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Abstract. We give bijective proofs of pattern-avoidance results for a class of permutations generalizing alternating
permutations. The bijections employed include a modified form of the RSK insertion algorithm and recursive bijec-
tions based on generating trees. As special cases, we show that the sets A2n(1234) and A2n(2143) are in bijection
with standard Young tableaux of shape 〈3n〉.
Alternating permutations may be viewed as the reading words of standard Young tableaux of a certain skew shape. In
the last section of the paper, we study pattern avoidance in the reading words of standard Young tableaux of any skew
shape. We show bijectively that the number of standard Young tableaux of shape λ/µ whose reading words avoid
213 is a natural µ-analogue of the Catalan numbers. Similar results for the patterns 132, 231 and 312.

Résumé. Nous présentons des preuves bijectives de résultats pour une classe de permutations à motifs exclus qui
généralisent les permutations alternantes. Les bijections utilisées reposent sur une modification de l’algorithme
d’insertion “RSK” et des bijections récursives basées sur des arbres de génération. Comme cas particuliers, nous
montrons que les ensembles A2n(1234) et A2n(2143) sont en bijection avec les tableaux standards de Young de la
forme 〈3n〉.
Une permutation alternante peut être considérée comme le mot de lecture de certain skew tableau. Dans la dernière
section de l’article, nous étudions l’évitement des motifs dans les mots de lecture de skew tableaux genéraux. Nous
montrons bijectivement que le nombre de tableaux standards de forme λ/µ dont les mots de lecture évitent 213 est
un µ-analogue naturel des nombres de Catalan. Des résultats analogues sont valables pour les motifs 132, 231 et 312.

Resumen. Presentamos pruebas biyectivas de resultados de “evasión de patrones” para una clase de permutaciones
que generalizan permutaciones alternantes. Las biyecciónes utilizadas incluyen una modificación del algoritmo de
inserción de RSK y una biyección recursiva basada en árboles generatrices. Mostramos, como casos especiales, que
los conjuntos A2n(1234) y A2n(2143) están en biyección con los tableaux de Young estándares de forma 〈3n〉.

Las permutaciones alternantes pueden ser entendidas como palabras de lectura de tableaux de Young estándares de
cierta forma sezgada. En la ultima sección del articulo, expandimos nuestro estudio al considerar evasión de patrones
en las palabras de lectura de tableaux de Young estándares de cualquier forma sezgada. Mostramos biyectivamente
que el número de tableaux de Young estándares de forma λ/µ cuyas palabras de lectura evitan 213 es un µ-anólogo
de los números de Catalán y resultados similares para los patrones 132, 231 y 312.
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1 Introduction
A classical problem asks for the number of permutations that avoid a certain permutation pattern. This
problem has received a great deal of attention (see e.g., [12, 3]) and has led to a number of interesting
variations including the enumeration of special classes of pattern-avoiding permutations (e.g., involutions
[12] and derangements [9]). One such variation, first studied by Mansour in [8], is the enumeration
of alternating permutations avoiding a given pattern or collection of patterns. Alternating permutations
have the intriguing property [8, 15, 4] that for any pattern of length three, the number of alternating
permutations of a given length avoiding that pattern is given by a Catalan number. This property is doubly
interesting because it is shared by the class of all permutations. This coincidence suggests that pattern
avoidance in alternating permutations and in usual permutations may be closely related and so motivates
the study of pattern avoidance in alternating permutations.

In this paper, we extend the study of pattern avoidance in alternating permutations to patterns of length
four. In particular, we show that the number of alternating permutations of length 2n avoiding either
of the patterns 1234 or 2143 is 2·(3n)!

n!(n+1)!(n+2)! . This is the first enumeration of a set of pattern-avoiding
alternating permutations for a single pattern of length four. In the case of 1234, we give a direct bijective
proof using a variation of RSK, while in the case of 2143 we give a recursive generating tree bijection.

Most of our bijections work in a more general setting in which we replace alternating permutations
with the set Ln,k of reading words of standard Young tableaux of certain nice skew shapes. (These
permutations are enumerated with no pattern restriction in [1].) Inspired by the idea of permutations as
reading words of tableaux, we give an enumeration of standard skew Young tableaux of any fixed shape
whose reading words avoid certain patterns. In particular, this provides a uniform argument to enumerate
permutations in Sn and permutations in Ln,k that avoid either 132 or 213. That such a bijection should
exist is far from obvious, and it raises the possibility that there is substantially more to be said in this area.
In the remainder of this introduction, we provide a more detailed summary of results.

Both the set of all permutations of a given length and the set of alternating permutations of a given
length can be expressed as the set of reading words of the standard Young tableaux of a particular skew
shape (essentially a difference of two staircases). We define a class Ln,k ⊆ Snk of permutations such that
Ln,1 = Sn is the set of all permutations of length n, Ln,2 is the set of alternating permutations of length
2n, and for each k Ln,k is the set of reading words of the standard Young tableaux of a certain skew shape.
In Section 2, we provide definitions of all the most important objects in this paper. In Sections 3 and 4,
we use bijective proofs to derive enumerative pattern avoidance results for Ln,k. In Section 3 we give
a simple bijection between elements of Ln,k with no (k + 1)-term increasing subsequence and standard
Young tableaux of rectangular shape 〈kn〉. In Section 4 we exhibit two bijections between the elements
of Ln,k with no (k + 2)-term increasing subsequence and standard Young tableaux of rectangular shape
〈(k + 1)n〉, one of which is a modified version of the famous RSK bijection and the other of which is a
generating tree approach that also yields an enumeration of alternating permutations avoiding 2143.

In Section 5, we broaden our study to arbitrary skew shapes and so initiate the study of pattern avoidance
in reading words of skew tableaux of any shape. In Section 5.1, we show bijectively that the number of
tableaux of shape λ/µ (under a technical restriction on the possible shapes that sacrifices no generality –
see Note 2) whose reading words avoid 213 can be easily computed from the shape. Notably, the resulting
value does not depend on λ and is in fact a natural µ-generalization of the Catalan numbers. Replacing
213 with 132, 231 or 312 leads to similar results.

For a complete version of this extended abstract, see [6] and [5].
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2 Definitions
A permutationw of length n is a word containing each of the elements of [n] = {1, 2, . . . , n} exactly once.
The set of permutations of length n is denoted Sn. Given a word w = w1w2 · · ·wn and a permutation
p = p1 · · · pk ∈ Sk, we say that w contains the pattern p if there exists a set of indices 1 ≤ i1 < i2 <
. . . < ik ≤ n such that the subsequence wi1wi2 · · ·wik of w is order-isomorphic to p, i.e., wi` < wim if
and only if p` < pm. Otherwise, w is said to avoid p. Given a pattern p and a set S of permutations, we
denote by S(p) the set of elements of S that avoid p. For example, Sn(123) is the set of permutations of
length n avoiding the pattern 123, i.e., the set of permutations with no three-term increasing subsequence.

A permutation w = w1w2 · · ·wn is alternating if w1 < w2 > w3 < w4 > . . .. (Note that in the
terminology of [13], these “up-down” permutations are reverse alternating while alternating permutations
are “down-up” permutations. Luckily, this convention doesn’t matter: any pattern result on either set can
be translated into a result on the other via complementation, i.e., by considering wc such that wci =
n+ 1− wi. Then results for the pattern 123 would be replaced by results for 321 and so on.) We denote
by An the set of alternating permutations of length n.

For n, k ≥ 1, let Ln,k be the set of permutations w = w1,1w1,2 · · ·w1,kw2,1 · · ·wn,k in Snk that satisfy
the conditions

L1. wi,j < wi,j+1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1, and

L2. wi,j+1 > wi+1,j for all 1 ≤ i ≤ n− 1, 1 ≤ j ≤ k − 1.

Note in particular that Ln,1 = Sn (we have no restrictions in this case) and Ln,2 = A2n. For any k and n,
Ln,k(12 · · · k) = 0. Thus, for monotone pattern-avoidance in Ln,k we should consider patterns of length
k + 1 or longer. The set Ln,k has been enumerated by Baryshnikov and Romik [1], and the formulas that
result are quite simple for small values of k.

Note 1 Ifw = w1,1 · · ·wn,k ∈ Snk satisfies L1 and also avoids 12 · · · (k+1)(k+2) then it automatically
satisfies L2, since a violation wi,j+1 < wi+1,j of L2 leads immediately to a (k + 2)-term increasing
subsequence wi,1 < . . . < wi,j+1 < wi+1,j < . . . < wi+1,k. In particular, we can also describe
Ln,k(1 · · · (k + 2)) (respectively, Ln,k(1 · · · (k + 1))) as the set of permutations in Snk(1 · · · (k + 2))
(respectively, Snk(1 · · · (k + 1))) whose descent set is (or in fact, is contained in) {k, 2k, . . . , (n− 1)k}.

A partition is a weakly decreasing, finite sequence of nonnegative integers. We consider two partitions
that differ only in the number of trailing zeroes to be the same. We write partitions in sequence notation,
as 〈λ1, λ2, . . . , λn〉, or to save space, with exponential notation instead of repetition of equal elements.
Thus, the partition 〈5, 5, 3, 3, 2, 1〉 may be abbreviated 〈52, 32, 2, 1〉. If the sum of the entries of λ is equal
to m then we write λ ` m.

Given a partition λ = 〈λ1, λ2, . . .〉, the Young diagram of shape λ is the left-justified array of λ1 +
. . . + λn boxes with λ1 in the first row, λ2 in the second row, and so on. We will identify each partition
with its Young diagram and speak of them interchangeably. A skew Young diagram λ/µ is the diagram
that results when we remove the boxes of µ from those of λ, when both are arranged so that their first
rows and first columns coincide. If λ/µ is a skew Young diagram with n boxes, a standard Young tableau
of shape λ/µ is a filling of the boxes of λ/µ with [n] so that each element appears in exactly one box,
and entries increase along rows and columns. We identify boxes in a (skew) Young diagram using matrix
coordinates, so the box in the first row and second column is numbered (1, 2). We denote by sh(T ) the
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Fig. 1: A standard skew Young tableau (in English notation, i.e., with the first row on top) whose reading word is the
permutation 7 10 14 8 13 15 4 11 12 1 5 9 2 3 6 ∈ L5,3.

shape of the standard Young tableau T , by SYT(λ) the set of standard Young tableaux of shape λ and by
fλ = |SYT(λ)| the size of this set.

Given a standard Young tableau T , the reading word of T is the permutation that consists of the entries
of the last row read from left to right, then the next-to-last row, and so on. For example, the reading
words of the tableaux of shape 〈n, n − 1, . . . , 2, 1〉/〈n − 1, n − 2, . . . , 1〉 are all of Sn, and similarly
Ln,k is equal to the set of reading words of standard skew Young tableaux of shape 〈n+ k − 1, n+ k −
2, . . . , k〉/〈n − 1, n − 2, . . . , 1〉, as illustrated in Figure 1. The other “usual” reading order, from right
to left then top to bottom in English notation, is simply the reverse of our reading order. Consequently,
any pattern-avoidance result in our case carries over to the other reading order by taking the reverse of all
permutations and patterns involved, i.e., by replacing w = w1 . . . wn with wr = wn · · ·w1.

We make note of two operations on Young diagrams and tableaux. Given a partition λ, the conjugate
partition λ′ is defined so that the ith row of λ′ has the same length as the ith column of λ for all i.
Similarly, the conjugate of a skew Young diagram λ/µ is defined by (λ/µ)′ = λ′/µ′. Given a standard
skew Young tableau T of shape λ/µ, the conjugate tableau T ′ of shape (λ/µ)′ is defined to have the entry
a in box (i, j) if and only if T has the entry a in box (j, i). Geometrically, all these operations can be
described as “reflection through the main diagonal.” Given a skew Young diagram λ/µ, rotation by 180◦

gives a new diagram (λ/µ)∗. Given a tableaux T with n boxes, we can form T ∗, the rotated-complement
of T , by rotating T by 180◦ and replacing the entry i with n+ 1− i for each i. Observe that the reading
word of T ∗ is exactly the reverse-complement of the reading word of T .

The Schensted insertion algorithm, or equivalently the RSK correspondence, is an extremely powerful
tool relating permutations to pairs of standard Young tableaux. For a description of the bijection and a
proof of its correctness and some of its properties, we refer the reader to [14, Chapter 7]. Our use of
notation follows that source, so in particular we denote by T ← i the tableau that results when we (row-)
insert i into the tableau T . Particular properties of RSK will be quoted as needed.

3 The pattern 12 · · · (k + 1)

In this section we give the simplest of the bijections in this paper.

Proposition 3.1 There is a bijection between Ln,k(12 · · · (k+1)) and the set of standard Young tableaux
of shape 〈kn〉.
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We have f 〈n〉 = f 〈1
n〉 = 1 and f 〈n,n〉 = f 〈2

n〉 = 1
n+1

(
2n
n

)
= Cn, the nth Catalan number. By the

hook-length formula [14, 11] we have

f 〈k
n〉 =

(kn)! · 1! · 2! · · · (k − 1)!

n! · (n+ 1)! · · · (n+ k − 1)!
.

So Proposition 3.1 says |Ln,k(1 · · · (k+1))| = f 〈k
n〉. For k = 1, this is the uninspiring result |Sn(12)| =

1. For k = 2, it tells us |A2n(123)| = Cn, a result that Stanley [15] attributes to Deutsch and Reifegerste.

Proof idea: The bijection is to identify the permutation w = w1,1 · · ·wn,k ∈ Ln,k(12 · · · k(k + 1)) with
the tableau T ∈ SYT(〈kn〉) given by Ti,j = wn+1−i,j . It is not difficult to verify that the conditions on
w correspond precisely to the conditions that T be a standard Young tableau and vice-versa. 2

Both directions of this bijection are more commonly seen with other names. The map that sends
w 7→ T is actually the Schensted insertion algorithm used in the RSK correspondence. (For any w ∈
Ln,k(1 · · · (k + 1)), the recording tableau is the tableau whose first row contains the {1, . . . , k}, second
row contains {k+ 1, . . . , 2k}, and so on.) The map that sends T 7→ w is the reading-word map as defined
in Section 2.

4 The pattern 12 · · · (k + 2)
There are several nice proofs of the equality |Sn(123)| = Cn including a clever application of the RSK
algorithm [14, Problem 6.19(ee)]. In this section, we give two bijective proofs of the following general-
ization of this result:

Theorem 4.1 There is a bijection between Ln,k(12 · · · (k + 2)) and the set of standard Young tableaux
of shape 〈(k + 1)n〉 and so

|Ln,k(12 · · · (k + 2))| = f 〈(k+1)n〉.

For k = 1 this is a rederivation of the equality |Sn(123)| = Cn while for k = 2 it implies

Corollary 4.2 We have |A2n(1234)| = f 〈3
n〉 =

2(3n)!

n!(n+ 1)!(n+ 2)!
for all n ≥ 0.

We believe this to be the first computation of any expression of the form A2n(π) or A2n+1(π) for
π ∈ S4. One can derive the complementary result for |A2n+1(1234)| using similar methods.

The first of our two bijections makes use of a modification of Schensted insertion, and the key idea for
the modification appears in [10] (in the context of doubly-alternating permutations). The second bijection
makes use of generating trees; its proof involves a number of technical results that we omit in this extended
abstract.

4.1 A bijection using a modified version of RSK
In this section, we prove Theorem 4.1 using a modification of the RSK insertion algorithm. Recall that the
RSK is a bijection between Sn and pairs (P,Q) of standard Young tableaux such that sh(P ) = sh(Q) ` n
with the following properties:

Theorem 4.3 ([14, 7.11.2(b)]) If P is a standard Young tableau and j < k then the insertion path of j
in P ← j lies strictly to the left of the insertion path of k in (P ← j) ← k, and the latter insertion path
does not extend below the former.
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Fig. 2: An application of our modified version of RSK to the permutation 48351726 ∈ L4,2(1234). Note that only
every other insertion step is shown in the construction of P .

Theorem 4.4 ([14, 7.23.11]) If w ∈ Sn and w RSK−→ (P,Q) with sh(P ) = sh(Q) = λ, then λ1 is the
length of the longest increasing subsequence in w.

Now we describe a bijection from Ln,k(12 · · · (k + 2)) to pairs (P,R) of standard Young tableau such
that P has nk boxes, R has n boxes, and the shape of R can be rotated 180◦ and joined to the shape of P
to form a rectangle of shape 〈(k + 1)n〉. (In other words, sh(P )′i + sh(R)′k+2−i = n for 1 ≤ i ≤ k + 1.)
Observe that the set of such pairs of tableaux is in natural bijection with the set of standard Young tableaux
of shape 〈(k + 1)n〉: given a tableau of shape 〈(k + 1)n〉, break off the portion of the tableau filled with
nk + 1, . . . , n(k + 1), rotate it 180◦ and replace each value i that appears in it with nk + n+ 1− i.

Given a permutation w = w1,1w1,2 · · ·w1,kw2,1 · · ·wn,k, let P0 = ∅ and for 1 ≤ i ≤ n let Pi =
(· · · ((Pi−1 ← wi,1) ← wi,2) · · · ) ← wi,k. Define P = Pn, so P is the usual RSK insertion tableau
for w. Define R as follows: set R0 = ∅ and λi = sh(Pi). Observe that by Theorem 4.3, λi/λi−1 is a
horizontal strip of size k and that by Theorem 4.4, λi/λi−1 stretches no further right than the (k + 1)th
column. Thus there is a unique j such that λi/λi−1 has boxes in the `th column for all ` ∈ [k + 1] \ {j}.
Let Ri be the shape that arises from Ri−1 by adding a box filled with i in the (k + 2− j)th column, and
define R = Rn. This map is illustrated in Figure 2.

Proposition 4.5 The algorithm just described is a bijection betweenLn,k(12 · · · (k+2)) and pairs (P,R)
of standard Young tableaux such that P has nk boxes,R has n boxes, and sh(R) can be rotated and joined
to sh(P ) to form a rectangle of shape 〈(k + 1)n〉.

Proof: By construction, P is a standard Young tableau with nk boxes and R is a shape with n boxes
filled with [n] such that we may rotate R by 180◦ and join it to P in order to get a rectangle of shape
〈(k + 1)n〉. Moreover, we have from standard properties of RSK that each Pi is of partition shape and by
construction that the corresponding Ri may be rotated 180◦ and joined to Pi to form a rectangle, so each
of the Ri (including R itself) is a partition shape. Finally, the unique box in Ri but not in Ri−1 is filled
with i, which is larger than the entry in any box in Ri−1, so R is a standard Young tableau.

We have left to show that this process is a bijection, i.e., we need that this map is invertible and that
its inverse takes pairs of tableaux of the given sort to permutations with the appropriate restrictions. In-
vertibility is straightforward, since from a pair (P,R) of standard Young tableaux of appropriate shapes
we can construct a pair of standard Young tableaux (P,Q) of the same shape such that w 7→ (P,R)

under our algorithm exactly when w RSK−→ (P,Q): if R has entry i in column k + 2 − j, place the entries
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ki− k + 1, ki− k + 2, . . . , ki respectively into columns 1, . . . , j − 1, j + 1, . . . , k + 1 of Q. Moreover,
by Theorem 4.3 we have that the preimage under RSK of this pair (P,Q) must consist of n runs of k
elements each in increasing order, i.e., it must satisfy L1, and by Theorem 4.4 it must have no increasing
subsequence of length k + 2. Then by the remarks in Section 2 following the definition of Ln,k we have
that the preimage satisfies L2 as well. This completes the proof. 2

4.2 A second approach using generating trees

Given a sequence {Σn}n≥1 of nonempty sets with |Σ1| = 1, a generating tree for this sequence is a
rooted, labeled tree such that the vertices at level n are the elements of Σn and the label of each vertex
determines the multiset of labels of its children. In other words, a generating tree is one particular type of
recursive structure in which heredity is determined by some local data. We are particularly interested in
generating trees for which the labels are (much) simpler than the objects they are labeling. In this case, we
may easily describe a generating tree by giving the label L1 of the root vertex (the element of Σ1) and the
succession rule L 7→ S that gives the set S of labels of the children in terms of the label L of the parent.
Generating trees have proven to be an effective tool for finding bijections between different classes of
pattern-avoiding permutations (see, e.g., [16, 2]). In this section, we describe how generating trees can be
used to give a second proof of Theorem 4.1 and to enumerate 2143-avoiding alternating permutations.

4.2.1 A tree for Ln,k

There is a natural generating tree structure on
⋃
n≥1 Ln,k: given a permutation v ∈ Ln,k, its children

are precisely the permutations w ∈ Ln+1,k such that the prefix of w of length nk is order-isomorphic to
v. Since pattern containment is transitive, the subset

⋃
n≥1 Ln,k(p) of these permutations that avoid the

pattern (or set of patterns) p is the set of vertices of a connected subtree. We now consider this restricted
tree for the pattern p = 12 · · · (k + 2).

Given a permutation w = w1w2 · · ·wnk ∈ Ln,k(1 · · · (k + 2)), we associate a label (a2, . . . , ak+1),
where aj is the smallest entry of w that is the largest entry in a j-term increasing subsequence, or nk + 1
if there is no such entry. (Note that aj could equivalently be defined as the last-occurring entry of w that
is the largest term in a j-term increasing subsequence of w but is not the largest term in a (j + 1)-term
increasing subsequence.) Thus, for example, the unique permutation 12 · · · k ∈ L1,k(1 · · · (k + 2)) has
label (2, . . . , k + 1), while the permutation 136245 ∈ L2,3(12345) has label (2, 4, 5).

Some relations among label entries are straightforward. For example, observe that if (a2, . . . , ak+1) is
the label of any permutation u ∈ Ln,k(1 · · · (k+ 2)) then 2 ≤ a2 < . . . < ak+1 ≤ nk+ 1. The following
result (whose proof, which consists of many technical details and little insight, is omitted) characterizes
the labels of children based on the labels of a parent.

Proposition 4.6 Suppose that u ∈ Ln,k(12 · · · (k + 2)) has label (a2, . . . , ak+1). Then for any k-tuple
(b2, . . . , bk+1) such that

2 ≤ b2 < b3 < . . . < bk+1 ≤ (n+ 1)k + 1 and bj ≤ aj + j − 1 for all j,

there is a unique child w ∈ Ln+1,k(12 · · · (k + 2)) of u with label (b2, . . . , bk+1), and u has no other
children.
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4.2.2 A tree for Young tableaux
There is a natural generating tree on the set

⋃
n≥1 SYT(〈(k+1)n〉) of rectangular standard Young tableaux

with k + 1 columns: let a tableau T be the child of a tableau S if S is order-isomorphic to T with its first
row removed.

Given a tableau S ∈ SYT(〈(k + 1)n〉) with first row (1, s2, s3, . . . , sk+1), assign to it the label
(s2, . . . , sk+1). Thus, for example, that the unique tableau in SYT(〈k + 1〉) has label (2, 3, . . . , k + 1),
while the tableau

1 2 4 5
3 6 7 8

∈ SYT(〈4, 4〉)

has label (2, 4, 5). It’s easy to see that if (s2, . . . , sk+1) is the label of a tableau T ∈ SYT(〈(k + 1)n〉)
then 2 ≤ s2 < s3 < . . . < sk+1 ≤ n(k + 1)− (n− 1) = nk + 1. Without too much effort, one can also
show the following result:

Proposition 4.7 Suppose that S ∈ SYT(〈(k + 1)n〉) has label (s2, . . . , sk+1). Then for any k-tuple
(t2, . . . , tk+1) such that

2 ≤ t2 < t3 < . . . < tk+1 ≤ (n+ 1)k + 1 and tj ≤ sj + j − 1 for all j,

there is a unique child T ∈ SYT(〈(k + 1)n+1〉) of S with label (t2, . . . , tk+1), and S has no other
children.

Theorem 4.1 follows immediately from Propositions 4.6 and 4.7.

4.2.3 A tree for 2143-avoiding alternating permutations
If, as in [5], we restrict our focus to alternating permutations (i.e., to A2n = Ln,2), brute-force computa-
tions suggest that there may be several patterns p ∈ S4 such that |A2n(p)| = |A2n(1234)| for all n. In
this section we use generating trees to show that 2143 is one such pattern.

Given any permutation w ∈ Sn and any c ∈ [n + 1], denote by w ◦ c the unique permutation in
Sn+1 whose last entry is c and whose first n entries are order-isomorphic to w. If w = w1w2 · · ·w2n ∈
A2n(2143), say that a value c ∈ [2n + 1] is active for w if w ◦ c avoids 2143. To each w ∈ A2n(2143),
assign the label (a, b) where a = w2n−1 + 1 and b is equal to the number of values in [n + 1] that are
active for w. The following result shows that with this labeling, the generating tree for

⋃
n≥1A2n(2143)

obeys a simple succession rule.

Proposition 4.8 Suppose that u ∈ A2n(2143) has label (a, b). Then for any ordered pair (x, y) such that

2 ≤ x ≤ a+ 1 and x < y ≤ b+ 2,

there is a unique child w ∈ A2n+2(2143) with label (x, y), and u has no other children.

One can easily verify that these conditions are equivalent to those of Propositions 4.6 and 4.7 in the
case k = 2. Therefore, we may conclude with the following result.

Theorem 4.9 For all n ≥ 1 we have

|A2n(1234)| = |A2n(2143)| = 2 · (3n)!

n! · (n+ 1)! · (n+ 2)!
.
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⇐⇒

Fig. 3: Moving separated components gives a new shape but leaves the set of reading words of tableaux unchanged.

5 Pattern avoidance in reading words of tableaux of skew shapes
So far, we have considered permutations that arise as the reading words of standard skew Young tableaux
of particular nice shapes. In this section, we expand our study to include pattern avoidance in the reading
words of standard Young tableaux of any skew shape. As is the case for pattern avoidance in other settings,
it is relatively simple to handle the case of small patterns (in our case, patterns of length three or less), but
it appears to be quite difficult to prove exact results for larger patterns.

As we have seen, this new type of pattern avoidance encompasses pattern avoidance for the set of all
permutations via the shape 〈n, n − 1 . . . , 1〉/〈n − 1, n − 2, . . . , 1〉, for alternating permutations via the
shape 〈n + 1, n, . . . , 2〉/〈n − 1, n − 2, . . . , 1〉 and three other similar shapes, and for Ln,k for any k via
the shape illustrated in Figure 1; it also incorporates other natural problems such as the enumeration of
pattern-avoiding permutations with prescribed descent set (when the skew shape is a ribbon). Thus, on
one hand the strength of our results is constrained by what is tractable to prove in these circumstances,
while on the other hand any result we are able to prove in this context applies quite broadly.

Note 2 We make the following general assumption on our Young diagrams: we will only ever be in-
terested in diagrams λ/µ such that the inner (north-west) boundary of λ/µ contains the entire outer
(south-east) boundary of µ. For example, the shape 〈4, 2, 1〉/〈2, 1〉 meets this condition, while the shape
〈5, 2, 2, 1〉/〈3, 2, 1〉 does not.

Observe that imposing this restriction does not affect the universe of possible enumerative results: for
a shape λ/µ failing this condition we can find a new shape λ′/µ′ that passes it and has an identical set
of reading words by moving the various disconnected components of λ/µ on the plane. For example,
for λ/µ = 〈5, 2, 2, 1〉/〈3, 2, 1〉 we have λ′/µ′ = 〈4, 2, 1〉/〈2, 1〉 – just slide disconnected sections of the
tableau together until they share a corner. This example is illustrated in Figure 3.

5.1 The patterns 213 and 132

The equality |Sn(213)| = |Sn(132)| = Cn is a simple recursive result. In [8] it was shown that
|A2n(132)| = |A2n+1(132)| = Cn (and so by reverse-complementation also |A2n(213)| = Cn), and
a bijective proof of this fact with implications for multiple-pattern avoidance was given in [7]. Here we
extend this result to the reading words of tableaux of any fixed shape.

Theorem 5.1 The number of tableaux of skew shape λ/µ whose reading words avoid the pattern 213 is
equal to the number of partitions whose Young diagram is contained in that of µ (subject to Note 2).

Note that this is a natural µ-generalization of the Catalan numbers: the outer boundaries of shapes
contained in 〈n−1, n−2, . . . , 1〉 are essentially Dyck paths of length 2nmissing their first and last steps.
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Fig. 4: Our bijection applied to the pair (〈3, 2〉/〈2〉, 〈1〉) to generate a standard Young tableau.
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Fig. 5: A partial example: an application of our bijection to generate a standard Young tableau from the pair
(〈9, 9, 8, 4, 4, 3, 2〉/〈7, 7, 4, 3, 2, 2〉, 〈6, 5, 3, 3, 1〉).

Proof idea: We begin with a warm-up and demonstrate the claim in the case that µ is empty. In this case,
the Proposition states that there is a unique standard Young tableau of a given shape λ = 〈λ1, λ2, . . .〉
whose reading word avoids the pattern 213. In order to show this, we note that the reading word of every
straight (i.e., non-skew) tableau ends with an increasing run of length λ1 and that the first entry of this
run is 1. Since the reading word is 213-avoiding, each entry following the 1 must be smaller than every
entry preceding the 1 and so this run consists of the values from 1 to λ1. Applying the same argument to
the remainder of the tableau (now with the minimal element λ1 + 1), we see that the only possible filling
is the one we get by filling the first row of the tableau with the smallest possible entries, then the second
row with the smallest remaining entries, and so on. On the other hand, the reading word of the tableau
just described is easily seen to be 213-avoiding, so we have our result in this case.

For the general case we give a recursive bijection. We recommend that the reader consult Figures 4
and 5 to most easily understand what follows.

Suppose we have a tableau T of shape λ/µwith entry 1 in position (i, j), an inner corner. Divide T into
two pieces, one consisting of rows 1 through i with the box (i, j) removed, the other consisting of rows
numbered i+1, i+2, etc. Let T1 be the tableau order-isomorphic to the first part and let T2 be the tableau
order-isomorphic to the second part. Let ν = 〈ν1, . . . , νi〉 be the result of applying this construction
recursively to T1 and let ι = 〈ι1, ι2, . . .〉 be the result of applying this construction recursively to T2.
Then the partition τ associated to T is given by τ = 〈ν1 + j, . . . , νi + j, ι1, ι2, . . .〉. That is, τ consists of
all boxes (k, l) with k < i and l ≤ j together with the result of applying our process to the right of this
rectangle and the result of applying it below the rectangle, with the latter piece shifted up one row. By
construction, τ is partition whose Young diagram fits inside µ.

To invert this process, start with a pair (λ/µ, τ) of a skew and a non-skew shape such that τ fits
inside µ. Let i be the largest index such that τi−1 > µi, or let i = 1 if no such index exists. We
divide τ and λ/µ into two pieces. For τ , we first remove the rectangle of shape 〈(µi + 1)i−1〉, leaving
a partition to the right of the rectangle of shape ν1 = 〈τ1 − µi − 1, τ2 − µi − 1, . . . , τi−1 − µi − 1〉
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and a second partition below the rectangle of shape ν2 = 〈τi, τi+1, . . .〉. For λ/µ, we begin by filling
the box (i, µi + 1) with the entry 1. Then we take the boxes to the right of this entry as one skew shape
α1/β1 = 〈λ1−µi− 1, λ2−µi− 1, . . . , λi−µi− 1〉/〈µ1−µi− 1, µ2−µi− 1, . . . , µi−1−µi− 1〉 and
the boxes below it as our second skew shape α2/β2 = 〈λi+1, λi+2, . . .〉/〈µi+1, µi+2, . . .〉. Note that ν2
fits inside β2 and that ν1 fits inside β1 by the choice of i. Thus we may apply this construction recursively
with the pairs (α1/β1, ν1) and (α2/β2, ν2), filling α1/β1 with the values 2, . . . , |s1|+1 and filling α2/β2
with the values |α1/β1|+ 2, . . . , |λ/µ| = |α1/β1|+ |α2/β2|+ 1. (Observe that this coincides with what
we did in the first paragraph for µ = ∅.)

One can prove by a simple inductive argument that these maps are mutually-inverse bijections between
the sets in question. 2

Corollary 5.2 We have that |Ln,k(213)| = Cn for all n, k ≥ 1.

Note that knowing the number of tableaux of each shape whose reading words avoid 213 automatically
allows us to calculate for any shape the number of tableaux of that shape whose reading words avoid 132:
if λ = 〈λ1, . . . , λk〉 and µ is contained in λ, the operation T 7→ T ∗ of rotation and complementation is a
bijection between tableaux of shape λ/µ and tableaux of shape 〈λ1−µk, λ1−µk−1, . . . , λ1−µ1〉/〈λ1−
λk, λ1−λk−1, . . . , λ1−λ2〉. Moreover, the reading word of T ∗ is the reversed-complement of the reading
word of T , so the reading word of T avoids 132 if and only if the reading word of T ∗ avoids 213. This
argument establishes the following corollary of Theorem 5.1:

Corollary 5.3 The number of tableaux of skew shape λ/µ whose reading words avoid the pattern 132 is
equal to the number of partitions whose Young diagram is contained in that of the partition 〈λ1−λk, λ1−
λk−1, . . . , λ1 − λ2〉.

Corollary 5.4 We have that |Ln,k(132)| = Cn for all n, k ≥ 1.

5.2 The patterns 312 and 231

If the shape λ/µ contains a square, every tableau of that shape contains as a sub-tableau four entries

a b
c d

with a < b < d and a < c < d, and the reading word of every such tableau is of the form . . . cd . . . ab . . ..
But any such permutation contains both an instance dab of the pattern 312 an instance cda of the pattern
231. Thus, the number of tableaux of shape λ/µ whose reading words avoid 312 or 231 is zero unless
λ/µ contains no square, i.e., unless λ/µ is contained in a ribbon. In this case, for a tableau T of shape
λ/µ with reading word w we have that the reading word of the conjugate tableau T ′ is exactly the reverse
wr of w. Since w avoids 312 if and only if wr avoids 213, we may apply Theorem 5.1 to deduce the
following result.

Proposition 5.5 If skew shape λ/µ is contained in a ribbon then the number of tableaux of shape λ/µ
whose reading words avoid the pattern 312 is equal to the number of partitions whose Young diagram is
contained in that of µ. Otherwise, the number of such tableaux is 0.

Analogous arguments give the following result.
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Corollary 5.6 If skew shape λ/µ is contained in a ribbon then the number of tableaux of shape λ/µ
whose reading words avoid the pattern 231 is equal to the number of partitions whose Young diagram
is contained in that of the partition 〈λ1 − λk, λ1 − λk−1, . . . , λ1 − λ2〉. Otherwise, the number of such
tableaux is 0.

In the special case of Ln,k this says that for k ≥ 3 and n ≥ 2 we have Ln,k(231) = Ln,k(312) = ∅
while for 1 ≤ k ≤ 2 we have that |Ln,k(231)| and |Ln,k(312)| are Catalan numbers [4, 15].
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