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Abstract. The Pieri rule expresses the product of a Schur function and a single row Schur function in terms of Schur
functions. We extend the classical Pieri rule by expressing the product of a skew Schur function and a single row
Schur function in terms of skew Schur functions. Like the classical rule, our rule involves simple additions of boxes
to the original skew shape. Our proof is purely combinatorial and extends the combinatorial proof of the classical
case.

Résumé. La régle de Pieri exprime le produit d’une fonction de Schur et de la fonction de Schur d’une seule ligne en
termes de fonctions de Schur. Nous étendons la regle classique de Pieri en exprimant le produit d’un fonction gauche
de Schur et de la fonction de Schur d’une ligne en termes de fonctions gauches de Schur. Comme la regle classique,
notre régle implique 1’ajout de cases a la forme gauche initiale. Notre preuve est purement combinatoire et étend celle
du cas classique.
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1 Introduction

The basis of Schur functions is arguably the most interesting and important basis for the ring of symmetric
functions. This is due not just to their elegant combinatorial definition, but more broadly to their connec-
tions to other areas of mathematics. For example, they are intimately tied to the cohomology ring of the
Grassmannian, and they appear in the representation theory of the symmetric group and of the general
and special linear groups.

It is therefore natural to consider the expansion of the product sy s, of two Schur functions in the basis
of Schur functions. The Littlewood-Richardson rule [LR34l [Sch77, [Tho74, [Tho78|], which now comes
in many different forms ([Sta99] is one starting point), allows us to determine this expansion. However,
more basic than the Littlewood-Richardson rule is the Pieri rule, which gives a simple, beautiful and more
intuitive answer for the special case when p = (n), a partition of length 1. Though we will postpone
the preliminary definitions to Section [2] and the statement of the Pieri rule to Section [3] stating the rule
in a rough form will give its flavor. For a partition A and a positive integer n, the Pieri rule states that
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$xSn is a sum of Schur functions sy+, where A7 is obtainable by adding cells to the diagram of \ ac-
cording to a certain simple rule. The Pieri rule’s prevalence is highlighted by its adaptions to many other
settings, including Schubert polynomials [LS82} |LS07, Man98, [Sot96, IWin98]|, Hall-Littlewood polyno-
mials [Mor64], Jack polynomials [Las89,Sta89]], LLT polynomials [Lam035], and Macdonald polynomials
[Koo&8l IMac87, Mac95|.

It is therefore surprising that there does not appear to be a known adaption of the Pieri rule to the
most well-known generalization of Schur functions, namely skew Schur functions. We fill this gap in the
literature with a natural extension of the Pieri rule to the skew setting. Reflecting the simplicity of the
classical Pieri rule, the skew Pieri rule states that for a skew shape \/u and a positive integer n, s /,,5,, is
a signed sum of skew Schur functions s+ /,,-, where AT /u~ is obtainable by adding cells to the diagram
of \/p according to a certain simple rule. Our proof is purely combinatorial, using a sign-reversing
involution that reflects the combinatorial proof of the classical Pieri rule.

After reading an early version of the full version [AMQ9] of this manuscript, which included an alge-
braic proof of the case n = 1 due to Richard Stanley, Thomas Lam provided a complete algebraic proof
of our skew Pieri rule, which is included as an appendix to [AMO09]. It is natural to ask if our skew Pieri
rule can be extended to give a “skew” version of the Littlewood-Richardson rule, and we included such a
rule as a conjecture in [AMOQ9]. This conjecture has been proved by Lam, Aaron Lauve and Frank Sottile
in [LLSO9] using Hopf algebras. It remains an open problem to find a combinatorial proof of the skew
Littlewood-Richardson rule.

The remainder of this paper is organized as follows. In Section [2] we give the necessary symmetric
function background. In Section [3] we state the classical Pieri rule and introduce our skew Pieri rule.
In Section E} we give a variation from [SS90] of the Robinson-Schensted-Knuth algorithm, along with
relevant properties. This algorithm is then used in Section [5]to define the sign-reversing involution that
proves the skew Pieri rule.

1.1 Acknowledgments

We are grateful to a number of experts for informing us that they too were surprised by the existence of
the skew Pieri rule, and particularly to Richard Stanley for providing an algebraic proof of the n = 1 case
that preceded our combinatorial proof. This research was performed while the second author was visiting
MIT, and he thanks the mathematics department for their hospitality. Computations were performed using
[Buc99, [Ste]].

2 Preliminaries

We follow the terminology and notation of [Mac95| |Sta99] for partitions and tableaux, except where
specified. Letting N denote the nonnegative integers, a partition A of n € N is a weakly decreasing
sequence (A1, Ag,...A;) of positive integers whose sum is n. It will be convenient to set A\, = 0 for
k > 1. We also let () denote the unique partition with [ = 0. We will identify A with its Young diagram in
“French notation”: represent the partition A by the unit square cells with top-right corners (i,j) € N x N
such that 1 < ¢ < \;. For example, the partition (4, 2, 1), which we abbreviate as 421, has Young diagram

uj
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Define the conjugate or transpose X\t of ) to be the partition with \; cells in column 4. For example,
421 = 3211. For another partition u, we write 1 C X whenever y is contained within A (as Young
diagrams); equivalently p; < \; for all ¢. In this case, we define the skew shape A/ to be the set theoretic
difference A — p. In particular, the partition X is the skew shape \/(. We call the number of cells of \/p
its size, denoted |\/u|. We say that a skew shape forms a horizontal strip (respectively vertical strip) if it
contains no two cells in the same column (resp. row). A k-horizontal strip is a horizontal strip of size k,

and similarly for vertical strips. For example, the skew shape 421 /21 is a 4-horizontal strip:

With another skew shape o /7, we let (A/u) * (o/7) denote the skew shape obtained by positioning A/
so that its bottom right cell is immediately above and left of the top left cell of o /7. For example, the
horizontal strip 421/21 above could alternatively be written as (21/1) * (2) or as (1) * (31/1).

A Young tableau of shape \/u is a map from the cells of A/ to the positive integers. A semistandard
Young tableau (SSYT) is such a filling which is weakly increasing from left-to-right along each row and
strictly increasing up each column, such as

3[3]5] -
112]7]

The content of an SSYT T is the sequence 7 such that T" has 7; cells with entry ¢; in this case 7 =
(1,1,2,0,2,0,1).

We let A denote the ring of symmetric functions in the variables © = (1, 22, .. .) over Q, say. We will
use three familiar bases from [Mac95|[Sta99] for A: the elementary symmetric functions ey, the complete
homogeneous symmetric functions h and, most importantly, the Schur functions s . The Schur functions
form an orthonormal basis for A with respect to the Hall inner product and may be defined in terms of

SSYTs by
Sy = Z ajT’ 2.1
TESSYT(N)

where the sum is over all SSYTs of shape A and where 2 denotes the monomial 27" 25? - - - when T has

content 7. Replacing A by A/p in @2.1) gives the definition of the skew Schur function s ,, where the

sum is now over all SSYTs of shape A/p. For example, the SSYT shown above contributes the monomial
2,.2

T1X2T3T5T7 10 5431/1-

3 The skew Pieri rule

The celebrated Pieri rule gives an elegant method for expanding the product sy s,, in the Schur basis. This
rule was originally stated in [Pie93] in the setting of Schubert Calculus. Recall that the single row Schur
function s,, equals the complete homogeneous symmetric function h,,. Recall also the involution w on A,
which may be defined by sending the Schur function sy to syt or equivalently by sending hy, to e;. Thus
the Schur function s;» equals the elementary symmetric function e,,, where 1" denotes a single column
of size n.



136 Sami H. Assaf and Peter R. W. McNamara

Theorem 3.1 ([Pie93]]) For any partition A and positive integer n, we have
5x8n = Sxhn = > Sxts 3.1

AT /X n-hor. strip
where the sum is over all partitions X such that N /X is a horizontal strip of size n.

Applying the involution w to (B-1)), we get the dual version of the Pieri rule:

S\81n = Sxen = > Syt s (3.2)

AT /X n-vert. strip

where the sum is now over all partitions AT such that A™/\ is a vertical strip of size n.
A simple application of Theorem 3.1] gives

$32282 = 83222 1 83321 1 S4221 + S432 + Ss22,

as represented diagrammatically in Figure|[T]

o om |
e e linlinas Maas Hans

Fig. 1: The expansion of s32252 by the Pieri rule.

Given the simplicity of (1)), it is natural to hope for a simple expression for s /,,s,, in terms of skew
Schur functions. This brings us to our main result.
Theorem 3.2 For any skew shape \/u and positive integer n, we have
S\/uSn :S)\/uhn = Z(—l)k Z SA+/u— s 3.3)

k=0 At /X (n—k)-hor. strip
n/p” k-vert. strip

where the second sum is over all partitions \™ and i~ such that X /X is a horizontal strip of size n — k
and /= is a vertical strip of size k.

Observe that when . = (), Theorem specializes to Theorem Again, we can apply the w
transformation to obtain the dual version of the skew Pieri rule.
Corollary 3.3 For any skew shape A/ and any positive integer k, we have
S)\/#Sln :sA/pen:Z(_]-)k Z S)\+/M—,

k=0 At /X (n—k)-vert. strip
p/p” k-hor. strip

where the sum is over all partitions \¥ and p~ such that X /X is a vertical strip of sizen — k and p/p~
is a horizontal strip of size k.
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Example 3.4 A direct application of Theorem[3.2]gives

5322/1152 = S3222/11 1+ 53321/11 + S4221/11 + S432/11 + S522/11

— 53221/1 — $332/1 — S422/1 T 5322,

as represented diagrammatically in Figure

-[D:F + +P +L$.+

- T_EH_E1+E3

Fig. 2: The expansion of s322,1152 by the skew Pieri rule.

As (3:3) contains negative signs, our approach to proving Theorem [3.2] will be to construct a sign-
reversing involution on SSYTs of shapes of the form A*/u~. We will then provide a bijection between
SSYTs of shape A" /i~ that are fixed under the involution and SSYTs of shape (A/p) * (n). The result
then follows from the fact that sy /.)«(n) = Sx/uSn-

4 Row insertion

In order to describe our sign-reversing involution, we will need the Robinson-Schensted-Knuth (RSK)
row insertion algorithm on SSYTs [Knu7Q]. For a thorough treatment of this algorithm
along with many applications, we recommend [Sta99]]. In fact, we will use an analogue of the algorithm
for SSYTs of skew shape from [SS90]. There, row insertion comes in two forms, external and internal
row insertion. External row insertion, which we now define, is just like the classical RSK insertion.

Definition 4.1 Let T' be an SSYT of arbitrary skew shape and choose a positive integer k. Define the
external row insertion of k into T, denoted T <— k, as follows: if k is weakly larger than all entries in
row 1 of T, then add k to the right end of the row and terminate the process. Otherwise, find the leftmost
cell in row 1 of T whose entry, say k', is greater than k. Replace this entry by k and then row insert k'
into T at row 2 using the procedure just described. Repeat the process until some entry comes to rest at
the right end of a row.

Example 4.2 Let \/p = 7541/32 and A\ /u~ = 7542/31 so that the outlined entries below are those in
A/ . The result of externally row inserting a 2 is shown below, with changed cells circled.

4.1
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An inside corner (resp. outside corner) of an SSYT T is a cell that has no cell of 7' immediately below
or to its left (resp. above or to its right). Therefore, inside and outside corners are those individual cells
whose removal from 7T still yields an SSYT of skew shape.

Definition 4.3 Let T be an SSYT of arbitrary skew shape and let T have an inside corner in row r with
entry k. Define the internal row insertion of k£ from row r into 7T, denoted T' <+, k, as the removal of
k from row r and its insertion, using the rules for external row insertion, into row r + 1. The insertion
proceeds until some entry comes to rest at the right end of a row.

We could regard external insertions as internal insertions from row 0, explaining our notation. We will
simply write T' <— k when specifying the type or row of the insertion is unnecessarily cumbersome.

Example 4.4 Taking T as the SSYT on the right in {@.1)), the result of internally row inserting the 1 from
row 2 is shown below.

4.2)

For both types of insertion, we must be a little careful when inserting an entry into an empty row, say
row ¢: in this case \; = u; and the entry must be placed in column A; + 1.

Note that an internal insertion results in the same multiset of entries while an external insertion adds an
entry. It is not difficult to check that either operation results in an SSYT.

We will also need to invert row insertions, again for skew shapes and following [SS90].

Definition 4.5 Let T be an SSYT of arbitrary skew shape and choose an outside corner c of T, say with
entry k. Define the reverse row insertion of ¢ from 7', denoted T — c, by deleting c from T and reverse
inserting k into the row below, say row r, as follows: if r = 0, then the procedure terminates. Otherwise,
if k is weakly smaller than all entries in row r, then place k at the left end of row r and terminate the
procedure. Otherwise, find the rightmost cell in row r whose entry, say k', is less than k. Replace this
entry by k and then reverse row insert k' into row r — 1 using the procedure just described.

Example 4.6 In (4.1)), reverse row insertion of the cell containing the circled 7 from the SSYT on the right
results in the SSYT on the left, and similarly in [d.2) for the circled 4.

As with row insertion, it follows from the definition that the resulting array will again be an SSYT.
Observe that the first type of termination mentioned in Definition corresponds to reverse external row
insertion, and we then say that k lands in row 0. The second type of termination corresponds to reverse
internal row insertion, and we then say that k lands in row r. In both cases, we will call the entry & left
at the end of the procedure the final entry of T — c. The following lemma, which follows immediately
from Definitions {.1] .3]and [4.5] formalizes the bijectivity of row and reverse row insertion.

Lemma 4.7 Let T be an SSYT of skew shape.

a. If S is the result of T < k for some positive integer k, then S — c results in T, where c is the
unique non-empty cell of S that is empty in T.
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b. If S is the result of T — c for some removable cell c of T and the final entry k of T — ¢ lands in
rowr >0, then S <, k results inT.

For both row insertion and reverse row insertion, we will often want to track the cells affected by the
procedure. Therefore define the bumping path of the row insertion T' <— k (resp. the reverse bumping
path of a reverse row insertion T' — c) to be the set of cells in 7', as well as those empty cells, where the
entries differ from the corresponding entries in I" <— k (resp. 7' — ¢). The cells of the bumping paths for
row insertion and reverse row insertion are circled in (@.I) and (@.2). Note that the fact that the bumping
path and reverse bumping path are equal in each of these examples is a consequence of Lemma .7}

It is easy to see that the bumping paths always move weakly right from top to bottom in the case
of column-strict tableaux. The following bumping lemma will play a crucial role in defining our sign-
reversing involution and in proving its relevant properties.

Lemma 4.8 Let T be an SSYT of skew shape and let k, k' be positive integers. Let B be the bumping path
of T <+ k and let B’ be the bumping path of (T < k) < k.

a. If B is strictly left of B in any row r, then B is strictly left of B’ in every row they both occupy.
Moreover, the top cells of B and B’ form a horizontal strip.

b. If both row insertions are external, then B is strictly left of B’ in every row they both occupy if and
only if k < k'

c. Suppose C' is the reverse bumping path of T — ¢’ with final entry k' and C is the reverse bumping
path of (T — ¢) — c with final entry k. If c is strictly left of ¢, then C is strictly left of C' in every
row they both occupy. If, in addition, both reverse row insertions land in row 0, then k < k.

To foreshadow the role of Lemma in the following section, we give a proof of the classical Pieri
rule using this result.

Proof of Theorem The formula is proved if we can give a bijection between SSYTs of shape A x (n)
and SSYTs of shape AT such that A* /) is a horizontal strip of size n. Let k; < --- < k,, be entries of
(n) from left to right. Repeated applications of (a) and (b) of Lemma ensure that row inserting these
entries into an SSYT of shape \ will add a horizontal strip of size n to A. By Lemmal4.7] this establishes
a bijection where the inverse map is given by reverse row inserting the cells of A /) from right to left. O

5 A sign-reversing involution

Throughout this section, fix a skew shape A/u. We will be interested in SSYTs of shape At /u~, where
we always assume that A* /) is a horizontal strip, p/p~ is a vertical strip, and |A\T/\| + |pu/u~| = n.
Our goal is to construct a sign-reversing involution on SSYTs whose shapes take the form A*/u~, such
that the fixed points are in bijection with SSYTs of shape (A/u) * (n).

Our involution is reminiscent of the proof of the classical Pieri rule given in Sectiond] By Lemmal4.7]
reverse row insertion gives a bijective correspondence provided we record the final entry and its landing
row. Our strategy, then, is to reverse row insert the cells of AT /) from right to left, recording the entries
as we go. If at some stage we land in row r > 1, we will then re-insert all the previous final entries. More
formally, we have the following definition of a downward slide of T .
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Definition 5.1 Ler T be an SSYT of shape AT /11~ Define the downward slide of T', denoted D(T), as
follows: construct T — ¢y where ¢y is the rightmost cell of X /), and let ky denote the final entry.
If k1 lands in row 0, then continue with co the second rightmost cell of \™ /X and ko the final entry of
(T — ¢1) — co. Continue until the first time k,, lands in row r > 1 and set m" = m — 1, or set
m =m' = |\*/\| if no such ky, exists. Then D(T) is given by

(- (T—=c1)=ca )= em) k) o) « k.
Example 5.2 With T shown on the left below, we exhibit the construction of D(T') in two steps. We find
that m = 4 and the middle SSYT shows the result of (((T — ¢1) — ¢2) — ¢3) — c4. The entries that

land in row 0 are recorded in the dashed box. Then the SSYT on the right is D(T). The significance of the
circles will be explained later.

9 5.1

Alternatively, if T is the SSYT shown on the left below, we find that m = 3 and that all three final entries
land in row 0. Then m' = |\* /\| and Lemma4.7 ensures that D(T) = T. Below in the middle, we have
shown ((T — ¢1) — c2) — c3. The position of the dashed box is intended to be suggestive: together with
the entries in the outlined shape, we see that we have an SSYT of shape (A\/p) * (n) = (653/21) * (3).

,,,,,,,

The final reverse bumping path in a downward slide will play an important role in the sign-reversing
involution. Therefore, with notation as in Definition if m < |[AT/A, then we refer to the reverse
bumping path of T — ¢, as the downward path of T. The cells of the downward path of T are circled
above. Say that the downward path of T exits right if its bottom cell (which may be empty) is strictly
below the bottom cell i/~ . Our terminology is justified since one can show that the exits right condition
is equivalent to the bottom cell of the downward path being weakly right of the bottom cell of y/p~. The
importance of the exits right condition is revealed by the following result.

Proposition 5.3 Suppose T is an SSYT of shape X\t /i~ such that the downward path of T, if it exists,
exits right. Then D(T) is an SSYT of shape X' /i, where X' /X (resp. p/ ') is a horizontal (resp. vertical)
SHrip.
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Supposing D(S) = T with T' # S, the next step is to invert the downward slides for such T". Since any
such T necessarily has =~ # p, the idea is to internally row insert the bottom cell of 1/ ~. However,
before doing this we must reverse row insert certain cells of A* /A, as in a downward slide. To describe
which cells to reverse insert, we define the upward path of T' to be the bumping path that would result
from internal row insertion of the entry in the bottom cell of x/p~. Roughly, we will reverse row insert
anything that is weakly right of this upward path.

Definition 5.4 Let T be an SSYT of shape N\ /p~ such that = # p. Define the upward slide of T,
denoted U(T), as follows: construct T — ¢y where ¢y is the rightmost cell of At /A, and let ky denote
its final entry and By its bumping path. If By fails to stay weakly right of the upward path of T, then
set m = m' = 0. Otherwise, consider cy, the second rightmost cell of \* /A, and ks, the final entry
of (T — ¢1) — co, and Bs, the corresponding bumping path. Continue until the last time B, stays
weakly right of the upward path of T or until no cell of \* /X remains. Suppose that after the reverse row
insertions, the bottom cell of /™ is in row r and has entry k. Then U(T) is given by

(- (T—oc1) =)= em) s k) kp)o )k 5.2)

where we set m’ = m if k,,, lands in row 0, and m' = m — 1 otherwise.

Example 5.5 Letting T be the rightmost SSYT of (B.1)), the cells of the upward path of T are circled
below. We determine U(T) in three steps. We find that m = 3 and the middle SSYT of shows
(T — 1) = c2) = ¢3. Then (((T' — ¢1) — c2) — ¢3) < k is shown in the middle below, while U(T)
is shown on the right. Comparing with Example [5.2] we observe that the upward slide in this case does
indeed invert the downward slide.

******

,,,,,,,

There are also instances where the entry k of Definition is different from the entry originally at the
bottom of the upward path. For example, the same three-step process for constructing U(T') is shown
below for an example with m = 2. There, k = 2, even though the original upward path of T had 1 as its

bottom entry.
® 3 3 33
— — —
@ 2 o o 1
11 11

,,,,,,,,,,
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As with downward slides and before presenting our involution, we must ensure that the result of an
upward slide is always a tableau of the appropriate skew shape.

Proposition 5.6 Suppose T is an SSYT of shape XV /™ such that in the upward slide of T, all the final
entries of the reverse row insertions land in row 0. Then U(T') is an SSYT of shape X' /1, where ' /X
(resp. /') is a horizontal (resp. vertical) strip.

Our involution will consist of either applying a downward slide or an upward slide. The decision for
which slide to apply is roughly based on which of the downward path of T" or the upward path of T lies
further to the right.

Definition 5.7 Consider the set of SSYTs T of shape \™ /™ such that that At /X is a horizontal strip and
W/ u= is a vertical strip. Define a map ¢ on such T by

D(T) if T has no upward path or
H(T) = the downward path of T' exists and exits right,

U(T) otherwise.

Theorem 5.8 The map ¢ defines an involution on the set of SSYTs with shapes of the form A\t /.~ where
AV /X is a horizontal strip and j1/ ™ is a vertical strip.

We now have all the ingredients needed to prove the skew Pieri rule.

Proof of Theorem [3.2; Using the expansion of sy+/,- in terms of SSYTs as in (2.I), observe that if
&(T) # T, then the T and ¢(T) occur with different signs in the right-hand side of (3.3). Since ¢
clearly preserves the monomial associated to an SSYT, the monomials corresponding to 7" and ¢(7T') in
the right-hand side of (3.3)) will cancel out. Because s, JuSn = S(x/u)x(n) it remains to show that there is
a monomial-preserving bijection from fixed points of ¢ to SSYTs of shape (A/p) * (n).

Note that 7" is a fixed point of ¢ only if 7" has neither an upward path nor a downward path. This
happens if and only if 4~ = ;1 and when reverse row inserting the cells of A™ /) from right to left, every
final entry lands in row 0. In particular, the entries of 7" remaining after reverse row inserting the cells of
AT /X form an SSYT of shape A/ . Say the final entries of the reverse row insertions are ki, . . ., k1 in the
order removed. By Lemma c), since AT /A is a horizontal strip, we have k1 < - -+ < k;, and so these
entries form an SSYT of shape (n). By Lemma this process is invertible and therefore establishes the
desired bijection. O

Remark 5.9 We proved Theorem [3.2] by working with SSYTs. In particular, we showed that the two
sides of (B3) were equal when expanded in terms of monomials. Alternatively, we could consider the
expansions of both sides of (B.3) in terms of Schur functions. The Littlewood-Richardson rule states
that the coefficient of s, in the expansion of any skew Schur function s ,, is the number of Littlewood-
Richardson fillings (LR-fillings) of shape \/u and content v. (The interested reader unfamiliar with
LR-fillings can find the definition in [Sta99)].) It is not hard to check that our maps D and U send LR-
fillings to LR-fillings, and bumping within LR-fillings has some nice properties. For example, the entries
along a (reverse) bumping path are always 1,2, ..., r from bottom to top for some 7.

However, we chose to give our proof in terms of SSYTs because one does not need to invoke the power
of the Littlewood-Richardson rule to prove the classical Pieri rule, and we wanted the same to apply to
the skew Pieri rule.
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