated
subgroup. We recall that Γ is isomorphic to the direct product of a lattice Λ and of a finite group Γt, which
is called the torsion subgroup of Γ. We denote by π the projection π : Γ→ Λ.

Let X be a finite subset of Γ; for every A ⊆ X we set ΛA
.
= Λ∩

〈
π(A)

〉
R and ΓA

.
= ΛA×Γt. In other

words, ΓA is the largest subgroup of Γ in which 〈A〉 has finite index.

Then we define m(A)
.
=
[
ΓA : 〈A〉

]
. We also define r(A) as the rank of π(A). In this way we defined

a multiplicity matroid, to which is associated a multiplicity Tutte polynomial:

MX(x, y)
.
=
∑
A⊆X

m(A)(x− 1)r(X)−r(A)(y − 1)|A|−r(A).
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It is clear that if Γ is a lattice, these definitions coincide with the ones given in the previous sections.
If on the opposite hand Γ is a finite group,M(x, y) is a polynomial in which only the variable y appears;

furthermore this polynomial, evaluated at y = 1, gives the order of Γ. Indeed the only summand that does
not vanish is the contribution of the empty set, which generates the trivial subgroup.

Now let λ ∈ X be a nonzero element such that π(λ) ∈
〈
π
(
X \ {λ}

)〉
R. We set X1

.
= X \ {λ} ⊂ Γ

and we denote by A the image of every A ⊆ X under the natural projection Γ −→ Γ/〈λ〉. We denote by
X2 the subset X1 of Γ/〈λ〉. Then we have the following deletion-restriction formula.

Theorem 3.3
MX(x, y) = MX1(x, y) +MX2(x, y).

By this recurrence we prove:

Theorem 3.4 MX(x, y) is a polynomial with positive coefficients.

4 Integral points in zonotopes
Let X be a finite list of vectors contained in a lattice Λ and generating the vector space U = Λ ⊗ R. We
say that a point of U is integral if it is contained in Λ. In this section we prove that MX(2, 1) equals the
number of integral points of the zonotope Z(X). Moreover we compare this number with the volume. In
order to do that, we have to move the zonotope to a ”generic position”; we proceed as follows. Following
[6, Section 1.3], we define the cut-locus of the couple (Λ, X) as the union of all hyperplanes in U that
are translations, under elements of Λ, of the linear hyperplanes spanned by subsets of X . Then let ε be
a vector of U which does not lie in the cut-locus and has length ε << 0. Let Z(X) − ε be the polytope
obtained translating Z(X) by −ε, and let I(X) be the set of its integral points:

I(X)
.
= (Z(X)− ε) ∩ Λ.

It is intuitive (and proved in [6, Prop 2.50]) that this number equals the volume:

|I(X)| = vol (Z(X)) = MX(1, 1)

by Proposition 2.1. We now prove a stronger result. Let us choose ε so that Z(X) − ε contanins the
origin 0. We partition I(X) as follows: set In(X) = {0}, and for every k = n− 1, . . . , 0, let Ik(X) be
the set of elements of I(X) that are contained in some k−codimensional face of Z(X) and that are not
contained in Ih(X) for h > k.

Then we have:

Theorem 4.1

MX(x, 1) =

n∑
k=0

|Ik(X)| xk.

Furthermore we prove:

Proposition 4.2
MX(2, 1) = |Z(X) ∩ Λ|
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Example 4.3 Consider the list in Z2

X = {(3, 3), (1,−1), (2, 0)} .

Then
MX(x, y) = (x− 1)2 + (3 + 1 + 2)(x− 1) + (6 + 6 + 2) + 2(y − 1).

Hence
MX(x, 1) = x2 + 4x+ 9

and MX(2, 1) = 21. Indeed the zonotope Z(X) has volume 14 and contains 21 integral points, 14 of
which lying in Z(X)− ε. The sets I2(X), I1(X), and I0(X) contain 1, 4 and 9 points respectively.

5 Application to arrangements
In this Section we describe some geometrical objects related to the lists considered in Section 2.2, and
show that many of their features are encoded in the polynomials TX(x, y) and MX(x, y).

5.1 Recall on hyperplane arrangements
Let X be a finite list of elements of a vector space U . Then in the dual space V = U∗ a hyperplane
arrangement H(X) is defined by taking the orthogonal hyperplane of each element of X . Conversely,
given an arrangement of hyperplanes in a vector space V , let us choose for each hyperplane a nonzero
vector in V ∗ orthogonal to it; let X be the list of such vectors. Since every element of X is determined up
to scalar multiples, the matroid associated toX is well defined; in this way a Tutte polynomial is naturally
associated to the hyperplane arrangement.

The importance of the Tutte polynomial in the theory of hyperplane arrangements is well known. Here
we just recall some results that we generalize in the next sections.

To every sublistA ⊆ X is associated the subspaceA⊥ of V that is the intersection of the corresponding
hyperplanes ofH(X); in other words, A⊥ is the subspace of vectors that are orthogonal to every element
ofA. LetL(X) be the set of such subspaces, partially ordered by reverse inclusion, and having as minimal
element 0 the whole space V = ∅⊥. L(X) is called the intersection poset of the arrangement, and is ”the
most important combinatorial object associated to a hyperplane arrangement” (R. Stanley).

We also recall that to every finite poset P is associated a Moebius function µ : P ×P → Z, recursively
defined as follows:

µ(L,M) =


0 if L > M

1 if L = M

−
∑
L≤N<M µ(L,N) if L < M.

Notice that the poset L(X) is ranked by the dimension of the subspaces; then we define characteristic
polynomial of the poset as

χ(q)
.
=

∑
L∈L(X)

µ(0, L)qdim(L).

This is an important invariant of H(X). Indeed, letMX be the complement in V of the union of the
hyperplanes ofH(X). Let P (q) be Poincaré polynomial ofMX , i.e. the polynomial having as coefficient
of qk the k−th Betti number ofMX . Then if V is a complex vector space, by [19] we have the following
theorem.
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Theorem 5.1
P (q) = (−q)nχ(−1/q).

If on the other hand V is a real vector space, by [22] the number Ch(X) of chambers (i.e., connected
components ofMX ) is:

Theorem 5.2
Ch(X) = (−1)

n
χ(−1).

The Tutte polynomial TX(x, y) turns out to be a stronger invariant, in the following sense. Assume that
0 /∈ X; then

Theorem 5.3
(−1)nTX(1− q, 0) = χ(q).

The proof of these theorems can be found for example in [6, Theorems 10.5, 2.34 and 2.33].

5.2 Toric arrangements and their generalizations
Let Γ = Λ × Γt be a finitely generated abelian group, and define TΓ

.
= Hom(Γ,C∗). TΓ has a natural

structure of abelian linear algebraic group: indeed it is the direct product of a complex torus TΛ of the
same rank as Λ and of the finite group Γt

∗ dual to Γt (and isomorphic to it).
Moreover Γ is identified with the group of characters of TΓ: indeed given λ ∈ Λ and t ∈ TΓ we can

take any representative ϕt ∈ Hom(Γ,C) of t and set λ(t)
.
= e2πiϕt(λ). When this is not ambiguous we

will denote TΓ by T .
Let X ⊂ Λ be a finite subset spanning a sublattice of Λ of finite index. The kernel of every character

χ ∈ X is a (non-connected) hypersurface in T :

Hχ
.
=
{
t ∈ T |χ(t) = 1

}
.

The collection T (X) = {Hχ, χ ∈ X} is called the generalized toric arrangement defined by X on T .
We denote byRX the complement of the arrangement:

RX
.
= T \

⋃
χ∈X

Hχ

and by CX the set of all the connected components of all the intersections of the hypersurfacesHχ, ordered
by reverse inclusion and having as minimal elements the connected components of T .

Since rank(Λ) = dim(T ), the maximal elements of C(X) are 0-dimensional, hence (since they are
connected) they are points. We denote by C0(X) the set of such layers, which we call the points of the
arrangement.

Given A ⊆ X let us define HA
.
=
⋂
λ∈AHλ. Then we have:

Lemma 5.4 m(A) equals the number of connected components of HA.

In particular, when Γ is a lattice, T is a torus and T (X) is called the toric arrangement defined by
X . Such arrangements have been studied for example in [14], [5], [15], [18]; see [6] for a complete
reference. In particular, the complement RX has been described topologically and geometrically. In this
description the poset C(X) plays a major role, for many aspects analogous to that of the intersection poset
for hyperplane arrangements (see [5], [18]).

We will now explain the importance in this framework of the polynomial MX(x, y) defined in Section
3.3.
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5.3 Characteristic polynomial and Poincaré polynomial
Let µ be the Moebius function of C(X); notice that we have a natural rank function given by the dimension
of the layers. For every C ∈ C(X), let TC be the connected component of T that contains C. Then we
define the characteristic polynomial of C(X):

χ(q)
.
=

∑
C∈C(X)

µ(TC , C)qdim(C).

This polynomial is a specialization of the multiplicity Tutte polynomial:

Theorem 5.5
(−1)nMX(1− q, 0) = χ(q)

Furthermore, by applying our results to a theorem proved in [5, Theor. 4.2] (or [6, 14.1.5]), we give a
formula for the Poincare’ polynomial P (q) ofRX :

Theorem 5.6
P (q) = qnMX

(
2q + 1

q
, 0

)
.

Therefore, by comparing Theorem 5.5 and Theorem 5.6, we get the following formula, which relates
the combinatorics of C(X) with the topology ofRX , and is the ”toric” analogue of Theorem 4.1.

Corollary 5.7

P (q) = (−q)nχ
(
−q + 1

q

)
.

We recall that the Euler characteristic of a space can be defined as the evaluation at −1 of its Poincaré
polynomial. Hence by Theorem 5.6 we have:

Corollary 5.8 (−1)nMX(1, 0) equals the Euler characteristic ofRX .

Example 5.9 Take T = (C∗)2 with coordinates (t, s) and

X = {(2, 0), (0, 2), (1, 1), (1,−1)}

defining equations:
t2 = 1, s2 = 1, ts = 1, ts−1 = 1.

It is easily seen (see [17] for details) that this arrangement has six 1−dimensional layers and four
0−dimensional layers, and that

χ(q) = q2 − 6q + 8.

The polynomial MX(x, y) is composed by the following summands:

• (x− 1)2, corresponding to the empty set;

• 6(x− 1), corresponding to the 4 singletons, each giving contribution (x− 1) or 2(x− 1);

• 14, corresponding to the 6 pairs: indeed, the basis X = {(2, 0), (0, 2)} spans a sublattice of index
4, while the other bases span sublattices of index 2;
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• 8(y − 1), corresponding to the 4 triples, each contributing with 2(y − 1);

• 2(y − 1)2, corresponding to the whole set X .

Hence
MX(x, y) = x2 + 2y2 + 4x+ 4y + 3.

Notice that
MX(1− q, 0) = q2 − 6q + 8 = χ(q)

as claimed in Theorem 5.5. Furthermore Theorem 5.6 (or Corollary 4.12) implies that

P (q) = 15q2 + 8q + 1

and hence the Euler characteristic is P (−1) = 8 = MX(1, 0). Notice that this is the toric arrangement
arising from the root system of type C2 (see Section 7).

5.4 Number of regions of the compact torus
In this section we consider the compact abelian group dual to Γ T

.
= Hom(Γ,S1), where we set S1 .

=
{z ∈ C | |z| = 1} ' R/Z.

We assume for simplicity Γ to be a lattice; then T is a compact torus, i.e. it is isomorphic to (S1)n, and
in it every χ ∈ X defines a hypersurfaceHχ

.
=
{
t ∈ T |χ(t) = 1

}
.We denote by T (X) this arrangement;

clearly its poset of layers is the same as for the arrangement T (X) defined in the complex torus T . We
denote byRX the complement

RX
.
= T \

⋃
χ∈X

Hχ.

The compact toric arrangement T (X) has been studied in [9]; in particular the number R(X) of regions
(i.e. of connected components) of RX is proved to be a specialization of the characteristic polynomial
χ(q):

Theorem 5.10
R(X) = (−1)nχ(0).

By comparing this result with Theorem 5.5 we get the following

Corollary 5.11
R(X) = MX(1, 0)

6 Dahmen-Micchelli spaces
Until now we considered evaluations of TX(x, y) and MX(x, y) at y = 0 and y = 1. However, there
is another remarkable specialization of the Tutte polynomial: TX(1, y), which is called the polynomial
of the external activity of X . It is related with the corresponding specialization of MX(x, y) in a simple
way:

Lemma 6.1
MX(1, y) =

∑
p∈C0(X)

TXp
(1, y).
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The previous lemma has an interesting consequence. In [4] to every finite set X ⊂ V is associated
a space D(X) of functions V → C, and to every finite set X ⊂ Λ is associated a space DM(X) of
functions Λ → C. Such spaces are defined as the solutions of a system, respectively of differential
equations and of difference equations, in the following way.

For every λ ∈ X , let ∂λ be the usual directional derivative ∂λf(x)
.
= ∂f/∂λ(x) and let ∇λ be the

difference operator∇λf(x)
.
= f(x)− f(x− λ).

Then for every A ⊂ X we define the differential operator ∂A
.
=
∏
λ∈A ∂λ and the difference operator

∇A
.
=
∏
λ∈A∇λ. We can now define define the differentiable Dahmen-Micchelli space

D(X)
.
= {f : V → C | ∂Af = 0 ∀A such that r(X \A) < n}

and the discrete Dahmen-Micchelli space

DM(X)
.
= {f : Λ→ C | ∇Af = 0 ∀A such that r(X \A) < n} .

The space D(X) is a space of polynomials, which was introduced in order to study the box spline.
This is a piecewise-polynomial function studied in Approximation Theory; its local pieces, together with
their derivatives, span D(X). On the other hand, DM(X) is a space of quasipolynomials which arises
in the study of the partition function. This is the function that counts in how many ways an element
of Λ can be written as a linear combination with positive integer coefficients of elements of X . This
function is piecewise-quasipolynomial, and its local pieces, together with their translates, span DM(X).
In the recent book [6] the spaces D(X) and DM(X) are shown to be deeply related respectively with the
hyperlane arrangement and with the toric arrangement defined by X .

In order to compare these two spaces, we consider the elements of D(X) as functions Λ → C by
restricting them to the lattice Λ. Since the elements of DM(X) are polynomial functions, they are deter-
mined by their restriction. For every p ∈ C(X)0, let us define ϕp : Λ → C as the map λ 7→ λ(p). (see
Section 2.4.2). In [4] (see also [6, Formula 16.1]) the following result is proved.

Theorem 6.2
DM(X) =

⊕
p∈C0(X)

ϕpD(Xp).

Since every D(Xp) is defined by homogeneous differential equations, it is naturally graded, the degree
of every element being just its degree as a polynomial. The Hilbert series of D(Xp) is known to be
TXp

(1, y); in other words, the coefficients of this polynomial equal the dimensions of the graded parts
(see [2] or [6, Theorem 11.8]). Then, by the theorem above, also the space DM(X) is graded, and by
Lemma 6.1 we have:

Theorem 6.3 MX(1, y) is the Hilbert series of DM(X).

By comparing this theorem with Proposition 2.1 we recover the following known result, which can be
found for example in ([6, Chapter 13]) :

Corollary 6.4 The dimension of DM(X) equals the volume of the zonotope Z(X).
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7 The case of root systems
This section is devoted to describe a remarkable class of examples. We will assume standard notions
about root systems, Lie algebras and algebraic groups, which are exposed for example in [13] and [12].

Let Φ be a root system, 〈Φ∨〉 be the lattice spanned by the coroots, and Λ be its dual lattice (which is
called the cocharacters lattice). Then we define as in Section 4.2 a torus T = TΛ having Λ as group of
characters. In other words, if g is the semisimple complex Lie algebra associated to Φ and h is a Cartan
subalgebra, T is defined as the quotient T .

= h/〈Φ∨〉.
Each root α takes integer values on 〈Φ∨〉, so it induces a character eα : T → C/Z ' C∗. Let X be the

set of this characters; more precisely, since α and −α define the same hypersurface, we set

X
.
=
{
eα, α ∈ Φ+

}
.

In this way to every root system Φ is associated a toric arrangement. These arrangements have been
studied in [15]; we now show two applications to the present work. Let W be the (finite) Weyl group of
Φ, and let W̃ be the associated affine Weyl group. We denote by s0, . . . , sn its generators, and by Wk the
subgroup of W̃ generated by all the elements si but sk. Let Φk ⊂ Φ be the root system of Wk, and denote
by Xk the corresponding sublist of X . Then we have:

Corollary 7.1

MX(1, y) =

n∑
k=0

|W |
|Wk|

TXk
(1, y).

Furthermore, in [15] the following theorem is proved. Let W be the Weyl group of Φ.

Theorem 7.2 The Euler characteristic ofRX is equal to (−1)n|W |.
By comparing this statement with Corollary 5.8, we get the following

Corollary 7.3
MX(1, 0) = |W |.

It would be interesting to have a more direct proof of this fact.
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